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2N . E. TURRIERE

part de ’homographie, il sera pris égal a ’unité; les formules de
correspondance sont:

A= —b, B:%—, s=d, - e—=1.

‘La parabole (Q) depend de trois parametres son equatlon
tangentielle est:

BUF — AUV 4 sUW + VW = 0 . Q)

L’équation ponctuelle s’obtient immédiatement en . rem-
placant, dans I’équation. de la corde #t’, le produit P par son
expression homographique en S et en égalant a zéro le discrimi-
nant du polynome en S, du second degré, ainsi obtenu:

(x + sy + A)* = 4y(sx — B) , - (Q
ou encore B - - L
| (x—sy+ A)Q+ 4(As+ Bly = 0 ;

cette parabole (Q) touche Oz au point z = Aj; I'autre tangente
issue de O a pour équation Az 4 By = 0: c¢’est une arithmocorde‘

particuliére de (P), qui représente la solution, S = , P=0.

' La directrice a pour equatmn y + sz = B; les coordonnees
du foyer sont: | '
Bs — A As + B’
T+’ Y= 7" Txse

—

- EXAMEN DE CAS SPECIAUX.

16. — Cas oul'équation D = Q a une second}e racinerationnelle. —
Soit S = 2a, la racine rationnelle (autre que S = s). Alors:

S* — s§? — 4AS — 4B = (S — %a) (S* — 2LS + 2M) ;

a, L et M sont supposés donnés; soit ¢ = L2 —2M la quantité dont
dépend la réalité des racines du-facteur quadratique.
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Les formules sont les suivantes. L’équation cubique p'u
a une racine rationnelle e;.

M
s == 2{(a + L) , A:—<aL—}——2—>, B = aM ;
2/ . M — L%
61:Pw1:—§ -+ 3 >,
g = 3¢ + 3L . g = e (e} —3LY) , A= dL(9e; — L2 .
1 o 9 ; ’ ” 2 2 A M?
})s’:g(a“—}-L——M), Pv::—aM, Pv:?a“(L“—./I)—}—Q,
p 1 M ¢ M
—_ 2 ‘ 2 " Y 2 2
nt A
Pz = 5Py
1 , M . M
Pot:—3—<a2—3aL—}-L“—}——2—>, P’a:—QL(aZ—aL-{——Q—),
P”a:——s.P’a.

V

« est 'argument associé & S = 2q; sa valeur est o = oy —3 -

17. — Cas ou toutes les racines de I’équation D = 0 sont ration-
nelles. Soient 2a, 2b, 2¢ les racines de l’équation en S:

S8 — sS% — 4AS — 4B
les expressions de A, B, s sont alors:

s = 2(a 4+ b+ ¢) ,
A = — (ab + bc + ca) , B = 2abc .

D’ou, pour les éléments elliptiques les expressions:

4
= (a* + b* + ¢* — a®b? — b*c? — ¢?a®) >0,

8y — 3
L 2 2 9,2
:E;(a + 0% — 2¢%) (0% + ¢ — 2a%) (c? + a® — 202?)

A = 16(a® — b2)2(h% — c*)?(c® — a?)? >0 .
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Les trois racines de p u = 0 sont réelles et rationnelles:
= -§(b2 —|— 2 — 2a%) , | ey, = §(c”4 + a® — 2b’) ,
e = 3(a2+b2—2c) :

dans Pordre e > ey > e, pour a? < b2 < 02

PY :%(a’ -+ b2 + ¢y , P’v = — 2abc , p”v = 2(a2b2 + bic? + c%a?) ;
p%:%—( 2+b2+c2)+ab+})c+ca , p’i=—2.(a+é)(b+c)(c+a) l.

2 .

Si a, B, y sont les valeurs des arguments associés a S = 2d, 2b
et 2c, les formules générales de correspondance donnent:

P %(az—l—b + )+ bc—a(b+c), p’ai—2(b+c)(a—b)(a—c) ,

i)

ete.
Et, par suite:
— Vv . [% 14
&= ® —3 @'—-“’2_5’ V= 93T g
ey = pu, , T ey = pes €g = pus

Pour u = w,, il vient:

[ J . ;
S—a+b+c-—%c-, P = ab+ ac— be , i’\/ﬁ:(a—bzl(a—'c)‘,
X' =a, X"':b—}-‘c-—-—-lf-:-.
. _ a
18. — Interprétations géométriques. — Les formules ci-dessus

assurent ’existence de trois tangentes rationnelles, communes
aux paraboles (P) et (Q) du paragraphe 15:

U=1, V=—2a, W — a%, etec. ...

Cette question peut encore étre traitée en rapportant les deux
paraboles au triangle de référence formé par les trois tangentes

communes. Sans restriction de généralité, la parabole (P) peut

étre représentée par les équations tangentielle et ponctuelle:

1 1 1 , -~ o _
= e = r + Vi + V% — 0 .
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Si ¢ est le parametre du point courant et de la tangente asso-

ciée, on pourra prendre la représentation paramétrique survante
en coordonnées homogenes:

) 1

—_— - ’ V = L s VV:———,

140+ ¢ 1 —0c — 1t 2
1 0 1 2 1 ’
1:F—2:(t+6—f—1)“, y-———v*g:(t‘\Lc_l) 2= 7wz — !

les coordonnées tangentielles de la corde #’ sont alors:

U= 2— (S + 20 , V =2+ (S + 2q) ,
W =P +¢S 4+3s>—1;

ouS =1¢ 4 t', P = #'. Si maintenant la conique (Q) est représen-
tée par I’équation
M 1

L
TTVEwe

les constantes o, L et M étant liées par la relation
o(M — Ly =1,

homographie définie entre P et S par les tangentes de (Q) a pour
coefficients:
A=140"4 2L+ M),
B=2s(*—1)(L+M+1),
s = 20(L+M—1) .

Les formules d’équivalence entre les deux modes de repré-
sentation sont:

a =1—g,
b ,
¢ =o(L + M4 1),

)

— 11—

le parameétre d’homogénéité étant choisi de telle maniére que
a — b= 2.

19. — Cas de la cubique éguianharmonique. — En prenant A et s
arbitraires, s == 0, la formule

24 (Bs — 2A%) + (s - 8A)2 = 0 ,




278 ' E. TURRIERE
permet. de donner & B une valeur rationnelle assurant ’existence

d’un cas équianharmonique (g, = 0). Ces formules peuvent étre
écrites sous la forme suivante, avec un paramétre rationnel ¢:

12¢ — 2 ¢t L 24gs? — 4812
A= —
8 L B 32s C
(s — 4¢)3(s2 — 36¢
g8 =0, g — 4’ —B?= — 210(82 ),
Pv:t, p’v:-——B, p”v—6t2
v o sP— 4t LA 3 (s2 — &1)?
Pz = 8 ’ P2a— "33 s

20. — Cas de la cubique harmonique. — L’invariant g est nul,-

lorsque se trouve remplie une condition entre les paramétres, qui
s2 4+ 8A

est du second degré en B ; il en résulte que —5

est un carré.

1l faut donc prendre:
' pY =TT] = A%,

A étant un nombre rationnel. D’eu découlent les formules sui-
vantes de représentation générale du cas ou la cubique de
Weierstrass est harmonique: ‘

1202 — 52 s?
P R s 2 S
1 2 ' ’_'
85 :E(s‘_'- 202 (s + 61) (22 — ) g = 0.
‘pv:)\z, p’v:—-B,
p  s2— 42 , v 1 2
—— —_— _— — s (s — 2}) ;

Si la racine nulle ¢; est pw; = 0, on a une nouvelle solution
simple: | |

| P(%"‘ wl>;%(s+ex) (s 4+ 23) , ,P'G"' w1> = (s+2l)-p(-;—+w1') -
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