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SUR LES TRIANGLES PSEUDO-ISOSCÈLES

PAR

M. Emile Turrière (Montpellier).

Dans tin précédent article 1 relatif aux Formules elliptiques

pour la résolution de certaines équations de Fermât, j'ai été amené
à faire allusion aux triangles pseudo-isoscèles de Steiner
(paragraphe 10).

Dans les lignes qui suivent, quelques considérations nouvelles
vont être données au sujet de cette classe de triangles:

c3 — (a + b) c2 -f- 3abc — [a -f- b) ab — 0

ainsi que sur leurs relations avec deux cubiques planes.

Une cubique unicursale.

1. — Reprenons tout d'abord les formules générales de
résolution des équations de Fermât.

Lorsque le polynome du quatrième degré, qui doit être rendu
carré parfait par un choix convenable de la variable se présente
sous la forme d'un produit de deux facteurs quadratiques à
coefficients réels et rationnels,

X (.r2 + 2Ax -f B) (x2 + 20 + D)

les constantes elliptiques s'expriment simplement par
l'intermédiaire des.discriminants $1 et $2, A2 — B, S2 C2 — D
et de l'invariant mixte

8j + §2 — (A — C)2 2AC — (B + D) 6e

T Enseignement math., XXVIe année, 1927, p. 260-286,
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dont la propriété est d'exprimer par la formule c 0 que les

couples de racines des trinômes quadratiques sont conjugués
harmoniques. Le calcul des constantes elliptiques donne alors:

S2 ^1 ^2 I

03 C ^" ^2) '

A S^^e2 — 6j52)2

Pr — — 2e) • pv -y(ôi — V/(A — G) ^

p'V — [oôj -f~ ^<>2 + 2 6jû2 — \ 2e (6j -f- o2) ] ;

e est précisément une racine de la résolvante cubique; soit
e p?»; les deux autres racines c' e" de p'u 0 sont telles que:

(e'— e")- Sj 5, (e — e') (e — e") i (9e2 — 8,8t) ;

p,. _ e, i(A — C)2

La condition d'existence des trois racines est (Jx(î2 > 0.

Pour <^ $2 > 9c2, la racine c est comprise entre c' et c". Pour
0 $1 $2 < 9c2, c est la plus grande racine ou la plus petite
racine suivant qu'elle est positive ou négative.

2. — Ces remarques générales trouvent une application dans

l'étude de la question suivante. Etant donné un triangle ABC,
déterminer les couples AA' et BB' de droites issues des sommets

respectifs A et B, limitées aux côtés opposés qui sont égales et

rationnellement mesurées en fonction des côtés a, b et c du triangle.
Résolvons d'abord la question de géométrie que pose la

condition d'égalité AA' BB'. Soit M le point de concours des

droites AA' et BB', soit (D) la droite joignant leurs pieds A' B'.
En coordonnées barycentriques si (£, rn Ç) sont les coordonnées
du point M et (w, c, w) les coordonnées tangentielles de la droite
(D), ce point M et cette droite (D) sont associés dans la
transformation qu'expriment les formules:
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Les longueurs AA' et BB' sont:

A ^ /2 c*rc + (^2 + c~ — a2) 4- ^2^2 ^2^2 — (^2 -{- c2 — a2) fir -{- c2^'2
AA

(•'. -i- r>2 ~ ("-«')2

__0 a2r2+ (c2 + a2—b2)rc r + c2H2
_

fl2w2—(/;s+c2—a2)K«' + c*«'2
" ~ ~(C + ?)2~ ~ ^

(" - «')*

Pour AA' BB', le lieu du point M est une courbe du
troisième degré et l'enveloppe de (D) est une courbe de quatrième
elasse, dont les équations, ponctuelle pour l'une et tangentielle

pour l'autre, résultent immédiatement de la comparaison des

expressions ci-dessus. Introduisons deux paramètres X et u

par les formules
X — 1 a — i

il — — «' v — i——— H' ;

A ;jl

les expressions des longueurs deviennent:

ÀA'2 — a2\j2 — (a2 -j- b2 — c2) u. -f- b2

BB72 =: b2)2 — (a2 + b2 — c2) a -f a2

L'égalité AA' BB' correspond au fait que le point représentatif

de coordonnées ordinaires X et u décrit une conique; cette
conique passe par les deux points (X 1, a — 1) et (X — 1,

a — 1), auxquelles correspondent pour la longueur commune
L AA' BB' les valeurs L2 c2 et L2 - 2a2 + 2b% — c2.

Dans le premier cas, L n'est autre que le côté BA; dans le second,
L est le double de la médiane issue de C.

La cubique lieu de M a un point double Cx quatrième sommet
du parallélogramme complétant ABC. Les formules (S surface
du triangle):

+ 2S r, + Tll 2S r + 7, r= 0

I rtl + - n

I *i + ç -- î + r

donnent pour équation de la même cubique, relativement au
triangle de référence ABCX:

* (b2*çl — «2 rj2) rr ^ [ (a2 + c2 — b2) rtl — (b2 + c2 — a2) ÇJ
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Le rapport de à w1 est indiqué comme paramètre de
représentation de la cubique:

j _ ^

rt

rji [(a2— c2)^ + (a- -f c2 — b2)^ — a~r*} ^ [(c2 — b2) y)® — (!r + e2 — a2)^f\x + b

Y

~ ?i rli [C'"' + c" — <1')?i — («S + <-•2 — />2j r„]
'

D'où:

(l>'rçl —a2r*f(L2— c2) ^-^[(Ir2 — a2) — (a2 + c2— |

[rt2(^2 -)- c2 — rt2) rtl — />2(«2 -}- c2 — />2) |

D'ailleurs la représentation de la conique transformée (/, u)

se fait en posant l'1 j t\ si T désigne l'expression,

T — b2 — «2*2

on obtient pour les deux courbes considérées:

h — — \v0. \\'j t — t. w\
V — t. WQ \V2 Y| ~ — W,

(v W,W2 ; — t\\\
avec trois polynômes en t:

W0 — t (a2 + c2 ^ b2) — (/>2 + c2 — a2)

VVj — f2(c2 — />2) — f(/;2 + c2 — a2) -f b2

W2 — a2/2 — /(/>2 + c2 — rt2) + c2 — a2

D'où la condition définitive:

T2(L2 — c2) — — t[(a2 4" 6'2 — b2) t — (b2 4- c2 — a2)]

[a2(,,2 _}_ c2 _ fl2) j _ /,2(a2 _}_ c2 _ ,,2jj _

Il n'est pas inutile d'observer que ce choix de paramètre, s'il
n'a qu'une importance secondaire sous le point de vue habituel
de la Géométrie analytique, doit être fait judicieusement pour
mener à bien les calculs d'analyse indéterminée qui suivront.
Dans l'indétermination de la représentation paramétrique de la
conique (par exemple en prenant pour paramètre le rapport
de u + 1 à À + 1), le numérateur de la fraction exprimant
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L2 — c2 est généralement du quatrième degré. On connaît
toujours les quatre zéros rationnels de L2 — c2; ce sont quatre
solutions de l'équation de Fermât, mais lorsqu'il s'agit d'étudier
le polynome du quatrième degré çorrespondant à L2, les coefficients

sont non seulement compliqués mais les deux coefficients
extrêmes ne se présentent pas comme carrés. Afin d'appliquer
les formules de représentation au moyen des fonctions de

Weierstrass il est indispensable de faire subir à l'équation une
transformation homographique de variable lui assurant une
solution nulle ou infinie, c'est-à-dire rendant carré parfait l'un
ou l'autre des deux coefficients extrêmes. Le choix précédent du
paramètre t donne au polynome T2 (L2 — c2) les deux zéros
t 0 et t infini; par suite le polynome de l'équation de Fermât
a nécessairement ses coefficients extrêmes tous deux carrés
parfaits comme étant identiques à ceux du polynome du
quatrième degré (cT)2. Effectivement:

(a212 — b2)2 L2 — a0i4 -j- 4 a1ts -(- 6 a2t2 + r*a3t -j- 4 a4

avec :

rt0 r=r a4C2 rrr /A c2

4ci1 =z — a2(b2 + c2 — a2) (a2 -J- c2 — b2)

4a3 — — b2 (b2 c2 — a2) {a? + c2 — b2)

6a2 (a2 + b2} [A + (a2 — b2)2J — 2c2(a4 -f- b4 — a2b2)

3. — Quels sont d'autre part les zéros du polynome T2 L2
La cubique lieu de M est circulaire et l'on obtient des solutions
de AA' BB' en joignant A et B aux points cycliques du plan
du triangle: ce qui correspond à quatre droites particulières D.
Comme AA' et BB' sont alors des droites isotropes on se trouve
précisément en présence des solutions de l'équation L — 0,
c'est-à-dire des quatre zéros du polynome du quatrième degré :

Les valeurs de /, et u.

y <4. C~'C.i\=e±iC,
b a

donnent

- a" H~ b2 — 6*2 ~h '»sjS a2 -f- b2 — c2 -{- 4 z'iS
% ~ W ' ïa2
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avec e2 c'2 1. D'où quatre valeurs pour t, deux par deux
conjuguées,

b2 a2 -{- c2 — h2 Hr 4iS
a2 h2 -f c2 — «2 db 4/S

correspondant aux quatre combinaisons possibles des signes de
4iS. Il en résulte que le polynome du quatrième degré est
nécessairement :

T2L2 [a2t2 + (a2 + b2 — c2) t + b2]

[ci2c2t2 — [(a2 + b2) c2 — (a2 — ^2)2]* + b2c2]

(à un facteur constant près que l'on détermine par comparaison
de terme de plus haut degré et qui se trouve être l'unité positive).
Ainsi la considération des droites isotropes issues des sommets A
et B conduit directement au résultat, donné plus haut dans la
représentation rationnelle des courbes unicursales enveloppe de

(D) et lieu du point M.
Dans le cas actuel, les formules plus générales du paragraphe 1

donnent :

4S2

4 S

3 aTZl \a2 + f'2) < 0

d1d2 est carré, ce qui entraine A s» carré et l'existence des trois
racines rationnelles de la résolvante p'u 0; e est la plus petite
racine. En supposant a > b, par exemple, les racines sont, dans
l'ordre et > e2 > e3:

«.=-ä
_ 4S"{a2 — b2) _ 4S2 4S

Cette dernière expression étant le carré d'une fonction rationnelle

des trois côtés, les arguments égaux aux quarts de la
période 2«3 donnent les valeurs rationnellles à la fonction pu;
mais des valeurs imaginaires à la fonction p'u.
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Les autres constantes elliptiques sont:

»=¥ Ä» <«'+'••>i'2"*
P" sä?[12s" - + '

P'' =!$[("• -''I'-«']-

Les triangles pseudoisoscèles.

4. — Déterminons l'intersection de la cubique lieu de M avec
p

^ 7Q

la bissectrice intérieure de l'angle C, dont l'équation est ~ " 7; •

Nous introduisons l'inconnue auxiliaire ip telle que

__ jO _
a b c<L

et nous poserons

a + b — 6-. S ab c2.ll

L'équation des points d'intersection est alors:

(a — b) j ri (S2 + 4<j,S + 2f + 1) + è(S + + 1) j 0

Si le triangle n'est pas isocèle (AB * AC), cette relation peut
être mise sous la forme

ri - _ J; (£ + 4) (fS + 1)
— ' #sa + US + + 1

'

Si maintenant on considère comme un nombre constant,
cette équation exprime une condition, symétrique entre a et 6,

à laquelle est soumise le triangle ABC.

Remarquons que si, pour un triangle quelconque, deux points
sont pris, l'un A' sur le côté BC, le second B' sur le côté CA, tels

que
BA'

__
A/C CET _ B'A

cl> b a c 6

le lieu du point M d'intersection des droites AA' et BB', pour
les diverses valeurs de est la bissectrice intérieure de l'angle
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BCA. Les coordonnées trilinéaires du point M peuvent être
prises égales à X Y 1. Z 4. Si C' est le pied de la bissectrice

intérieure de C et I le centre du cercle inscrit dans le triangle
(p 1 donne ce centre I), on a:

MC' _ MI _ (a 4- h)c
CC ~ a + h ' CC' ~ (a + b +T) (a + b + cp) ' ~ ' ;

Ces diverses relations mettent en évidence que le nombre
constant p correspond à des divisions en rapports donnés des

côtés CA, CB et de la bissectrice intérieure.
Lorsque p est imposé, le triangle ABC satisfait donc à une

condition qui, si l'on pose c 1, par exemple, exprime que la
somme et le produit des deux autres côtés sont liés par la relation
ci-dessus écrite. Celle-ci dégénère en une relation homographique
entre le produit TT et la somme I dans quatre cas :

1° Pour {p 1. Le point M est au centre I du cercle inscrit.
Les droites égales AA' BB ' sont alors les bissectrices intérieures
des angles A et B. La relation homographique est:

elle ne saurait manifestement être vérifiée par un triangle réel.
C'est donc le cas des triangles pseudoisoscèles imaginaires avec

égalité des bissectrices intérieures.
2° Pour tp — 1. Le point M étant alors le centre du cercle

exinscrit, situé dans l'angle C, la relation correspondante
représente les triangles pseudoisoscèles avec égalité des bissectrices
extérieures (c'est-à-dire les triangles connus sous la dénomination
de triangles pseudoisoscèles) :

S — 1
ri

3° Pour 6 — t

ri —

v ^ l2.
1 ' 2

2
'

2 -J- -]/¥

triangles manifestement imaginaires.
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4° Pour <p
2

v_ Ï1
2

2
'

V2 — S

La formule exprimant la longueur commune des droites
égales AA' BB', dans le cas d'intersection sur la bissectrice
intérieure de l'angle C et pour quelconque, étant

aucune valeur positive de 2 ne saurait rendre positifs simultanément

n et L2. Le quatrième cas correspond donc encore à des

triangles imaginaires.
Analytiquement, sous le point de vue des considérations que

j'ai précédemment développées au sujet des relations homo-
graphiques entre II et 2, les deux premiers cas sont équivalents
par simple changement de signe sur 2. De même les deux derniers
cas sont équivalents par changement de signe sur 2.

Dans le quatrième cas, les fonctions elliptiques ont pour
caractéristiques :

(2 + J) (jg_+i)
2 -f 2<£

devient pour tp

l 19 _ Il
3727 ' 64 '

la cubique de Weierstrass admet les aritbmopoints

p'«=i, p'ii

p - ä • P'(2u) ~ <2") - m
L'Enseignement mathém., 27e année, 1928 18
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Cette équation constitue un exemple de détermination rationnelle

d'un cinquième de période. Les relations

1
rt __ j.

6p«. pW p3

/o ,0 „ V2
p'm p'2m - — p'3u> p

4 u> - J_

montrent que l'argument 5w est une période.

5. — La relation du second cas

définit les triangles nommés pseudoisoscèles. Il existe une infinité
de tels triangles, abstraction faite de la similitude, et qui
correspondent aux valeurs de I comprises dans l'intervalle 1 < 2 < 2.

Puisque l'occasion s'en offre, voici quelques renseignements
bibliographiques au sujet de cette classe de triangles spéciaux.

Alors que diverses questions concernant les médianes ou les

hauteurs sont accessibles dès le début de l'étude de la géométrie,
il en est autrement quand il s'agit des questions analogues,
concernant les bissectrices des triangles.

L'exemple classique de ce genre de difficultés est la démonstration

géométrique de la réciproque de l'égalité des bissectrices
d'un triangle isoscèle. Les triangles isoscèles sont les seuls triangles
réels dont deux bissectrices intérieures sont égales 1. La difficulté
de la démonstration géométrique découle de ce fait qu'analyti-
quement la condition d'égalité de ces lignes se présente sous la
forme (a — b) / (a, b) 0, avec un facteur / (a, b) nécessairement

positif, mais qui correspond aux triangles pseudoisoscèles

imaginaires du premier cas.

i Pour une solution de cette question, voir les Nouvelles Annales de Mathématiques
de 1842, p. 87, une note de Terquem.

Voir aussi: J. Steiner: Elementare Lösung einer Aufgabe über das ebene und das.

sphärische Dreieck. (Crelle's Journal, XXVIII, S. 375-379; Werke, II, S. 323-325).
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Une seconde question intéressante mais ardue est la construction

d'un triangle connaissant les longueurs de trois des bissectrices

ou encore un angle et deux bissectrices.
Contrairement à ce qui se produit avec d'autres lignes

remarquables du triangle, pour lesquelles la géométrie élémentaire
fournit des solutions immédiates, il en est tout autrement pour
le cas de la détermination d'un triangle connaissant des longueurs
de trois bissectrices. Ce problème n'est plus du ressort de la
géométrie pure, sa résolution dépend en effet d'équations de degré
élevé, atteignant par exemple le seizième degré avec trois
bissectrices quelconques, ou le 14me avec trois bissectrices
intérieures 1.

6. — L'équation de Fermât, dont dépendrait la détermination
de tous les triangles pseudoisoscèles è côtés rationnels, est

(S — 2) (S — 3) (S2 — S -f 2) —

elle n'admet aucune solution rationnelle, en dehors des racines
2 et 3 du polynome dû premier membre. Il suffit d'étudier les
facteurs premiers communs des trois nombres

x — 2y x — 3y x2 — 2xy -j- 2y2

en supposant que x et y sont les termes d'une fraction irréductible
représentant 2, pour arriver à cette conclusion négative.

Il n'y a donc pas de triangle à côtés tous les trois rationnels parmi
les triangles pseudoisoscèles.

i Cette question a été l'objet d'une étude étendue par M. Baker (Richard-Philipp)
The problem of the angle bisectors (The University of Chicago Press), dissertation de
l'Université de Chicago, 1911.

L'auteur cite P. Barbarin: Construire un triangle dont les bissectrices sont données
(Mathesis, 1896, p. 143-160); Résumé d'un mémoire sur la détermination d'un triangle
au moyen des longueurs de bissectrices (Bulletin de la Société Mathématique de France,
1894, t. XXII, p. 76-80). On peut en outre citer J. Délitala, Construire un triangle
connaissant une bissectrice de chaque angle Mathesis, 1902, p. 159-162) et une note de
Terquem dans les Nouvelles Annales de mathématiques, 1842, p. 87.
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Les fonctions elliptiques associées à cette équation des triangles
pseudoisoscèles ont pour caractéristiques:

25 11.23
*2 ~ Ï2 ' & - — -8727- >

A — — 28 ;

11- Ï2 '

/ 11\/ «
11 23\

p SU qp(| + -)(p2„ - _p„ + _j ;

p». M, p'cr 2, p«„. 6,

p, =4, pV -i, p',r -lt
11

p3«> - Ï2 - P'3"' 0
-

pW=-, p'W -l
po...

13

12

Fargument w est sixième de période; les seuls arithmopoints
connus sont les points réels d'inflexion, un sommet et les points
qui en dérivent par alignements; au total, cinq arithmopoints
seulement.

Une seconde cubique liée aux triangles pseudoisoscèles.

7. — Soient (%, y, z) les coordonnées barycentriques d'un point
M du plan du triangle de référence ABC. L'aire du triangle ABC
étant S,

x —J- y -j- z 2 S

celle S' du triangle A'B'C' dont les sommets sont les points
A', B', G' où les droites AM, BM, CM rencontrent respectivement
les cotés BC, CA, AB du triangle est déterminée par la formule:

/I 1 1\ 2S + S'
(* + y + »)(ï- + y+ 7) —S-- •
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Le lieu des points M du plan du triangle, tels que l'aire de

A'B'C' reste constante est donc une cubique dont l'équation
peut être mise sous l'une des formes suivantes:

+ ^ + •

(« + y) (y+ z) (z+ ïn.xyz

2S S
avec m -c7 + 1, n m —2n + i. Dans les calculs qui

O ' o

suivent, est introduit un autre paramètre -s tel que s m + 1.

La cubique passe par les sommets A, B, G du triangle et y
admet pour tangentes les parallèles aux côtés opposés.

Les trois points à l'infini sont inflexionnels. Les asymptotes,
parallèles aux côtés, forment un triangle dont les sommets sont
situés sur les médianes respectives de ABC. L'asymptote parallèle
à BG a pour équation: x + y + .z ;= mx.

La question est projective. Il suffit donc de construire les

cubiques correspondant aux diverses valeurs du paramètre m,
pour le triangle équilatéral.

La cubique est invariante dans la transformation quadratique
ayant pour points fondamentaux le centre de gravité G et les

trois points à l'infini dans la direction des côtés.

8. — La représentation elliptique de la cubique

(•r + y H" z) (xy + yz + zx) — mxyz m — s — 1

s'effectue en observant que les nombres

x _ *> + g
^ y _ y 4- z

z
'

2

ont un produit II et une somme 2 reliés par la formule homo-
graphique

» (»—)|e4-
Comme

S2 — 4 II D - (S - s) (S - 2) (S2 - 2,i2 + 4«) =2« + 1
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l'équation D 0, du quatrième degré, admet les zéros rationnels
2 et s et par suite la résolvante cubique admet une racine rationnelle.

Les constantes elliptiques sont:

&2 j K - 4/is + 2/1 + 1)

*3 $e1 (— 2/z4 4- 8n? -I- 2n + 1)

A m2 (m — l)3(m — 9)

_
m2 — 6 m — 3 n2 — 2 n — 2

e' ~ 12 :f " '

ei — «2) iei — «s)•

(n — l)2
— g pV — — 2n p"<> rr 4rc (n — 1)

n2 -f- 4/z 1

p w p'ti' r= 2m/z — m (m — 1)

p"a' ~ ïmns — r±n(n 4 1) (2/1 4 1) »

pp — e1 1 j)iv — e1 =2 m

v 4 2u' ~ 0 3w zr: oj,

Ces formules ne font connaître en tout que cinq arithmopoints
de la cubique de Weierstrass : le sommet deux inflexions ± 4
et les deux points ± w qui se déduisent des points d'inflexion
et du sommet par alignements. Elles correspondent au cas

singulier où, l'argument w étant sixième de période, les formules
d'addition et de multiplication appliquées à ces arguments
Wi, w, v de toutes manières possibles ne donnent qu'un nombre
limité de solutions rationnelles.

Les racines e2 et e3 ne sont rationnelles que pour les valeurs
de n rendant carré le produit n (n — 4), c'est-à-dire lorsque n est
de la forme

(t 4 l)2 2/2 4 5/ 4 2
11 — m —t t

en fonction d'un nombre rationnel quelconque. Les six points
d'intersection, autres que les sommets, de la courbe avec les
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médianes sont alors des arithmopoints; par exemple, sur la

médiane AG.
x — t y — 1

> z 1 i

# 1 y — t z t

Les racines sont alors

*4 _J_ 2^3 4. 2f + 1 *4 + 2/3 — 4/ — 2 — 2/4— 4*3 + 2* + 1

- 3? ' ~~ 3P ' Ss _ W

21 4- 1 U — 1) (t -}- L2 I o\
1 — e2 ^2 » e2 — " 72 > 4 — e3 ~ t(t + 2) »

leur ordre dépendant de t.

D'autre part, lorsque n est de la forme

*2 4. 2t 4- 2 2/2 4- 5/ 4- 4
n m

la courbe admet deux arithmopoints sur la parallèle y + 2 lx
au côté BC, par exemple le point:

m z=z t 4- 2 y — t(t -4 î) z — t

et par conséquent dans ce cas six arithmopoints sont connus.
Les valeurs entières de m correspondant à ce cas sont m — 1,

— 4, 11 et 14.

Lorsque m est carré, m q2,~pu prend des valeurs rationnelles

pour des valeurs de l'argument égales aux quarts de la période
2«!; mais f'u prend des valeurs généralement irrationnelles
dépendant de la racine carrée de (q — 1) (q + 3). Pour que deux
de ces quarts de période correspondent à des arithmopoints de la
cubique, il faut prendre:

«=^(1-1)2,

W. OJ, t2 t 4" 1

PY e> + ?' —?—(< + l)(< — l)3

(Li — 2;3 — 2< + l)2 + 1

P'' "12? ' P'V —' (f — •
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Il en résulte que la cubique admet Parithmopoint

x Z=z t2 y — — t Z 1

situé sur la conique y2 xz, et les arithmopoints qui en dérivent
par des permutations entre œ, y et z.

9. — Cas particuliers. — Cas m 9. La cubique est alors
unieursale, avec le centre de gravité pour point double isolé.
Les tangentes au point G ont pour équations respectives

jx H- fy + z 0 j*x + jy + z — 0 j3 — 1

(/ racine imaginaire de l'unité).
Si l'on représente par

kx [xy y z — 0 À -f- [j. 4- y — 0

une droite GM quelconque passant par G, les coordonnées
courantes de M peuvent être prises égales (à un facteur d'homogénéité

près) à:

,r — v (y — y) y — y A Çk — y) z — — A) •

Le point M peut être considéré comme l'intersection de GM

avec la droite + y2y + v2z 0, tangente variable de la
conique inscrite au triangle d'équation tangentielle :

-f ~ o

Cas m 0. Décomposition de la cubique en la droite de

l'infini et une conique circonscrite au triangle.
Cas m 1. Décomposition de la cubique en le système des

trois parallèles aux côtés menées par les sommets.
Cas m 2. Les fonctions elliptiques sont alors celles du

problème des triangles pseudoisoscèles de Steiner.
En attribuant donc cette valeur particulière, m 2, au

paramètre m dans les formules générales du paragraphe 8, on
retrouve celles qui ont été données au paragraphe 6 pour les

constantes elliptiques du problème des triangles pseudoisoscèles.
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