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272 : E. I'URRIERE

en mtrodmsant la fonctlon f(t)y du paragraphe 5:
) = - g —slpt—po)

d’ou pour X" et X" les expressions en produits de sigma se'
réduisant & celles du paragraphe 12 par simple changement
dargument =1+ w.

14. — Etude directe de la relation entre X' et X”. — Les racines
X', X” sont liées par la relation

xy(x +y—s) :A(x—}'-y)‘—i—B N

représentative d’une cubique plane. La discussion précédente a
mis en-évidence l’existence d’arithmopoints sur cette cubique
quels que soient A, B et s:
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et ceux qui en résultent par symétrie par rapport & 'axe x = y.

D’autre part, si on se donne z, I’équation en y est du second
degré; de méme ’équation en = pour une valeur donnée de y.
Ainsi, de tout couple donné (z,, y,) représentatif d’un arithmo-
. point, il est possible de déduire immédiatement deux nouvelles
solutions (z,, ¥,) et (x,, y,) et ainsi de suite dans les deux sens.

Ceci revient & partir d’un arithmopoint de cette cubique plane
et a mener les paralléles 4 I'une et & Dautre des asymptotes
z =0,y = 0. Cest sous une forme élémentaire ’addition des
arguments des fonctions elliptiques.

La cubique considérée peut-étre représentée par les fonctions
de Weierstrass au moyen des formules qui ont été données aux
paragraphes 12 et 13, pour les expressiens de X' et X".

- INTERPRETATION GEOMETRIQUE.

15, — Soient ¢, t’ deux arithmopoints queleonques d’une arith-
moconique (P) du plan des coordonnées. En désignant par S et P
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la somme et le produit des parametres ¢ et ¢' de ces points, une
relation quelconque entre S et P peut-étre considérée comme
Iéquation tangentielle d’'une courbe (Q) du plan, enveloppée
par la corde #t’; et réciproquement.

L’ensemble de cette équation tangentielle et de celle, S% — 4P
= 0, de la conique (P), représente les tangentes communes a
(P) et a (Q); ’existence des solutions rationnelles pour ce systeme
d’équations équivaut & la détermination rationnelle d’autant de
tangentes communes.

Sans restreindre la généralité de la question, il est toujours
possible de prendre pour (P) une parabole d’équations paramé-
triques x = {2, y = t. La corde #¢" de cette courbe a pour équation:

x—Sy+ P =0;

les coordonnées tangentielles de cette droite sont u =1,V = — S,
W = P. :

Si, d’autre part, I’équation tangentielle d’une seconde conique

(Q) est :}

al? + 20UV + ¢V2 4 2dUW -+ 2eVW 4+ £W2 = 0 |

le probleme de la détermination des cordes joignant deux arith-

mopoints de la parabole (P) et tangentes & la conique (Q) est
réduit a 'équation

@ — 2bS + ¢S? 4 2dP — 2ePS + [P2 = 0 .

La disparition de P2 exige que la conique (Q) soit elle aussi une
parabole (f = 0).

La disparition du terme en S2 exige que la conique () soit
tangente a axe Ox de la parabole (P).
Pour que la relation entre P et S soit homographique, il faut et il

suffit que la conique (Q) soit une parabole tangente « laxe de la
parabole (P).

Comme le coefficient e de PS ne saurait étre nul sans décomposi-
K 7 ’ ’ r
tion d’une part de la parabole (Q) et sans dégénérescence d’autre
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part de ’homographie, il sera pris égal a ’unité; les formules de
correspondance sont:

A= —b, B:%—, s=d, - e—=1.

‘La parabole (Q) depend de trois parametres son equatlon
tangentielle est:

BUF — AUV 4 sUW + VW = 0 . Q)

L’équation ponctuelle s’obtient immédiatement en . rem-
placant, dans I’équation. de la corde #t’, le produit P par son
expression homographique en S et en égalant a zéro le discrimi-
nant du polynome en S, du second degré, ainsi obtenu:

(x + sy + A)* = 4y(sx — B) , - (Q
ou encore B - - L
| (x—sy+ A)Q+ 4(As+ Bly = 0 ;

cette parabole (Q) touche Oz au point z = Aj; I'autre tangente
issue de O a pour équation Az 4 By = 0: c¢’est une arithmocorde‘

particuliére de (P), qui représente la solution, S = , P=0.

' La directrice a pour equatmn y + sz = B; les coordonnees
du foyer sont: | '
Bs — A As + B’
T+’ Y= 7" Txse

—

- EXAMEN DE CAS SPECIAUX.

16. — Cas oul'équation D = Q a une second}e racinerationnelle. —
Soit S = 2a, la racine rationnelle (autre que S = s). Alors:

S* — s§? — 4AS — 4B = (S — %a) (S* — 2LS + 2M) ;

a, L et M sont supposés donnés; soit ¢ = L2 —2M la quantité dont
dépend la réalité des racines du-facteur quadratique.
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