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SUR QUELQUES APPLICATIONS GÉOMÉTRIQUES

DU CALCUL VECTORIEL

PAR

E. Laine (Angers).

1. — Le présent travail a pour but de montrer avec quelle
souplesse et quelle simplicité le calcul vectoriel se prête aux
recherches théoriques sur la géométrie des courbes et des surfaces.
Sans prétendre établir aucun résultat essentiellement nouveau, et
en n'abordant que des problèmes relativement élémentaires, je
m'efforcerai de faire voir comment les calculs s'enchaînent de la
façon la plus naturelle et comment des formules même compliquées

restent cependant maniables. Tout lecteur quelque peu
initié aux méthodes vectorielles — et l'initiation est bien aisée —
pourra ensuite faire une comparaison instructive avec les autres
méthodes, par exemple avec celle du trièdre mobile de Darboux-
Weingarten.

2. — Je me proposerai d'abord le problème suivant, qui
généralise le problème des développées d'une courbe gauche:

Déterminer les surfaces développables dont les génératrices
rencontrent sous un angle constant une courbe donnée T.

Considérons, en un point M d'une courbe T, le trièdre de Serret
associé; avec les notations habituelles nous désignerons par £, n
et b des vecteurs unitaires portés par les trois axes du trièdre
(tangente, normale principale, binormale). Tout autre vecteur
unitaire, w, issu de M, est entièrement déterminé par les angles

5 (compris entre 0 et r.)

© (compris entre 0 et 2tz) ;

(t, u)

[n Mr)
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on peut écrire

— —
u / cos 3 -f- n sin $ cos 9 -f- b sin â sin 9 (1)

Ceci posé, toute surface réglée passant par T a une équation
de la forme

M -{— p u (2)

où les vecteurs M et u sont des fonctions de l'arc s de T. Pour que
la surface (2) soit développable, il faut et il suffit que l'on ait1

t, u — \ =Z 0
as j

ce qui peut encore s'écrire

-- (-* A c/u\
"•(' =0

Si l'on suppose 3- — cte, on tire de (1), par application des

formules de Serret,

du t
— — — sin 3 cos

as K 9 + n|~
cos $

R
-f- sin 3 sin »(*-£)]

b sin J cos (i-ï)
i E. Lainé. Précis d'Analyse mathématique, t. II, p. 86 (Vuibert, 1927). D'une façon

générale je continuerai d'utiliser les notations de M. Bouligand.
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•d'où
-* du r COS S • a •

h[-^r + smSsinf(T-d^J

- /1 c?9
-f- Slïl 3 cos T öfo

et l'équation (3) s'écrit alors

sin 5 cos $ sin ç 9 * /1 A /m-f- sin^ I- _ — 0 (-.)
R ^ " V T ds

On a d'abord la solution évidente sin S 0, qui correspond
à la développable admettant T comme arête de rebroussement.
Cette solution écartée, on tire de (4)

do 1 cot £t T + IT Sm

telle est l'équation différentielle du problème.

Posant tg ~ — 1) on obtient l'équation

o
'

|

^ cot 5
|

^
)22 1J-T+ R

X + T
X •

c'est une équation de Riccati. On voit donc qu'en général le

problème proposé ne se ramène pas à des quadratures.

Si 3- on a le problème classique des développées de la

courbe T, qui n'exige qu'une quadrature. Il est clair qu'on est

encore ramené aux quadratures si la courbe T est une hélice.

3. — Nous allons maintenant, étant donnée une courbe T,
rechercher les surfaces réglées qui admettent cette courbe comme
ligne de striction.

Si l'équation (3) représente une telle surface, on aura 1

?-£ 0. (5)

ou, en remplaçant u par sa valeur (1),

/d'$ cos <d\

"" \77 + Tr) 0 :

r Précis d'Analyse, loc. cit., p. 87.
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écartant la solution sin 3- — 0,
mentale

COS <p -

on a finalement la relation fonda-

Ainsi pour avoir une surface répondant à la question, il suffit
de prendre pour 3* une fonction arbitraire de s, et l'angle y est
alors déterminé par la relation (6). On voit donc que les surfaces
cherchées dépendent d'une fonction arbitraire, et qu'on peut
écrire leur équation générale sans aucun signe de quadrature.

Si nous voulons maintenant, pour préciser le problème, rechercher

les surfaces réglées qui admettent T comme ligne de striction
et sont tangentes le long de T à une développable donnée, on voit
que l'angle y est dans ce cas une fonction connue de s; la formule
(6) donne alors 3- par une quadrature. Ainsi les surfaces qui ont
une ligne de striction donnée et sont tangentes le long de cette ligne
à une développable donnée forment une famille à un paramètre
qui s1 obtient par une quadrature; les génératrices rectilignes de

deux quelconques de .ces surfaces se coupent sous un angle constant
tout le long de T.

4. — Dans le même ordre d'idées, nous montrerons comment
la formule (6) a pour conséquences immédiates une série de

propositions dues à 0. Bonnet.
Supposons 3 cte; on a alors cos y — 0, et la génératrice

rectiligne est dans le plan rectifiant : la courbe T est donc une
géodésique de la surface réglée. Ainsi quand la ligne de striction

coupe les génératrices sous un angle constant, elle est une géodésique
de la surface réglée.

Supposons cos © 0; on a alors 3 cte. Ainsi quand la ligne
de striction est une géodésique de la surface réglée, elle coupe les

génératrices rectilignes sous un angle constant.
Enfin s'il existe sur une surface réglée une courbe telle que

cos y — 0 et 3 cte, la relation (6) est satisfaite pour cette courbe.
Ainsi quand il existe, sur une surface réglée, une géodésique qui
coupe les génératrices sous un angle constant, elle est ligne de

striction.
Tels sont les théorèmes de Bonnet.
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Considérons par exemple sur une surface quelconque S une
courbe C qui soit ligne de striction pour la normalie associée:

elle est une géodésique de cette normalie, et par suite sa normale

principale est dans le plan tangent à S; autrement dit c'est une

asymptotique de S. Inversement la normalie associée à une

asymptotique n'est autre que la surface des binormales; elle

admet donc l'asymptotique comme ligne de striction. Ainsi

pour qiïune courbe C soit ligne asymptotique d-une surface, il
faut et il suffit que la normalie associée admette C comme ligne de

striction.

5. — On sait que pour qu'une surface réglée soit la surface
des binormales d'une courbe gauche, il faut et il suffit que sa

ligne de striction coupe les génératrices rectilignes à angle droit.
La condition pour qu'une surface réglée soit la surface des

normales principales d'une courbe gauche se présente, comme
nous allons le voir, sous une forme beaucoup moins simple.

Soient T la ligne de striction, M un point de T,

l' M -(- pu

l'équation vectorielle de la surface réglée. Nous poserons encore

-4 -4 -4 —
a — t cos © + a siü $ cos © -f- b sin â sîn ©

et nous aurons

p d*
cos © r= — K ——

as

s désignant l'arc de T. Pour que cette surface réglée soit la surface
des normales principales à une courbe gauche, il faut et il suffit
qu'il existe une courbe C qui soit à la fois trajectoire orthogonale
des génératrices et asymptotique.

La première condition,

a dV — 0

donne d'abord
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Cherchons maintenant l'équation différentielle des asympto-

tiques; elle s'écrit
D ds2 + 2D'dods — 0 (8)

avec

D =(-\Ô5

öP Ö2P\ /öP öP Ö2P

Ö p Ö S2/
'

\ ö S
' '

Ö p Ö S

Pour simplifier le calcul, on peut introduire deux nouveaux
vecteurs,

- - -*• -+ - -
c, m n sin o — b cos 9 r2 zu n cos 9 -|- b sin ©

situés dans le plan rectifiant et formant avec t un trièdre tri-
rectangle de sens direct. On aura alors

t A vx *'2 » *'i A ^ t ^ A t

avec
— — —

il — t cos 3" -{- c2 sin £

Posant en outre

1 1 d ©
A0 — Aj — — — A — A0 cos â sin © -f At sin 5 ^

on aura immédiatement

du -> lie, -+

rfl 1 ' 0 SI" ' — '''2 '
->

dv2
— — A0 cos © t + Aj c, ;

on en tirera

öP
A

Ö P -* -*•
a i

"* • a.— ~ t 4- o, — z=z u — t cos (J -4- sin jös 4 1
öp 12

f + (PA' — A C0S^K — pA(A0sinœ A^) >A^ '

et enfin

Ö P 0 P -f _ - +
— A pA sin $ t — sin S c, — pA cos 3 v9
Ö s ö p 11 2
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Il vient alors

ÖS2 \ Ö S Ö p / m — o2A2(A0 sin 3 sin <p — cos 3)

— p (AA0 cos 3 cos © -]—— sin 3) — sin2 3 (A0 sin 5 sin © — Aj cos 3)

D'
ö p Ö s

Ö2P
— —• A sin 3

Il ne reste plus qu'à écrire que les équations (7) et (8) ont une
solution commune, ce qui donne la condition

En définitive l'équation (9) est une équation du second degré
en p ; pour que la surface réglée considérée soit la surface des

normales principales à une courbe gauche, il faut et il suffit
qu'une des racines de l'équation (9) vérifie l'équation (7). On
doit d'ailleurs se rappeler que <p vérifie la relation (6).

6. — Mannheim a montré que, pour que les normales principales

d'une courbe gauche soient aussi les binormales d'une autre
courbe gauche, il faut et il suffit qu'on ait une relation de la
forme

Cherchons inversement la condition pour que les binormales
d'une courbe gauche T soient les normales principales d'une autre
courbe gauche; il suffit d'appliquer à ce problème particulier les
résultats que nous venons d'établir dans le cas général.

On a ici

D — 2D' cos 3 0

A

et l'équation (9) se réduit à

+ T2 — o (10)
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La condition cherchée est donc simplement que l'une des

racines de l'équation (10) se réduise à une constante.
Supposons que la courbe T soit une courbe à torsion constante.

L'équation (10) se réduit à

p2 -f T2 0 (11)

Ainsi il n'existe aucune courbe réelle dont les normales principales
soient les binormales d^une autre courbe réelle à torsion constante.

L'équation (11) fait correspondre, à tout point M de la courbe
T supposée à torsion constante, deux points imaginaires P1 et P2,

symétriques par rapport à M, et situés à la distance iT de M:
soient Cj et C2 les courbes décrites par P3 et P2 quand M décrit P.
Les courbes Cx et C2, admettant pour normales principales
communes les binormales de T, sont deux courbes de Bertrand
associées. Il est facile de voir que ce sont en outre des courbes
minima: on a en effet

— —

r* rt -+ /d M ,r,db\ 7
-> _

P, rr: M -f- l 1 b c( P, ~ / -f- i 1 — \ ds — (/ -j- l n) ds

et par suite
(d?,)2 0

Ce résultat se rattache aux belles recherches de M. B. Gambier
sur les transformations asymptotiques et les courbes de

Bertrand x.

7. — Nous terminerons ces applications du calcul vectoriel par
quelques remarques sur les courbes de Bertrand.

Une courbe de Bertrand est soit une courbe plane, soit une
hélice circulaire, soit une courbe dont la courbure et la torsion
sont liées linéairement par une relation de la forme

1 + 1 + 1 0, (12)

a et ß désignant des constantes dont la première n'est pas nulle.

i Travaux scientifiques de l'Université de Lille (nouvelle série, volume 4).
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Dans les deux premiers cas il existe une infinité de courbes

ayant mêmes normales principales que la. proposée; dans le

troisième il existe une seule courbe ayant mêmes normales

principales que la proposée: on l'obtient en associant à chaque
point M de la première courbe un point Mx tel que

Ces deux courbes sont appelées courbes de Bertrand associées.

Quand deux courbes de Bertrand ayant mêmes normales
principales sont deux courbes planes, elles ne peuvent avoir
même courbure aux points correspondants; quand ce sont deux
hélices circulaires, elles ne peuvent avoir ni même courbure, ni
même torsion en deux points correspondants.

Nous ne considérerons plus maintenant que des courbes de

Bertrand autres que des courbes planes et des hélices.
Soient C et Cx deux courbes de Bertrand associées; nous

affecterons de l'indice 1 les éléments géométriques relatifs à la
courbe Clf et nous supposerons que la courbe C satisfait à la
relation (12). On a alors1, en posant s1 S (s), les relations

1 + it — 3' si» ~ — 3' cos m tg © — — ;
K i a

d'autre part on a aussi

-> ->•

q t sm — b cos 7ij — zn, b1 — £ p cos o -f- b sin

On en déduit aisément, entre les courbures et les torsions
des deux courbes, les relations

M.VL a n

(s ± 1)

(13)

X a \ r'1 1 /
A 1

où s doit être choisi de telle sorte que soit positif.

i Précis d'Analyse, loc. cit.. p. 82-83.

L'Enseignement mathém., 27« année, 1928.
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On sait qu'une courbe à courbure constante et la courbe lieu

de ses centres de courbure sont deux courbes de Bertrand
associées, ayant même courbure en deux points correspondants»
Cherchons d'une façon générale à quelle condition deux courbes
de Bertrand associées auront même courbure aux points
correspondants. La relation (12) et la première relation (13) peuvent
alors s'écrire

cos © (T sii» © — R cos ©) -f- s a ©=: 0

a (T cos © -f- R sin ©) -f- RT cos © — 0

Comme on a par hypothèse cos <p ^ 0, on voit que ces deux
équations détermineront R et T sauf si sin <p 0: dans ce dernier
cas la relation (12) se réduit à R — a. Ainsi pour que deux
courbes de Bertrand associées aient même courbure aux points
correspondants, il faut et il suffit qiïelles soient à courbure constante:
chacune d^elles est alors le lieu des centres de courbure de Vautre.

Cherchons de même à quelle condition deux courbes de

Bertrand associées auront même torsion aux points correspondants.

La relation (12) et la seconde relation (13) montrent que T
devrait être constant; il en serait donc de même de R, et la
courbe C serait une hélice circulaire, hypothèse à écarter d'après
ce que nous avons dit plus haut. Ainsi il est impossible de trouver
deux courbes gauches ayant mêmes normales principales et même

torsion aux points correspondants.
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