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SUR QUELQUES APPLICATIONS GEOMETRIQUES
DU CALCUL VECTORIEL

PAR

E. Laing (Angers).

1. — Le présent travail a pour but de montrer avec quelle
souplesse et quelle simplicité le calcul vectoriel se préte aux
recherches théoriques sur la géométrie des courbes et des surfaces.
Sans prétendre établir aucun résultat essentiellement nouveau, et
en n’abordant que des problémes relativement élémentaires, je
m’efforcerai de faire voir comment les calculs s’enchainent de la
facon la plus naturelle et comment des formules méme compli-
quées restent cependant maniables. Tout lecteur quelque peu
initié aux méthodes vectorielles — et ’initiation est bien aisée —
pourra ensuite faire une comparaison instructive avec les autres
méthodes, par exemple avec celle du triédre mobile de Darboux-
Weingarten.

2. — Je me proposerai d’abord le probléme suivant, qui géné-
ralise le probléme des développées d’une courbe gauche:

Déterminer les surfaces développables dont les génératrices
rencontrent sous un angle constant une courbe donnée T'.

Considérons, en un point M d’une courbe T, le triedre de Serret

- =

assocle avec les notations habituelles nous désignerons par ¢, n
et b des vecteurs unitaires portés par les trois axes du triedre
(tangente, normale principale, binormale). Tout autre vecteur
unitaire, ﬁ, issu de M, est entiérement déterminé par les angles

-
(?, u) = 3 (compris entre 0 et =)

-  — : '
(n, My) = ¢ (compris entre 0 et 2r) ;
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on peut écrire

- -> -> - .
u = t cos I 4 nsin S cos ¢ 4 b sin 3 sin ¢ . (1)

¢

Ceci posé, toute surface réglée passant par I' a une équation
de la forme

- -+ -
P=M+4opu, (2)

olt les vecteurs M et u sont des fonctions de I’arc s de T'. Pour que
la surface (2) soit développable, il faut et il suffit que ’on ait !

d—)

- = 172

t,u, — ) =90,
ce qui peut encore s’écrire

Z.(?/\:‘—;—E‘):o. (3)

Si 'on suppose S = cte, on tire de (1), par application des
formules de Serret,

- -
du __Lns Afeos& | o (1 dy
8;————ES1HSCOS?+M[ R —}—Sm&smy(r_f__.%)]

rsir J cos 4 dg
— b sin 3 o — —
~ AT ds )’

1 E. LAiNE. Précis d’ Analyse mathématique, t. II, p. 86 (Vuibert, 1927). D’une facon
générale je continuerai d’utiliser les notations de M. Bouligand.
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d’ou

- du +[ cos 9 . . 1 deo
tA}—{;:I)[ R —|-sm.3’smcp<T——$>]

-+ n s J cos ¢ T ds )

et Iéquation (3) s’écrit alors

sin 3 cos I singe . ., 1 do
- - S = — ) = 0 .
R +osn ’9<T ds) (

-
~——

On a d’abord la solution évidente sinS = 0, qui correspond
4 la développable admettant I' comme aréte de rebroussement.
Cette solution écartée, on tire de (4)

Z;f — ,—1{ -+ -——00:{3 sin @ :
‘telle est I’équation différentielle du probléme.

Posant tg —; = ), on obtient ’équation

dh 1 2 cot S 1.,
ek e S

c’est une équation de Riccati. On voit donec qu’en général le
probléme proposé ne se raméne pas a des quadratures.

S1S = Z)— on a le probléme classique des développées de la

courbe T', qui n’exige qu’une quadrature. Il est clair qu’on est
encore ramené aux quadratures si la courbe T' est une hélice.

3. — Nous allons maintenant, étant donnée une courbe T,
rechercher les surfaces réglées qui admettent cette courbe comme
ligne de striction.

Si ’équation (3) représente une telle surface, on aura !

ou, en remplacant " par sa valeur (1),

sin .3’<d3 + o8 q‘)) = 0 :

ds R

r Précis d’ Analyse, loc. cit., p. 87.
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écartant la solution sin & = 0, on a finalement la relation fonda-
mentale

cosc‘o:—_—R—éé—'?. (6)

Ainsi pour avoir une surface répondant & la question, il suffit
de prendre pour $ une fonction arbitraire de s, et 'angle ¢ est
alors déterminé par la relation (6). On voit done que les surfaces
cherchées dépendent d’une fonction arbitraire, et qu’on peut
écrire leur équation générale sans aucun signe de quadrature.

Si nous voulons maintenant, pour préciser le probléme, recher-
cher les surfaces réglées qui admettent I' comme ligne de striction
et sont tangentes le long de I' & une développable donnée, on voit
que ’angle ¢ est dans ce cas une fonction connue de s; la formule
(6) donne alors & par une quadrature. Ainsi les surfaces qut ont
une ligne de striction donnée et sont tangentes le long de cette ligne
a “une développable donnée forment une famille ¢ un paramétre
qut s’obtient par une quadrature; les génératrices rectilignes de
deux quelconques de ces surfaces se coupent sous un angle constant
tout le long de T'.

4. — Dans le méme ordre d’idées, nous montrerons comment

la formule (6) a pour conséquences immédiates une série de
propositions dues & O. Bonnet.

Supposons & = ct®; on a alors cos ¢ = 0, et la génératrice
rectiligne est dans le plan rectifiant: la courbe T' est donc une
géodésique de la surface réglée. Ainsi quand la ligne de striction
coupe les génératrices sous un angle constant, elle est une géodésique
de la surface réglée.

Supposons cos ¢ = 0; on a alors & = cte. Ainsi quand la ligne
de striction est une géodésique de la surface réglée, elle coupe les
génératrices rectilignes sous un angle constant.

Enfin §'il existe sur une surface réglée une courbe telle que
cos g =0 et = ct®, larelation (6) est satisfaite pour cette courbe.
Ainsi quand il existe, sur une surface réglée, une géodésique qui
coupe les génératrices sous un angle constant, elle est ligne de
striction.

Tels sont les théorémes de Bonnet.

O L
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Considérons par exemple sur une surface quelconque S une
courbe C qui soit ligne de striction pour la normalie associée:
elle est une géodésique de cette normalie, et par suite sa normale
principale est dans le plan tangent & S; autrement dit ¢’est une
asymptotique de S. Inversement la normalie associée & une
asymptotique n’est autre que la surface des binormales; elle
admet donc Pasymptotique comme ligne de striction. Ainsi
pour qu'une courbe C soit ligne asymplotique d’une surface, il
faut et il suffit que la normalie assoctée admette C comme ligne de

striction.

5. — On sait que pour qu'une surface réglée soit la surface
des binormales d’une courbe gauche, il faut et il suffit que sa
ligne de striction coupe les génératrices rectilignes a angle droit.
La condition pour qu'une surface réglée soit la surface des
normales principales d’une courbe gauche se présente, comme
nous allons le voir, sous une forme bheaucoup moins simple.

Soient I' la ligne de striction, M un point de T,

~ - -
P =M+ cu
I’équation vectorielle de la surface réglée. Nous poserons encore

- -> -> -> .
“ = 1cos o - nsindcoso -+ b sinJsinog,

et nous aurons
ds

cos o — — R—,

ds

s désignant 'arc de I'. Pour que cette surface réglée soit la surface
des normales principales & une courbe gauche, il faut et il suffit
qu’il existe une courbe C qui soit & la fois trajectoire orthogonale
des génératrices et asymptotique.

La premiére condition,

I
(=)

- ->
" . dl’

donne d’abord

:-—t.u:—-cds.&. : (

~1
~
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Cherchons maintenant ’équation différentielle des asympto-
tiques; elle s’écrit

Dds® + 2D'dsds = 0, (8)
avec
- - - - - ->
, oP P %P oP P 2P
p= (2 2B Py g (2B 2R TP
oS 0p 0s? 0s  dg  dpds

Pour simplifier le calcul, on peut introduire deux nouveaux
vecteurs,

- - - - - -+
v, = n sin 9 — b cos ¢ , Vg == n cos ¢ + b sin o ,

-
situés dans le plan rectifiant et formant avec ¢ un triedre tri-
rectangle de sens direct. On aura alors

- - - - - - - - -
tAy, = vy, A N1 v Nt = v, ,
avec
-> - -
w=—=tcos I 4 v, sin J .
Posant en outre
1 1 d . ‘ :
AO:E’ Al-_—,—r—«(—iz, A = Ajcos Isino 4+ A sind ,
s
on aura immeédiatement
du d
LU -> (9 . - -
Z;:Avl, T;:—Aosm?t—Aﬂ’zv
-
d§’2 - -
Z:—AO(:oscpt—l—Alvl;
on en tirera
1 B
) -> -> 0 - -> -
— = A — = u — t cos I v, sin I
bs + P vl H DP + 2
2B ; 2P
0 n g . - - 0° -
T = R + (eA" — Acos 3)v, — oA (A,sine t 4+ A, v,), 705 = Aw .
et enfin
P ob
0 ¢ . - . - -
— A = oA sin St —sindv, —pAcosdy, .

0s op !
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Il vient alors -

> = — 0?A%(A, sin & sin ¢ — A, cos J)

= -> g
o!P /oP 0P
D= ces.|— —

0s 0s 0p

4 . Q . 2 . . —
— o (AA, cos & cos ¢ + —; Sin S) — sin? I (A, sin & sin o A, cos 3) ,

D B 0B
D"::b b— ) = _Asind.
0pos 0s 00
Il ne reste plus qu’a écrire que les équations (7) et (8) ont une
solution commune, ce qui, donne la condition

D—2D"cos & = 0 . (9)

En définitive I’équation (9) est une équation du second degré
en p; pour que la surface réglée considérée soit la surface des
normales principales & une courbe gauche, il faut et il suffit
qu’'une des racines de ’équation (9) vérifie I’équation (7). On
doit d’ailleurs se rappeler que ¢ vérifie la relation (6).

6. — MANNHEIM a montré que, pour que les normales princi-
pales d’une courbe gauche soient aussi les binormales d’une autre
courbe gauche, il faut et il suffit qu'on ait une relation de la

forme
1 1 B
A(T{_" -}~ -1—2> =R -

Cherchons inversement la condition pour que les binormales
d’une courbe gauche I' soient les normales principales d’une autre
courbe gauche; il suffit d’appliquer & ce probléme particulier les
résultats que nous venons d’établir dans le cas général.

On a ici
M=l a=acl
et ’équation (9) se réduit a
@ —eRIT L =g (10)
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La condition cherchée est donc simplement que l'une des
racines de I’équation (10) se réduise & une constante.

Supposons que la courbe I'" soit une courbe a torsion constante.
L’équation (10) se réduit a

T2 =0 . S

Ainsi il n’existe aucune courbe réelle dont les normales principales
sotent les binormales d’une autre courbe réelle a torsion constante.

L’équation (11) fait correspondre, & tout point M de la courbe
I' supposée a torsion constante, deux points imaginaires P, et P,
symétriques par rapport & M, et situés a la distance T de M:
soient G, et C, les courbes décrites par P, et P, quand M décrit T'.
Les courbes C; et C,, admettant pour normales principales
communes les binormales de I', sont deux courbes de Bertrand
associées. Il est facile de voir que ce sont en outre des courbes
minima: on a en effet

5

-
. S\ . , .
l—’}l::_?l—f-zl‘b, (/_ljlz(dl-{—l'l'—d—b)ds:(-‘Z—I-—l;;)ds,
s

as

et par suite
(dP)2 =0 .

Ce résultat se rattache aux belles recherches de M. B. GAMBIER
sur les transformations asymptotiques et les courbes de
Berirand 1.

7. — Nous terminerons ces applications du calcul vectoriel par
quelques remarques sur les courbes de Bertrand.

Une courbe de Bertrand est soit une courbe plane, soit une
hélice circulaire, soit une courbe dont la courbure et la torsion
sont liées linéairement par une relation de la forme

A
&+

=l

+1 =0, o (12)

a et B désignant des constantes dont la premicre n’est pas nulle.

1 Travaux scientifiques de I’Université de Lille (nouvelle série, volume 4).
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Dans les deux premiers cas il existe une infinité de courbes
ayant mémes normales principales que la proposée; dans le
troisiéme il existe une seule courbe ayant mémes normales
principales que la proposée: on l'obtient en associant & chaque
point M de la premiére courbe un point M, tel que

—_— -

;\l;\l1 = —an .

Ces deux courbes sont appelées courbes de Bertrand associées.

Quand deux courbes de Bertrand ayant mémes normales
principales sont deux courbes planes, elles ne peuvent avoir
méme courbure aux points correspondants; quand ce sont deux
hélices circulaires, elles ne peuvent avoir ni méme courbure, ni
meéme -torsion en deux points correspondants.

Nous ne considérerons plus maintenant que des courbes de
Bertrand autres que des courbes planes et des hélices.

Soient C et C; deux courbes de Bertrand associées: nous
affecterons de I'indice 1 les éléments géométriques relatifs & la
courbe (;, et nous supposerons que la courbe C satisfait a la
relation (12). On a alors?, en posant s; = S (s), les relations

1 4 = ' si ‘ y t ’
’ N sin o — = — 3 cos o , ' - —;
R ! r ‘ &9 o’
d’autre part on a aussi
- -+ - -> - -> - >
{,—= tsino — bhcos o, n, —cen , b, = z(t coso + b sing) ,
=1

On en déduit aisément, entre les courbures et les torsions
des deux courbes, les relations

1~ eTecoso/sino cos ¢
w= (R -
(13)
'l_ . ¢l cos o /cos o sin ¢
T, T« ( R T > '

ott ¢ doit étre choisi de telle sorte que — soit positif.

R,

1 Précis d’ Analyse, loc. cit., p. 82-83.

[’Enseignement mathém., 27 année, 1928, 19
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On sait qu’une courbe a courbure constante et la courbe lieu
de ses centres de courbure sont deux courbes de Bertrand asso-
ciées, ayant méme courbure en deux points correspondants.
Cherchons d'une facon générale & quelle condition deux courbes
de Bertrand associées auront méme courbure aux points corres-
pondants. La relation (12) et la premiere relation (13) peuvent
alors s’écrire |

cos o1 sing — Rcose) + e = 0

2 (I cos ¢ + R sin o) + RT cos ¢ == 0 .

Comme on a par hypothése cos ¢ 2 0, on voit que ces deux
équations détermineront R et T sauf sisin ¢ = 0: dans ce dernier
cas la relation (12) se réduit & R = — a. Ainsi pour que deux
courbes de Bertrand associées aient méme courbure aux points
correspondants, il faut et il suffit gu’elles soient a courbure constante :
chacune d’elles est alors le lieu des centres de courbure de U'autre.

Cherchons de méme a quelle condition deux courbes de

Bertrand associées auront méme torsion aux points correspon-

dants. La relation (12) et la seconde relation (13) montrent que T
devrait étre constant; il en serait donc de méme de R, et la
courbe C serait une hélice circulaire, hypothese & écarter d’apres
ce que nous avons dit plus haut. Ainsi il est tmpossible de trouver
deux courbes gauches ayant mémes normales principales et méme
torsion aux points correspondants.

[ A e O



	SUR QUELQUES APPLICATIONS GÉOMÉTRIQUES DU CALCUL VECTORIEL

