Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1928)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: DISTRIBUTION DES VITESSES DANS UN SOLIDE EN MOUVEMENT

Autor: Zotoff, A. W.

DOI: https://doi.org/10.5169/seals-21883

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DISTRIBUTION DES VITESSES DANS UN SOLIDE EN MOUVEMENT

PAR

A. W. Zotoff (Moscou)

1. — Nous commençons par rappeler les propositions suivantes 1.

a) Les projections orthogonales des vitesses $\overline{v_1}$ et $\overline{v_2}$ de deux points A_1 et A_2 d'un solide sur l'axe A_1 A_2 sont égales et de même signe.

Soient $\overline{r_1}$ et $\overline{r_2}$ les coordonnées vectorielles des points A_1 et A_2 par rapport à une origine fixe 0. (Fig. 1). Puisque les points appartiennent à un même solide

$$\overline{A_1 A_2}^2 = (\overline{r_2} - \overline{r_1})^2 = \text{const}$$
,

et, en dérivant,

$$\overline{\mathbf{A}_1 \mathbf{A}_2} \frac{d \overline{\mathbf{A}_1 \mathbf{A}_2}}{dt} = \overline{\mathbf{A}_1 \mathbf{A}_2} \left(\frac{d \overline{r_2}}{dt} - \frac{d \overline{r_1}}{dt} \right) = 0 ,$$

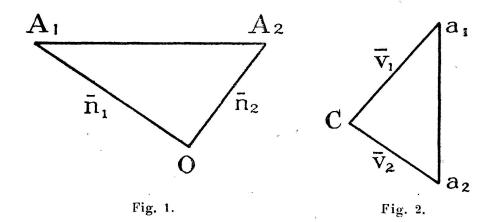
ou

$$\overline{\mathbf{A}_1 \mathbf{A}_2} \left(\overline{\mathbf{v}_2} - \overline{\mathbf{v}_1} \right) = 0 \tag{1}$$

et

$$\overline{A_1 A_2} \cdot \overline{v_2} = \overline{A_1 A_2} \cdot \overline{v_1} , \qquad (2)$$

ce qui démontre la proposition.



¹ Ch. J. DE LA VALLÉE POUSSIN, Mécanique analytique, t. I, Nº 61, 62.

Soient (Fig. 2)

$$\overline{ca_1} = \overline{v_1} . \quad \overline{ca_2} = \overline{v_2} .$$

alors

$$\overline{v_2} - \overline{v_1} = \overline{a_1 a_2}$$

et, selon (1),

$$\overline{\mathbf{A}_1 \, \mathbf{A}_2} \cdot \overline{a_1 \, a_2} = 0 \tag{3}$$

ce qui veut dire, que la différence géométrique $a_1 a_2$ des vitesses v_1 et v_2 de deux points A_1 et A_2 d'un solide est normale à la droite $A_1 A_2$.

b) La vitesse $\overline{v_i}$ d'un point quelconque A_i d'un solide est déterminée par les vitesses v_1 , v_2 , v_3 de trois de ses points A_1 , A_2 , A_3 non en ligne droite.

Soit d'abord A_4 un quatrième point du solide, situé en dehors du plan $A_1A_2A_3$. La vitesse de ce point est déterminée par ses projections sur les trois droites A_1A_4 , A_2A_4 , A_3A_4 non dans un

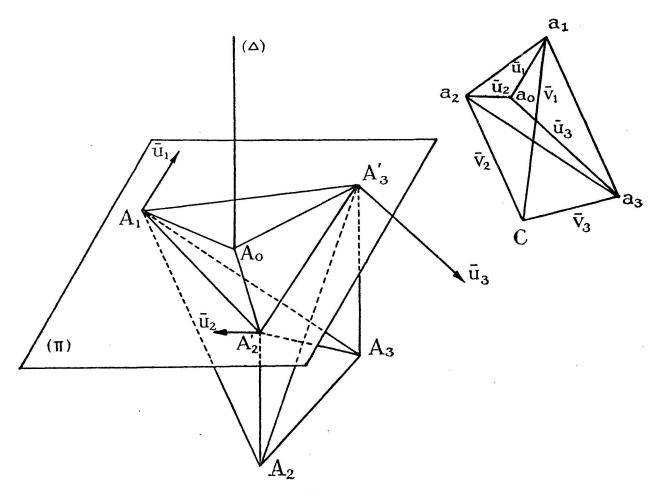


Fig. 3.

même plan. Ces projections sont connues, car elles sontégales aux projections des vitesses $\overline{\nu_1}$, $\overline{\nu_2}$, $\overline{\nu_3}$ sur les mêmes droites A_1A_4 , A_2A_4 , A_3A_4 respectivement. Maintenant on connaît les vitesses de quatre points du solide non dans un même plan et la vitesse de tout autre point A_i du solide peut se déterminer. comme ci-dessus, à l'aide de celles de trois de ces quatre points choisis de manière que leur plan ne passe pas par le point A_i .

Il en découle le principe suivant:

- c) Si, dans un mouvement instantané quelconque d'un solide les vitesse de trois de ses points, non en ligne droite, sont les mêmes que dans un certain mouvement instantané connu, le mouvement instantané du solide se confond avec ce mouvement connu.
- 2. Soient A_1 , A_2 , A_3 trois points non en ligne droite d'un solide et

$$\overline{ca_1} = \overline{v_1}$$
, $\overline{ca_2} = \overline{v_2}$, $\overline{ca_3} = \overline{v_3}$

leurs vitesses respectives (Fig. 3).

Supposons d'abord que les points a_1 , a_2 , a_3 ne soient pas en ligne droite; — ils forment alors un triangle dont les côtés sont, selon le no 1 (a), perpendiculaires aux côtés du triangle $A_1A_2A_3$:

$$a_1 a_2 \perp A_1 A_2$$
, $a_2 a_3 \perp A_2 A_3$, $a_3 a_1 \perp A_3 A_1 \dots$ (4)

Menons par le point A_1 un plan (π) , parallèle au plan $a_1a_2a_3$, et par les points A_2 et A_3 les droites A_2A_2' et A_3A_3' perpendiculaires à ce plan. La droite a_1a_2 étant perpendiculaire à A_1A_2 et à A_2A_2' est perpendiculaire au plan $A_1A_2A_2'$; de même, la droite a_1a_3 est perpendiculaire au plan $A_1A_3A_3'$. Il s'en suit que les plans $A_1A_2A_2'$ et $A_1A_2A_3'$ ne se confondent pas, et que les points A_1, A_2', A_3' forment un triangle dans le plan (π) .

Nous voyons aussi que:

Les triangles $A_1 A_2' A_3'$ et $a_1 a_2 a_3$ sont donc semblables.

Il est aisé de montrer que les vitesses $\overline{v_2}$ et $\overline{v_3}$ des points A_2' et A_3' du solide sont égales aux vitesses $\overline{v_2}$ et $\overline{v_2}$ des points A_2 et A_2 respectivement.

En effet, la vitesse $\overline{\rho_2}$ du point $\overline{A_2}$ est définie, selon le nº 1, par les trois équations

$$\left(\overline{v_2'}-\overline{v_1}\right)\overline{A_1A_2'}=0\;,\qquad \left(\overline{v_2'}-\overline{v_2}\right)\overline{A_2A_2'}=0\;,\qquad \left(\overline{v_2'}-\overline{v_3}\right)\overline{A_3A_2'}=0\;,$$

qui sont vérifiées, si l'on pose

$$\overline{v_2'} = \overline{v_2}$$

car

$$\begin{aligned} & \left(\overline{v_2} - v_1 \right) \overline{A_1 A_2'} = \overline{a_1 a_2} . \overline{A_1 A_2'} = 0 ... & \text{(selon (5))} \\ & \left(\overline{v_2} - \overline{v_2} \right) \overline{A_2 A_2'} = 0 & \text{identiquement} \\ & \left(\overline{v_2} - \overline{v_3} \right) \overline{A_3 A_2'} = 0 & \text{(selon (5))} \end{aligned}$$

Et de même

$$\overline{v_3'} = \overline{v_3}$$
.

Nous pouvons, en conséquence, considérer le mouvement instantané donné du solide comme défini par les vitesses $\overline{v_1}$, $\overline{v_2}$, $\overline{v_3}$ des trois points $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$ non en ligne droite, situés dans le plan (π) .

Soit a_0 un point quelconque du plan $a_1 a_2 a_3$. Considérons les vecteurs suivants:

$$\overline{a_0} = \overline{v_0}$$
, $\overline{a_0} \overline{a_1} = \overline{u_1}$, $\overline{a_0} \overline{a_2} = \overline{u_2}$, $\overline{a_0} \overline{a_3} = \overline{u_3}$.

Nous aurons

$$\overline{v_1} = \overline{v_0} + \overline{u_1}$$
, $\overline{v_2} = \overline{v_0} + \overline{u_2}$, $\overline{v_3} = \overline{v_0} + \overline{u_3}$... (6)

Au lieu du mouvement instantané donné du solide considérons les trois mouvements suivants:

1) un mouvement caractérisé par des vitesses $\overline{v_1}$, $\overline{v_2}$, $\overline{v_3}$ des points A_1 , A_2' , A_3' égales (équipollentes) à v_0 :

$$\overline{v_1'} = \overline{v_2'} = \overline{v_3'} = \overline{v_0}$$
.

Ce mouvement est évidemment une translation de vitesse ν_0 , parce que dans une telle translation les vitesses des trois points A_1 , A_2' , A_3' seraient justement égales à ν_0 .

2) un mouvement caractérisé par des vitesses $\overline{v_1}''$, $\overline{v_2}''$, $\overline{v_3}''$ des mêmes points égales à $\overline{u_1}$, $\overline{u_2}$, $\overline{u_3}$ respectivement. Un tel mouvement est bien possible, puisque

$$\overline{u_2} - \overline{u_1} = \overline{a_1 a_2}$$
, $\overline{u_3} - \overline{u_2} = \overline{a_2 a_3}$, $\overline{u_1} - \overline{u_3} = \overline{a_3 a_1}$,

et nous allons voir que ce mouvement est une rotation. Menons dans le plan (π) les droites

$$A_1 A_0 \perp a_1 a_0$$
, $A_2' A_0 \perp a_2 a_0$

et la droite A₀ A₃'.

Les triangles $A_1 A_2' A_3'$ et $a_1 a_2 a_3$, aussi bien que les triangles $A_1 A_2' A_0$ et $a_1 a_2 a_0$ étant semblables, nous aurons

$$\frac{A_1 A_2'}{a_1 a_2} = \frac{A_2' A_0}{a_2 a_0} = \frac{A_2' A_3'}{a_2 a_3}.$$

Les angles $A_0 A_2' A_3'$ et $a_0 a_2 a_3$ étant égaux, on voit que les triangles $A_0 A_2' A_3'$ et $a_0 a_2 a_3$ sont semblables et la droite $A_0 A_3'$ est perpendiculaire à la droite $a_0 a_3$.

Il s'ensuit que

$$\frac{a_0 a_1}{A_0 A_1} = \frac{a_0 a_2}{A_0 A_2'} = \frac{a_0 a_3}{A_0 A_3'},$$

ou que

$$\frac{u_1}{A_0 A_1} = \frac{u_2}{A_0 A_2'} = \frac{u_3}{A_0 A_3'} = \omega \ ,$$

et il est évident que le mouvement est une rotation instantanée de vitesse angulaire ω autour d'un axe (Δ) perpendiculaire au plan (π) et passant par le point A_0 , parce que dans une telle rotation les vitesses des points A_1 , A_2' , A_3' seraient égales à $\overline{u_1}$, $\overline{u_2}$, $\overline{u_3}$ respectivement.

3) un troisième mouvement où les vitesses de tous les points du solide sont équipollentes aux sommes géométriques de leur vitesses dans les deux premiers mouvements. Un tel mouvement est possible, puisque ces sommes géométriques forment un champ de vecteurs, satisfaisant à la condition du no 1, vu que les vecteurs composants y satisfont.

Il est clair que ce troisième mouvement se confond avec le mouvement instantané donné, puisque les vitesses des points A_1, A_2', A_3' y sont égales à $\overline{\rho_1}, \overline{\rho_2}, \overline{\rho_3}$ (selon 66).

Il s'ensuit le théorème fondamental suivant:

Tout mouvement instantané d'un solide se décompose en deux autres: une translation de vitesse v_0 et une rotation autour d'un axe (Δ) .

Le point a_0 peut être choisi arbitrairement sur le plan $a_1a_2a_3$. S'il se confond avec le point a_1 , A_0 se confondra avec A_1 , l'axe Δ passera par A_1 , et $\overline{v_0}$ sera égal à $\overline{v_1}$. Nous aurons alors le théorème: Tout mouvement instantané d'un solide se décompose en deux autres: une translation dont la vitesse est égale à celle d'un point A_1 du solide choisis à volonté, et une rotation autour d'un axe passant par ce point.

Si nous choisissons le point a_0 de manière que Ca_0 soit perpendiculaire au plan $a_1 a_2 a_3$, $\overline{v_0}$ sera parallèle à l'axe Δ , et nous aurons le théorème de Mozzi: A un instant quelconque, les vitesse de tous les points d'un solide sont les mêmes que si le solide tournait autour d'un certain axe en même temps que s'il glissait le long de cet axe.

Il nous reste à nous affranchir de la supposition faite, que les points a_1 , a_2 , a_3 ne sont pas en ligne droite. S'il en était ainsi, la droite $a_1 a_2 a_3$ serait perpendiculaire au plan $A_1 A_2 A_3$ [vu (4)]. Prenons alors un point A_4 du solide situé en dehors du plan $A_1 A_2 A_3$, et soit

$$\overline{Ca_4} = \overline{v_4}$$

la vitesse de ce point.

Le point a_4 ne peut pas être en ligne droite avec $a_1 a_2 a_3$, puisque la droite $a_1 a_2 a_3 a_4$ serait perpendiculaire à deux plans non parallèles $A_1 A_2 A_3$ et $A_1 A_2 A_4$ ou $A_1 A_3 A_4$. Des quatre points a_1 , a_2 , a_3 , a_4 il doit donc y en avoir trois non en ligne droite, et nous pouvons raisonner sur ces trois points comme précédemment. Les théorèmes énoncés sont donc démontrés pour tous les cas possibles.