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SUR LES TRIANGLES PSEUDO-ISOSCELES
PAR

M. Emile Turriire (Montpellier).

‘Dans un précédent article® relatif aux Formules elliptiques
pour la résolution de certaines équations de Fermat, j’ai été amené
a faire allusion aux triangles pseudo-isoscéles de Steiner (para-
graphe 10). S

Dans les lignes qui suivent, quelques considérations nouvelles
vont étre données au sujet de cette classe de triangles:

3 — la + b)e? + 3abe — (a + byab = 0,

ainsi que sur leurs relations avec deux cubiques planes.

UNE CUBIQUE UNICURSALE.

1. — Reprenons tout d’abord les formules générales de réso-
lution des équations de FERMAT.

Lorsque le polynome du quatrieme degré, qui doit étre rendu
carré parfait par un choix convenable de la variable x, se présente
sous la forme d’un produit de deux facteurs quadratiques a
coefficients réels et rationnels,

X = (2 + 2Ax + B) (2® + 2Cx 4+ D) ,

les constantes elliptiques s’expriment simplement par Iinter-
médiaire des discriminants ¢, et d,, d; = A2—B,9d, = (C2— D
et de 'invariant mixte

5, + 8 — (A — C)? = 2AC — (B + D) = 6e ,

r Enseignement math., XXVI¢ année, 1927, p. 260-286.




oo

266 E. TURRIERE

dont la propriété est d’exprimer par la formule e = 0 que les
couples de racines des trindmes quadratiques sont conjugués
harmoniques. Le calcul des constantes elliptiques donne alors:

e est précisément une racine de la résolvante cubique; soit
e = Ppw; les deux autres racines e’ ¢” de p’u = 0 sont telles que:

N\!
’

2= BBy (e —e')(e — e

796 —3,3,)

-

La condition d’existence des trois racines est 0,9, > O.
Pour d,0, > 9¢%, la racine e est comprise entre e’ et e”. Pour
0 < 9,9, <9 e est la plus grande racine ou la plus petite
racine suivant qu’elle est positive ou négative.

2. — Ces remarques générales trouvent une application dans
Pétude de la question suivante. Etant donné un triangle ABC,
déterminer les couples AA’ et BB’ de droites issues des sommets
respectifs A et B, limitées aux cdtés opposés qui sont égales et ration-
nellement mesurées en fonction des cétés a, b et ¢ du triangle.

Résolvons d’abord la question de géométrie que pose la
condition d’égalité AA’ = BB’. Soit M le point de concours des
droites AA’ et BB’, soit (D) la droite joignant leurs pieds A’ B'.
En coordonnées barycentriques si (£, 7, §) sont les coordonnées
du point M et (u, ¢, w) les coordonnées tangentielles de la droite
(D), ce point M et cette droite (D) sont associés dans la trans-
formation qu’expriment les formules:

uf — v — — wi .
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Les longueurs AA’ et BB’ sont:

AA72 e ‘
7+ {)? (v —w)?
s APV (P @ — DHEL 4 P aPuP— (B = aP)uw - P w?

92
<&

BB = — ' - - L = o — )

Pour AA’ = BB/, le lieu du point M est une courbe du troi-
sieme degré et ’enveloppe de (D) est une courbe de quatrieme
classe, dont les équations, ponctuelle pour 'une et tangentielle
pour l'autre, résultent immédiatement de la comparaison des
expressions ci-dessus. Introduisons deux parametres i et u
par les formules |

N L
u - - 1% ¢ = W

les expressions des longueurs deviennent:

AA? = @202 — (@® 4+ b* — B u 4 b* |

\

BB2 = 02 — (a2 + b2 — A% + .

L’égalité AA’" = BB’ correspond au fait que le point représen-
tatif de coordonnées ordinaires i et u décrit une conique; cette
conique passe par les deux points (A = 1, n = 1) et (A = — 1,
v = — 1), auxquelles correspondent pour la longueur commune
L = AA’ = BB’ les valeurs L2 = ¢2 et L2 = 2q2% + 202 — (2.
Dans le premier cas, L n’est autre que le cdté BA ; dans le second,
L est le double de la médiane issue de C.

La cubique lieu de M a un point double C; quatriéme sommet
du parallélogramme complétant ABC. Les formules (S = surface
du triangle):

P45 =25, 40 =25, I14L=0
E == 7}1 —l_ :1 ’ LI EI _l_ :1 ’
)C.‘l = 1 : ’ Tll == ):‘ +: .

donnent pour équation de la méme cubique, relativement au
triangle de référence ABC,:

VY

2 .2 2 2 9 9y 9 9
GUWEH —an) = S [ (@ 4 — be)ny — (b° 4+ ¢ — a?) 41 -
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se fait en posant
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Le rapport de £, & », est indiqué comme paramétre de repré-
sentation de la cubique:

3 ‘ 7

(az + *— D)5y — (127}?]

ct—a*)k

’ul”’

D’ailleurs la représentation de la conique transformée (2, w)

= t; si T désigne I’expression,

1
\‘-‘i
T = b2 — a2,

on obtient pour les deux courbes considérées:

= — W, . W r = 1. W, ,
vo== W LW, 1, == — W,
w o= W, W, | L = W,

avec trois polynomes en ¢:

W, = t(a® 4+ ¢ — b2 — (b® + ¢ — a?)
, 22— b — t(b® 4 e — ) + 12,

W, a* > — 1 (b* + ¢ — a?) + & — «® .

&

W

I

D’ou la condition définitive

= — [{a® 4+ ¢ — b1 — (b + ¢* — a?)]
[a®(b? 4 ¢ — a¥)t — b?(a® + 2 — b?)] .

Il n’est pas inutile d’observer que ce choix de parametre, §’il
n’a qu'une importance secondaire sous le point de vue habituel
de la Géométrie analytique, doit étre fait judicieusement pour
mener & bien les calculs d’analyse indéterminée qui suivront.
Dans I’indétermination de la représentation paramétrique de la
conique (par exemple en prenant pour parametre le rapport
de v + 1 a & + 1), le numérateur de la fraction exprimant

P
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L2 — ¢® est généralement du quatrieme degré. On connait
toujours les quatre zéros rationnels de L? — ¢?; ce sont quatre
solutions de I’équation de Fermat, mais lorsqu’il s’agit d’étudier
le polynome du quatriéme degré correspondant a L2, les coeffi-
cients sont non seulement compliqués mais les deux coefficients
extrémes ne se présentent pas comme carrés. Afin d’appliquer
les formules de représentation au moyen des fonctions de
Weierstrass il est indispensable de faire subir & I’équation une
transformation homographique de variable lui assurant une
solution nulle ou infinie, ¢’est-a-dire rendant carré parfait 1'un
ou ’autre des deux coefficients extrémes. Le choix précédent du
parametre t donne au polynome T2 (L% — ¢2) les deux zéros

= 0 et ¢ infini; par suite le polynome de I’équation de Fermat
a nécessairement ses coefficients extrémes tous deux carrés
parfaits comme étant identiques & ceux du polynome du qua-
trieme degré (cT)2. Effectivement:

(@ — D)L = a,t* + ha, ® + 6a,t? ‘+ ha,t + ha,

avec:
#, == et , a, = b*c?
ha, = — a®(b? 4+ ¢ — a?¥) (a® + ¢* — b?)
fa, = — b2(0% + ¢ — a?) (a® + 2 — b?)
6a, == (a® 4 b%) [c* + (a® — D32 — 2c%(a* + b* — a20?) .
3. — Quels sont d’autre part les zéros du polynome T2 L2 ?

La cubique lieu de M est circulaire et ’on obtient des solutions
de AA" = BB’ en joignant A et B aux points cycliques du plan
du triangle: ce qui correspond a quatre droites particuliéres D.
Comme AA’ et BB’ sont alors des droites isotropes on se trouve
précisément en présence des solutions de l'équation L. = 0,
c’est-a-dire des quatre zéros du polynome du quatriéme degré:
Les valeurs de i et p

a —+iC b .
o {J. — =+=(C . ] e )\ +L(‘
b «a

donnent

A = —-- ==

20 o= 2a?

2 2 2 y ;
a® 4 b® — ¢? + 4¢iS a® + % — ¢ 4 4¢/S
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avec e = 2 = 1. D’ou quatre valeurs pour {, deux par deux
conjuguees,

correspondant aux quatre combinaisons possibles des signes de
41S. Il en résulte que le polynome du quatriéme degré est néces-
sairement :

TEL? = [a®® + (a® + % — )t + 7).
JatcE? — [(a® %) — (a® — b%)E]t + b2

(2 un facteur constant pres que ’on détermine par comparaison
de terme de plus haut degré et qui se trouve étre I'unité positive).
Ainsi la considération des droites isotropes issues des sommets A
et B conduit directement au résultat, donné plus haut dans la
représentation rationnelle des courbes unicursales enveloppe de
(D) et lieu du point M.

Dans le cas actuel, les formules plus générales du paragraphe 1
donnent:

. £ S? . 482, e
My == = " s O’ﬁ*‘ﬁ(a‘_b')'*
a “ a*c
£ S?‘
+ h
—_— {2 2
e — 3'a4c4\a + b7 < 0 ;

0,0, est carré, ce qui entraine A = carré et ’existence des trois
racines rationnelles de la résolvante p'u. = 0; ¢ est la plus petite
racine. En supposant a > b, par exemple, les racines sont, dans
Pordre e; > e, > e5:

nQ2 [Q2 LQ2
4S 4 S 4S
= — {2a? — b® e, — 262 — @ e, — a? b2
1 3(¢4(:2( ) ’ 2 3(!462( ) 3 3(14(:2< + ) ’
482 (a® — b?) 4S? 4S2h2
e E— e, — e, — e, — e, —
1 E a*c? ’ . ¢ a?c? & 8 atc?
4S2)7)2
(33 - e]) (93 - 62) — adel *

Cette derniére expression étant le carré d’une fonction ration-
nelle des trois cotés, les arguments égaux aux quarts de la pé-
riode 2w; donnent les valeurs rationnellles & la fonction pu;
mais des valeurs imaginaires a la fonction p’u.
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Les autres constantes elliptiques sont:

1

PA : ;{: st (a —§— bh* — a?b?) . ’(g3 = ?%E alS:CG (a® 4 b3 (2(L2:'— b?) (2% — a?) ,
pr = 3:54[1254 (a® + b%)¢7
Py = o e — b — ]
LES TRIANGLES PSEUDOISOSCELES.
4. — Déterminons I'intersection de la cubique lieu de M avec
la bissectrice intérieure de ’angle G, dont l’equatlon est = = % .

Nous introduisons I'inconnue auxiliaire § telle que

o -
-

et nous poserons

a«a +b=¢.%2, ab = ¢2. 11 .
L’équation des points d’intersection est alors:
(@—b) JIL(X2 4 442 4 242 4+ 1) + $(2 + ) (¢2 + 1)?“—‘ 0.

Si le triangle n’est pas isocéle (AB = AC), cette relation peut
étre mise sous la forme

Si maintenant on considére ¢ comme un nombre constant,
cette équation exprime une condition, symétrique entre a et b,
a laquelle est soumise le triangle ABC.

Remarquons que si, pour un triangle quelconque, deux points
sont pris, 'un A’ sur le coté BC, le second B’ sur le coté CA, tels
que . |
BA” _A’C CB’” _ BA

’ — )

C'IJ b a (;q;

le lieu du point M d’intersection des droites AA’ et BB, pouf
les diverses valeurs de ¢, est la bissectrice intérieure de ’angle
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BCA. Les coordonnées trilinéaires du point M peuvent étre
prises égales a X = Y = 1, Z = 4. 5i ( est le pied de la bissec-
trice intérieure de C et I le centre du cercle inscrit dans:le triangle "
(¢ = 1 donne ce centre I), on a:

MC’ . cq) MI . (a —+ II)C \ iy
CC" et b O T @bt bt

Ces diverses relations mettent en évidence que le nombre
constant ¢ correspond & des divisions en rapports donnés des
cotés CA, CB et de la bissectrice intérieure.

Lorsque ¢ est imposé, le triangle ABC satisfait donc a une
condition qui, si I'on pose ¢ = 1, par exemple, exprime que la
somme et le produit des deux autres cotés sont liés par la relation
ci-dessus écrite. Celle-ci dégénére en une relation homographique
entre le produit T et la somme X dans quatre cas:

1o Pour ¢ = 1. Le point M est au centre I du cercle inscrit.
Les droites égales AA’ = BB’ sont alors les bissectrices intérieures
des angles A et B. La relation homographique est:

M — X+1

2-—}—0‘

elle ne saurait manifestement étre vérifiée par un triangle réel.
C’est donc le cas des triangles pseudoisoscéles tmaginatres avec
égalité des buissectrices intérieures.

20 Pour ¢ = — 1. Le point M étant alors le centre du cercle
exinscrit, situé dans l'angle C, la relation correspondante
représente les triangles pseudoisoscéles avec égalité des bissectrices
extérieures (¢’est-a-dire les triangles connus sous la dénomination
de triangles pseudoisoscéles) :

3¢ Pour ¢ = 12—

X =
Il = —

be| -

Y+ Ve

triangles manifestement 1maginaires.
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V2

40 Pour Qp = "—'Tl

[ == ey
2 Y2 —%
La formule exprimant la longueur commune des droites
égales AA’ = BB’, dans le cas d’intersection sur la bissectrice
intérieure de ’angle C et pour ¢ quelconque, étant

Lo B+ DES +1)
YETTExEg

vz,
o5

devient pour ¢ = —

/2 2

]
aucune valeur positive de = ne saurait rendre positifs simultané-
ment [T et L2. Le quatriéme cas correspond donc encore a des
triangles imaginaires. :

Analytiquement, sous le point de vue des considérations que
J’al précédemment développées au sujet des relations homo-
graphiques entre II et 2, les deux premiers cas sont équivalents
par simple changement de signe sur £. De méme les deux derniers
cas sont équivalents par changement de signe sur 3.

Dans le quatriéme cas, les fonctions elliptiques ont pour

caractéristiques:
S LT B
PY = “%’ pr=— Vj  p =1,
P = E_{ k P = Vf— P = ; ;

Ja cubique de Weierstrass admet les arithmopoints

u-'—£-' ’u-—-—i— " — %
pe=t pe=q pre=—g

P(Qu) = =173 P’(Qu) = =35 P”(i’,u) = -———

i L’Enscignement mathém., 27¢ année, 1928 18
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Cette équation constitue un exemple de détermination ration-
nelle d’un cinguiéme de période. Les relations

pv = Péw ::1 , 20 = pdw — — —1~
3 P P 6’

;' 2 2
! P’w = }]"‘Zw e v/ , P,?“' = P’éw = — v, ,

B *

montrent que I'argument 5w est une période.

5. — La relation du second cas
1
W=5_s

définit les triangles nommés pseudoisoscéles. Il existe une infinité
de tels triangles, abstraction faite de la similitude, et qui corres-
pondent aux valeurs de 3 comprises dans 'intervalle 1 < 3 < 2.

Puisque l'occasion s’en offre, voici quelques renseignements
bibliographiques au sujet de cette classe de triangles spéciaux.
| Alors que diverses questions concernant les médianes ou les
hauteurs sont accessibles dés le début de I’étude de la géométrie,
il en est autrement quand il s’agit des questions analogues
concernant les bissectrices des triangles.

L’exemple classique de ce genre de difficultés est la démonstra-
tion geéométrique de la réciproque de l'égalité des bissectrices
d’un triangle isoscele. Les triangles isosceles sont les seuls triangles.
réels dont deux bissectrices intérieures sont égales 1. La difficulté
de la démonstration géométrique découle de ce fait qu’analyti-
quement la condition d’égalité de ces lignes se présente sous la
forme (¢ — ) . f (a, b) == 0, avec un facteur f (a, b) nécessaire-
ment positif, mais qui correspond aux triangles pseudoisoscéles
imaginaires du premier cas. |

1 Pour une solution de cette question, voir les Nouvelles Annales de Mathématiques:
de 1842, p. 87, une note de TERQUEM.

Voir aussi: J. STEINER: Elementare Losung einer Aufgabe iiber das ebene und das
sphirische Dreieck. (Crelle’s Journal, X XVIII, S. 375-379; Werke, II, S. 323-325).
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Une seconde question intéressante mais ardue est la construc-
tion d’un triangle connaissant les longueurs de trois des bissec-
trices ou encore un angle et deux bissectrices.

Contrairement a ce qui se produit avec d’autres lignes remar-

‘quables du triangle, pour lesquelles la géométrie élémentaire

fournit des solutions immeédiates, il en est tout autrement pour
le cas de la détermination d’un triangle connaissant des longueurs
de trois bissectrices. Ce probléme n’est plus du ressort de la géo-
métrie pure, sa résolution dépend en effet d’équations de degré
elevé, atteignant par exemple le seizieme degré avec trois
bissectrices quelconques, ou le 14me avec trois bissectrices
intérieures 1.

6. — L’équation de FErmaT, dont dépendrait la détermination
de tous les triangles pseudoisoscéles & cdtés rationnels, est

(E—2)(E—38) (22— +2) = [].

elle n’admet aucune solution rationnelle, en dehors des racines
2 et 3 du polynome du premier membre. I1 suffit d’étudier les
facteurs premiers communs des treis nombres

x — 2y, x — 3y , 2 — dxy + 29°

en supposant que z et y sont les termes d’une fraction irréductible
representant X, pour arriver & cette conclusion négative.

Il n’y a donc pas de triangle a cdtés tous les trois rationnels parmi
les triangles pseudoisoscéles.

1 Cette question a été 'objet d’une étude étendue par M. BAkER (Richard-Philipp)
The problem of the angle bisectors (The University of Chicago Press), dissertation de
I’Université de Chicago, 1911.

L’auteur cite P. BARBARIN: Construire un triangle dont les bissectrices sont données
(Mathesis, 1896, p. 143-160); Résumé d’un mémoire sur la détermination d’un triangle
au moyen des longueurs de bissectrices (Bulleiin de la Société Mathématique de France,
1894, t. XXII, p. 76-80). On peut en outre citer J. DELITALA, Construire un triangle
connaissant une bissectrice de chaque angle ( Mathesis, 1902, p. 159-162) et une note de
TERQUEM dans les Nouvelles Annales de mathématiques, 1842, p. 87.

RS
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Les fonctions elliptiques associées & cette équation des triangles
pseudoisosceles ont pour caractéristiques:

25 11.23

g2:E, gg:——8.27~, A= —28;
. 11
¢ = =13
20 y . 11\ 2y 14 23
_ ‘% " —_— S o —_— .
p N TYAN S aP% T 37)
pe :_:E, ‘P’w::Q , "w o— 6,
12 P
1
pr =13 P’v = — 1, J)”w = — 1,
11
PSW = =1 P’Sst:O,
1
PrY =3 J]”uv:—-—l 3
13
P5w —T:-;,

Iargument o est sixiéme de péricde; les seuls arithmopoints
connus sont les points réels d’inflexion, un sommet et les points
qui en dérivent par alignements; au tctal, cinq arithmopoints
seulement.

 UNE SECONDE CUBIQUE LIEE AUX TRIANGLES PSEUDOISOSCELES.

7. — Soient (z, ¥, z) les coordonnées barycentriques d’un point
M du plan du triangle de référence ABC. L’aire du triangle ABC

étant S, . s
x4+ y-+z= :

celle S’ du triangle A’ B’ C’ dont les sommets sont les points
A’, B’, i’ ou les droites AM, BM, CM rencontrent respectivement
les ¢Htés BC, CA, AB du triangle est déterminée par la formule:

1 1 1 2S S’
oyt a(y o) =0
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Le lieu des points M du plan du triangle, tels que l'aire de
A’ B’ C' reste constante est donc une cubique dont 1’équation
peut étre mise sous 'une des formes suivantes:

(x—]—y—l—z)(%—l—%—l—%):m,
(¢ + y)ly + 9 (s + @) = 2m.ayz,

25 S
avec m = g + 1, n =g,
suivent, est introduit un autre parameétre s tel que s = m 4~ 1.

La cubique passe par les sommets A, B, C du triangle et y
admet pour tangentes les paralléles aux c6tés opposés.

Les trois points & D’infini sont inflexionnels. Les asymptotes,
paralleles aux cotés, forment un triangle dont les sommets sont
situés sur les médianes respectives de ABC. L’asymptote paralléle
a BC a pour équation: z + y 4+ z = ma.

La question est projective. Il suffit donc de construire les
cubiques correspondant aux diverses valeurs du parametre m,
pour le triangle équilatéral.

La cubique est invariante dans la transformatlon quadratique
ayant pour points fondamentaux le centre de gravité G et les
trois points & I'infini dans la direction des cotés.

m =2n -+ 1. Dans les calculs qui

8. — La représentation elliptique de la cubique
(x +y + 2)(zy + yz + z2) = maysz , m—=s—1,
s’effectue en observant que les nombres

X:::%--—'_z, Y:y+z

z z

ont un produit IT et une somme 3 reliés par la formule homo-
graphique

N1
”_:(‘2——3)v
_— — 8

Comme

Pt =D=E—s).E—2). (X2 —mB+4n), m=2n+1,
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I'équation D = 0, du quatriéme degré, admet les zéros rationnels
2 et s et par suite la résolvante cubique admet une racine ration-
nelle. Les constantes elliptiques sont:

P —
52 —

(n* — 4n® 4+ 2n 4+ 1)

o] w~

A
g, = ; e, (— 2n* + 8n® 4- 2n 4+ 1) ,

A= m*m— 1)3(m —9) ,

m2—6m — 3 i — %a — 2

1 = ) T S
(e, — ey) (e, — e;) = m .
g = (n — 1)* P — 9 " 4 1
pr="g o pr=—1In., pr=tlnf—1),
12 + 4n 1
pv = 'A—i——%:l_w , pv = 2mn = m(m — 1) ,
P”w = 2mns = hn(n + 1)(2n + 1) ,
pr — e = 1, pw —e = m .
v+ 2w = 0 , 3w = w, .

Ces formules ne font connaitre en tout que cinq arithmopoints
de la cubique de Weierstrass: le sommet e;, deux inflexions + ¢,
et les deux points + w qui se déduisent des points d’inflexion
et du sommet par alignements. Elles correspondent au cas
singulier ou, I’argument o étant sixiéme de période, les formules
d’addition et de multiplication appliquées & ces arguments
w;, W, ¢ de toutes manieres possibles ne donnent qu’un nombre
limité de solutions rationnelles.

Les racines e, et e; ne sont rationnelles que pour les valeurs
de n rendant carré le produit n (n — 4), c’est-a-dire lorsque rn est
de la forme

en fonction d’un nombre rationnel quelconque. Les six points
d’intersection, autres que les sommets, de la courbe avec les
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médianes sont alors des arithmopoints; par exemple, sur la
médiane AG.

Les racines sont alors

tt 20342641 144203 — 4t —2 __'——2t4—4t3+2t+1
1 312 2= 32 S R 32
2 4+ 1 ¢ — 1. (¢ 1)?
81—32:—:—2_-—, 02——03::(——~-» /t2(~+ ) % el——e3:::t(t+2),

leur ordre dépendant de ¢.
D’autre part, lorsque n est de la forme

12 4 2¢ 42 o 212 4 5t + 4
1 ——

n—- - ——,

t t

H

la courbe admet deux arithmopoints sur la paralléle y 4 z = Ax
au coté BC, par exemple le point:

x=1t4+ 2, y = t(t + 1), z =t

et par conséquent dans ce cas six arithmopoints sont connus.
Les valeurs entiéres de m correspondant a ce cas sont m = — 1,
— 4,11 et 14.

Lorsque m est carré, m = ¢, pu prend des valeurs rationnelles
pour des valeurs de ’argument égales aux quarts de la période
2wy; mais p’'u prend des valeurs généralement irrationnelles
dépendant de la racine carrée de (¢ — 1) (g + 3). Pour que deux

de ces quarts de période correspondent a des arithmopoints de la
cubique, il faut prendre:

12—t 4+ 1

m = ¢* , avee g = ; ,

A
282

/(‘0 tz—'—t—}"lr
pr=ate py=Et—

n

(t— 1),

(t—{;i)(t—i)3 ,

(=28 — 2t 1)° ) t* 4 1
}]V = oA . }) yo= — ;2 (t . 1)2 .
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Il en résulte que la cubique admet I’arithmopoint

m o 3, y—= —1, z =1

b

situé sur la conique y* = xz, et les arithmopoints qui en dérivent
par des permutations entre z, y et z.

9. — Cas particuliers. — Cas m = 9. La cubique est alors
unicursale, avec le centre de gravité pour point double isolé.
Les tangentes au point G ont pour équations respectives

e+ Py 4+ 2z =20, x4+ jy4+z=0, Fal— 1 I

(j racine imaginaire de 1'unité).
Si I'on représente par

A 4+ wy 4+ vz = 0, Adp4+v =20,

une droite GM quelconque passant par G, les coordonnées

courantes de M peuvent étre prises égales (a4 un facteur d’homo-

généité pres) a: |
o= unv({v—u) , y = vA(h —v) , z2 = Au(n— 7).

Le point M peut étre considéré comme Pintersection de GM
avec la droite A%z +4 p?y + v¥z = 0, tangente variable de la
conique inscrite au triangle d’équation tangentielle:

Vu + Vo + Vo =0 .

Cas m = 0. Décomposition de la cubique en la droite de
I'infini et une conique circonscrite au triangle.

Cas m = 1. Décomposition de la cubique en le systéme des
trois paralléles aux cotés menées par les sommets.

Cas m = 2. Les fonctions elliptiques sont alors celles du
probléme des triangles pseudoisoscéles de Steiner.

En attribuant donc cette valeur particuliere, m = 2, au
parametre m dans les formules générales du paragraphe 8, on
retrouve celles qui ont été données au paragraphe 6 pour les
constantes elliptiques du probléme des triangles pseudoisoscéles.
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