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Le cas de B 0, avec s — 2 et A carré, présente cette particularité

intéressante de représenter la solution du problème suivant :

détermination de tous les triangles héroniens ayant un côté donné

et une aire imposée. J'étudierai la question prochainement.

Cas élémentaire de dégénérescence des fonctions
ELLIPTIQUES.

23. — L'expression du discriminant A des fonctions
elliptiques, abstraction faite du facteur double As -f- B, qui ue saurait
être nul sans dégénérescence de l'homographie, se présente sous
forme d'un polynome du second degré seulement par rapport au
paramètre B. Les deux autres paramètres A et s étant supposés
donnés, rationnels et quelconques, l'équation A 0 n'a des

racines rationnelles en B que si s2 -f- 12 A est un carré. En
introduisant un nouveau paramètre rationnel et arbitraire, co,

cette dernière condition est satisfaite de la manière la plus
générale en prenant:

d'où l'expression correspondante du discriminant:

A ~ — 27 (As + B)*(B - Bj) (B _ B2)

avec:
4.27B, s* — 3o>26- — 2(o3 (.s + - 2to)

4 27B2 rr: s3 — Hto2s-f 2to3 (s — (s + 2to) ;

27 (B, - Bt) (o3

Le changement de signe sur w produit l'échange des valeurs
de B1 et B2; en supposant que w peut prendre toutes les valeurs
rationnelles et algébriques, le discriminant A s'annule donc
lorsque les coefficients A et B sont de la forme générale suivante:
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alors :
f •

1 * L

108^ to2(to +,2s)2 v
8,36g3 ='-r co3(co -|- 2s)3

As-j- B - (to — s) (to -|— 2s)2

Bs — 2Â2 (to — s)2.(s2 +2 tos + 3 to2)
O.IJ

Q.s2 + 2to2 s2 + 2to2
*2 + 8A —3—r 36

•

4 -
*

P 'to (to + 2s)-]2 p to (to-f-2s)~|
p " — 4

LP 36 J : LP" + is J-

La solution élémentaire, correspondant à ce cas de dégénérescence

des fonctions elliptiques, est donc avec un paramètre
rationnel et quelconque:

PM ^ 2to(to -f'2s)|

P'M 1Ö8 — 3<u> (o> + 2^)]

• (^ — 2s —-to)2 (4 -j- s — to)2 — 3s (s -f- 2 to)
S ~ * 6> _ 5 _ 2o.) ' S= 6fl-s-2.to) ,;

AS + B — ~ f+^ + 2s
_

r _ (" + 2s)(s + 5o>)-|
72 & — s — 2 to L 3 (d) -h s) J

to2

3 (to -J- s)

— s2 4 -J- to -f- 2s p, (o) -|- 2s) -j- 5co)~]

12 (tp — eu — 2s)2 L 3 (to + s) J ;

± VD s«). + 2s)
6 s — 2 to) (4 — to — 2s)

Les racines X' et X"de l'équation du second degré

x2 — sx + p o

sont ensuite:

v, _T'1 (4 — s — 2 to) (4 -f to -j- ,2s)
6 4» — to — 2s

(to ~J— 2s) (s -j— 5 to)
2 o2 4 —

x» _- — t 3i(M -M ; /w + sioi2 (.<(> — s — 2 oj) (i — to —" 2s)
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Pour û> + s 0,
S3

A 0 B - r,
1<%j s4 8.36g3 s" A 0

g s —
1 W -
6 <I> T 5

X' A. (*.+ s)2, x"=4-*8.
6 '

•!/ — 6-
' — 3 <i2 — 6-2

Telles sont, dans le cas élémentaire, les expressions générales
des racines d'une équation du second degré, supposées rationnelles

et telles que leur somme et leur produit soient liés homo-

graphiquement. Ces expressions contiennent trois paramètres
quelconques: deux d'entre eux, 5 et &> sont caractéristiques delà
fonction homographique. Pour une telle relation supposée
imposée, il y a donc une infinité d'équations du second degré
(toujours dans le cas élémentaire de dégénérescence des fonctions
elliptiques) qui répondent à la question, sous la condition que les

coefficients A, B, s de la fonction homographique satisfont à la
condition A 0; la solution dépend alors du paramètre
arbitraire ip.

24. — Indépendamment de la considération des fonctions
elliptiques, le cas élémentaire peut être traité de la manière
suivante, à partir de l'équation de Fermât

(S — s) IS2 (S — s)— 4AS — 4B]

Le polynôme du quatrième degré en S a pour racine s et celle-ci
est nécessairement simple, puisque l'expression As + B ne saurait
être nulle. Si donc le polynome du quatrième degré a une racine
double, cette racine provient du facteur cubique

S3 _ s s2 — 4AS — 4B 0 ;

elle est donc racine de l'équation du second degré, dérivée de

l'équation cubique, ce qui exige que s2 + 12A soit un carré
parfait :

.s-2 + 12A O.)2 ;
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la racine double s'est donc de la forme —3— ; la racine

simple s1 du facteur cubique est ^ s — s't Les

expressions qui en résultent pour A et B sont :

(s- sj (s+ 3^) B — s* _ _ s V2~ * 16 ' 4 11 16 1 ' l} '

elles conduisent, en set w, aux expressions précédemment
trouvées.

Alors:

et le produit,
(S — ^) .(S ~

doit être carré parfait. La question est réduite à un problème
bien connu d'analyse indéterminée du second degré seulement.
La solution générale est en fonction d'un paramètre arbitraire X:

X2 - -55l
S. —

X
S -h St

x _ f_±_fi T * +.*i

~f~ yD ~
- '•>(s +3s>> x - j

; s + s, s
x r- T

et, finalement, ces formules'sont équivalentes à celles obtenues

par dégénérescence des résultats généraux sous la seule condition
de poser :

-j— S —— 03
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25. — Solutions remarquables dans le cas de dégénérescence.

I. Solution, ip 3co.

s =1 + 1^. P=(L±^, D 0:
3 ' 36

x' x"
o

II. Solution <J/ — (&> + 2s).

!— 1 (s —{— 2 to) (s Cjl>) n AS - Vu 7T.-L-r P L. P — 0 ;
* 9 co —{—

X' 0 X" s

TTT O 1 4.- I
^ (w 4" 2s) (s -f 5w)III. Solution (L •$>-:

* O tö —j— S

/— 1 (s + 2 fi)). Is — to) n ^S V D — 77 — ~— —, P 0 ;
9 6' -j- CO

X' S X" 0

IV. Le discriminant D de l'équation du second degré en X
n'est, dans le cas général, nul que pour (solution I
ci-dessus). Mais si l'expression co(+ 2s) est triple d'un carré,
D est nul pour deux nouvelles valeurs particulières de

A un facteur près, il suffit de prendre

co 3, s —2 a2 -f- 2 a — 1 + 3 (1 -f- 2 a)

A ces deux valeurs de (p correspondent les mêmes solutions:

X' X"=i(«-i)(«j + 2)

A 77 (g 1) (g -f~ 2) (<32 -{- G -f- 1)
O

B — (a — 1)2(^ + 2)2(2œ2 -{- 2a + 5)

S -5 - I(2a + l)2 XS + B -~(a-l)2(a + 2)2(2a + l)2e

V. La somme S ne pourrait, en général, être nulle pour une
valeur rationnelle de ip. Pour que cette circonstance se produise
il faut que s (s-f- 2w) soit triple d'un carré.
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En prenant, à un facteur près,

s zez 3 to 2 œ2 -f- 2

on obtient \ '
1

2 a2 -|- 8<j —-1 et 2<j2 — 4<j ~ 7

A la solution <p2 correspondent les expressions suivantes:

X" -X' =£(« — 1)(<Î-+a)(2« + l)'

A g(a — 1) (<j + 2) (i2 + a + 1)

B =i(a-l)> + 2)2(2a + l)2

s o, p — 2

A la solution correspond un simple changement de signes sur
X' et X":

X' — X" i (<j — 1) (s + 2) (2a + 1)

Après cette étude générale des équations de Fermât, pour un
polynome ayant au moins un zéro rationne], il reste à appliquer
les formules qui viennent d'être établies à l'examen d'un certain
nombre d'applications géométriques: triangles héroniens du
paragraphe 22, triangles pseudo isocèles (paragraphe 10), etc...
Je reviendrai sur ces diverses questions très prochainement.

Août 1927.
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