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274 E.. TURRTÈRE

part, de l'homographie, il sera pris égal à l'unité; les formules de

correspondance sont:

A =— b,B y,e l.
0

La parabole (Q) dépend de trois paramétrés; son équation
tangentielle est:

BU2 _ AUV + sUW + VW 0 (Q),

t '

L'équation ponctuelle s'obtient immédiatement en
remplaçant, dans l'équation de la corde le produit P par son
expression homographique en S et en égalant à zéro le discriminant

du polynome en S, du second degré, ainsi obtenu:

[x4- sy+ A)2 4 — B) (Q)

ou encore
(x— sy-j-A)8 + 4 (As + B 0 ;

cette parabole (Q) touche Oxau point A; l'autre tangente
issue de 0 a pour équation Ax + B0: c'est une arithmocorde

particulière de (P), qui représente la solution S — 2, P 0.
r

La directrice a pour équation y + sx '= B ; les coordonnées
dù foyer sont:

Bs—A As -j- B
x — i + s* • y — - i + -

Examen de cas spéciaux.

16. — Cas qùVéquationDÇ aune seconde racine rationnelle. —
Soit S 2a, la racine rationnelle (autre que S s). Alors:

/

s» — iS2 — 4AS — 4B= (S — (S® — 2LS 2M) ;

a, L et M sont supposés donnés; soit L2— 2M la quantité dont
dépend la réalité des racines du facteur quadratique.
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Les formules sont les suivantes. L'équation cubique — 0

a une racine rationnelle ev

s ~ 2 {a L) A — (ah -f- ^ ~ >

_ 2 / M — L2\
L p<»i - ~ 3^" H 2~~

A 3e* + 8L2 gt e, (e\ - 8L2) A SL2(9< _ SL2)2

l M2

pv j(a2 + L2 — M) p'v — aM p'V 2«-'(L2 — M) q——

fi i(a2 +3aL + L2 + y) ' PJ=- 2LC +aL + y) •

V f
P"l= ~S'P 2

1 / M \ / M
pa —la2 —3aL + L2 -j- — J p'a — — 2L I — -f- —

//„ — „A',!)«P

x est l'argument associé à S 2a; sa valeur est x oq
1'

2

17. — Cas où toutes les racines de V D — 0 -
nettes. Soient 2a, 2è, 2c les racines de l'équation en S:

S3 _ $ S2 — 4AS — 4B ;

les expressions de A, B, s sont alors:

s — 2 (a bc),A — — (ab -f - bcca) B zzz

D'où, pour les éléments elliptiques les expressions:

g2~ (a4 -f- b*-f-c4 — a2b2 — 2 — > 0
O

g3 — ~(a2b2 — 2c2) (b2 + c2 — 2a2) (c2 -f- a2 — 2b2)
Lé

A 16 (a-— t3)2(t2 — c2)2(c2 — a2)2 > 0
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Les trois racines de p'u0 sont réelles et rationnelles:

ei j(fj2 + c2 — 2«2) > j(C'J + — '

<?3 — 4 ;

dans l'ordre e1 > e2 > c3, pour a2 < ô2 < c2.

py — -7^-
(«2 + b2-f6'2)

» p'f — 2a6c p"y 4 ^6'2 + c'a*) ;

p2"==-j(«2 + ^24c2)4«^ + ^c4c« — 2(Ä 4- b)(b+ +

Si a, /3, y sont les valeurs des arguments associés à S 2

et 2c, les formules générales de correspondance donnent :

pa (< a24 h2 + c2) + bc— a{b c)p'a — 2(6 + — b) (a — c)

etc.

Et, par suite:

— v «

'

v
__

^
a — o)t 2» ß — w2 2 ' T — w3 "2"'

pWj ^2 —— p ^2 » ^3 — P^î *

Pour u wj, il vient :

s =a + b + c-t, p ab + *c-bc, ± VP («-»)(«-*)
a a

X' a x" 6 + c — —
«

18. — Interprétations géométriques.— Les formules ci-dessus
assurent l'existence de trois tangentes rationnelles, communes
aux paraboles (P) et (Q) du paragraphe 15:

U 1 Y —2a W m etc.

Cette question peut encore être traitée en rapportant les deux
paraboles au triangle de référence formé par les trois tangentes
communes. Sans restriction de généralité, la parabole (P) peut
être représentée par les équations <tangentielle et ponctuelle:

ü 4" V ~f" 0
> ± V* ± ± V* o
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Si test le paramètre du point courant et de la tangente associée,

on pourra prendre la représentation paramétrique suivante
en coordonnées homogènes:

u —
* v — w — —

1 + <J + * ' 1 — a —
~~ 2'

ÏÏ2 — (^ + Œ + t)2 ' 2/ ~ yo — (^ + G O2 > * — YJ2
1 ;

les coordonnées tangentielles de la corde sont alors:

U 2 — (S -j- 2cr) V 2 + (S + 2<j)

W P + aS + a2 — 1 ;

où S t+ t\ P tt'.Si maintenant la conique (Q) est représentée

par l'équation
L M _ 1

Ü + V — W '

les constantes <7, L et M étant liées par la relation

g(M — L) 1

l'homographie définie entre P et S par les tangentes de (Q) a pour
coefficients :

A 1 + a2 + 2cr (L + M)

B 2a (a2 — 1) (L + M + 1)

5 — 2a(L -)- M — J)

Les formules d'équivalence entre les deux modes de
représentation sont :

a —1 — a

b — 1 — a

c — a(L —f— M —j— t)

le paramètre d'homogénéité étant choisi de telle manière que
a — b2.

19- — Cas dela cubique équianharmoni— En prenant A et 5

arbitraires, 5 0, la formule

24 (Bs — 2A2) -j- (s2 -f 8A)2 0
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permet de donner à B une valeur rationnelle assurant l'existence
d'un cas équianharmonique (g2 0). Ces formules peuvent être
écrites soùs la forme suivante, avec un paramètre rationnel t:

12 t —s*'— 24«s2 — 48<2
A -^—' B

"32s

„_0 -_4f» Ba — ^-^«(^-360.
02 U ' OS D .»io c2 »

Àm O

p v •=. t,pV— B p'V — 6

v s2— 4 t -v3— 41)2
P 2" ~~ 8 ' P 2* ~~~ 32 ' s

'

20. — Cas dela cubique harmonique.— L'invariant g3 est nul,
lorsque se trquve remplie une condition entre les paramètres, qui

est du second degré en B ; il en résulte que
5

es^ un carra-

Il faut donc prendre:
pt>

X2

1 étant un nombre rationnel. D'où découlent les formules
suivantes de représentation générale du cas où la cubique de

Weierstrass est harmonique:

* m*8 B >(>-2 - - Ç, •

8, r('.+ 2X,2(S + 6X) (2X ~ S) • S* ° •

pt>
X2 p'v — B

v s2 — 4a2 ,v 1

P2" 8 ' P 2 ~ ~~ "8(S + } ' (S ~ } ;

Si la racine nulle exest poô10, on a une nouvelle solution
simple:

p(j + ~ g"(5 + 6X) (s + 2X) p'^2 + (s + 2^) *
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