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Le cas de B = 0, avec s = 2 et A carré, présente cette particu-
larité intéressante de représenter la solution du probléme suivant :
détermination de tous les triangles héroniens ayant un coté donné
et une aire tmposée. J’étudierai la question prochainement.

(CAS ELEMENTAIRE DE DEGENERESCENCE DES FONCTIONS
ELLIPTIQUES.

23. — LD’expression du discriminant A des fonctions ellip-
tiques, abstraction faite du facteur double As + B, qui ne saurai
étre nul sans dégénérescence de ’homographie, se présente sous
forme d’un polynome du second degré seulement par rapport au
parameétre B. Les deux autres paramétres A et s étant supposés
donnés, rationnels et quelconques, ’équation A = 0 n’a des
racines rationnelles en B que si s 4+ 12 A est un carré. En
introduisant un nouveau parametre rationnel et arbitraire, w,
cette derniére condition est satisfaite de la maniére la plus
générale en prenant:

0)2 —_— 32

A = :
12

d’ou I’expression correspondante du discriminant:

b

A= — 27(As ++ B)?(B — B,)(B — B,)
avec:
1.27B; = s — 30%s — 20° = (s 4+ w)!. (s — 20) ,

4.27By = §% — 3w?s 4+ 203

I

(s — w)®. (s + 20) ;

27 (82 — Bl) = w? .

Le changement de signe sur o produit I’échange des valeurs
de By et B,; en supposant que o» peut prendre toutes les valeurs
rationnelles et algébriques, le discriminant A s’annule donc
lorsque les coefficients A et B sont dela forme générale suivante:

w? — ¢2 1

A= —m, B :1—6—(5 — m)?. (s 4+ 20) ,
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alors: | |

8.3%, = — w¥(w + 25)% ,
A=0

As + B = (v — s) (0 + 25)2

El=

Codd h ' A '
Bs — 2A2 = — 5 97((0—.5) (s 4+ 20s + 30?)

32—{—20)9 : s 4 2w?
3 PP ="3

.vP,Z;:[}[pu— w+26)] [ + w—|;2s) .

~ La solution elementalre correspondant a ce cas de dégéneres-
cence des fonctions elhpthues est dono avec un parametre ¢,
ra‘monnel et quelconque:

s? + 8A =

pe =g —20(+ 291,

pu = pog 4 — 30 (o + 2914 - |
S = —el o (s —of = 4 20)
6 ( —s —2w) "’ b — s —20w) ’
__oo"——s2 b+ o+ 2s w—|—2s)(s—|—5w) -
AS + B = 72 ub-—-.s—-—?co [4/ 3(w + s) ]’
_w?— st k];+w+23 s)(s + 5w)]
P = 12 " —o0—2 [‘-P m-I—s) ]’

Y - $* — do(w + 2s)
_ivDZE(‘P_&’) P —s—20) (0 — o —2s)°

Les racines X’ et X” de I’équation du second degré

| .Xé—SX+P=O
sont ensuite:
X/ :'% (¢—S;iwc)o(¢_-|;sw+ 2s)
y_ 0+ 2+ 50)

‘ " o___ w? —_ s* B , 3!(0) "I" s) g
VeI g — )

(w 4+ s £ 0)
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Pour o + s = 0,

A =20, B:——'Q—:/.,
108g, — s* 8.3%g, — s°, A=20,
S——-s:i——(q]—_sy,
6 4+ s
; 1+ s)? N 4 1
’ 7 o X 3 )
4\_—6—'—_—_&{)-s’ X __3.3 e

Telles sont, dans le cas élémentaire, les expressions générales
des racines d’une équation du second degré, supposées ration-
nelles et telles que leur somme et leur produit soient liés homo-
araphiquement. Ces expressions contiennent trois parametres
quelconques: deux d’entre eux, s et w sont caractéristiques dela
fonction homographique. Pour une telle relation supposée
imposée, il y a donc une infinité d’équations du second degré
(toujours dans le cas élémentaire de dégénérescence des fonctions
elliptiques) qui répondent a la question, sous la condition que les
coefficients A, B, s de la fonction homographique satisfont a la
condition A = 0; la solution dépend alors du parameétre arbi-
traire ¢.

24. — Indépendamment de la considération des fonctions
elliptiques, le cas élémentaire peut étre traité de la maniere
suivante, a partir de ’équation de Fermat

(S — 5)[S*(S — s) — 4AS — 4B] = [ .

Le polynome du quatriéme degré en S a pour racine s et celle-ci
est nécessairement simple, puisque I’expression As -+ B ne saurait
etre nulle. Si donc le polynome du quatriéme degré a une racine
double, cette racine provient du facteur cubique

elle est donc racine de ’équation du second degré, dérivée de
I’équation cubique, ce qui exige que s -~ 12A soit un carré
parfait:

s2 4 120 = o? ;
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la racine double s’ est donc de la forme s = 5 = la racine
simple s; du facteur cubique est s, = s — s, = > 3 2. Les
expressions qui en résultent pour A et B sont:
- (s — s) (s + 3s,) | 1 2 1 y
A:——( *1)1(6 —, B:Zslsl' :Esl(s—sl)‘;

elles conduisent, en s et w, aux expressions précédemment
trouvées. '
Alors:

o S _ ,

D=gHs =),
et le pfoduit, ' -
(S—s).S—s)=0,

~doit étre carré parfait. La question est réduite & un probléme
bien connu d’analyse indéterminée du second degré seulement.
La solution générale est en fonction d’un parametre arbitraire A:

kz—zssl
S = - prara
T %
(—3) (-3)
S —s = 2 - S —'s, = %2
—)\ s+ s’ 1——)\ s+s
T 4 T a
v s—s\2 1 s
B Q“ 21)_8@ s)(s +35) A —2
-+ == . :
——VD . )\__s—l—sl 7&—-——-1
4 2

et, finalement, ces formules’sont équivalentes & celles obtenues
par dégénérescence des résultats généraux sous la seule condition
de poser: | ' |

Yhs—o
% = =
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25. — Solutions remarquables dans le cas de dégénérescence.

I. Solution ¢ = .

3 2
5:_3___":_%2, p:(i_i:__zﬂ)_’ D=0 :
3 36
X’:X":S+2w.
6
II. Solution ¢ = — (o + 2s).
. — 1 (s + 2w) (s — w) .
S_——\/u__§ P , P =0
X' =90, X" =S .
. 1 (0 + 25) (s + 5w)
ITI. Solution ¢ = 7. R
e (s 20).(s — w) _
S=1VD=—3 o ., P =0;
X' = S, X" =0

IV. Le discriminant D de I’équation du second degré en X
n’est, dans le cas général, nul que pour ¢ = 3w (solution I
ci-dessus). Mais si U'expression w(w -+ 2s) est triple d’un carré,
D est nul pour deux nouvelles valeurs particulieres de J.

A un facteur pres, il suffit de prendre

w = 3, s = 262 + 20 — 1, b = + 3(1 4 20) .

A ces deux valeurs de ¢ correspondent les mémes solutions:

X' = X" :,i(c—‘l)(c—{—?) .
A:—-—%—(G—l)(c—}—m(cz—j—c—{—l) ,

B = & (s —1)%(s 4+ 2)*(26* + 26 + 3) ,

7/

1 A
S—s=—z(+1°>. AS+B ::—-—721—7(0'—1)2(0-}-2)2(26—!—1)3,
V. La somme S ne pourrait, en général, étre nulle pour une
valeur rationnelle de ¢. Pour que cette circonstance se produise
il faut que s(s 4+ 2w) soit triple d’un carré.




286 . E. TURRIERE
En prenant, & un facteur preés,

‘ s = 3, w=20¢ 4 2¢—1,
on obtient’ | |
412202—1-80';1 et 4)2:_20‘2—[16-7-7..

A la solution ¢, correspondent les expressions suivantes:

X' = - X ==+ 1),

A:é@;np+mw+c+ﬁ,
1 | .2 2y 2
B = g5e — 1)°le + 2120 + 1)

- 'B
S=0, P=-—3z.

A la solution {, corréspond un simple changemént de signes sur

XI et Xll: )
X = — X" :—(‘1')-.(0'— )(c 4+ 2)(2s+ 1) .

Apres cette étude générale des équations de Fermat, pour un
polynome ayant au moins un zéro rationnel, il reste & appliquer
les formules qui viennent d’étre établies a I’examen d’un certain
nombre d’applications géométriques: triangles héroniens du
paragraphe 22, triangles pseudo isoceles (paragraphe 10), etc...
Je reviendrai sur ces diverses questions trés prochainement.

Aolt 1927.
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