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272 E. TURR1ÈRE
1

< - '

en introduisant la fonction- f(t)duparagraphe 5 :
* '

f(t)p'f — p'»> — *(pt — p?) ; -

d'où pour X' et X" les expressions en produits de sigma se*

réduisant à celles du paragraphe 12 par simple changement
d'argument u t+ w.

14. — Etude directe de la relation entre X' X*; — Les racines

X', X" sont liées par la relation

XV(*+ y— 5) A (a? -f y) -f- B

représentative d'une cubique plane. La discussion précédente a
mis en évidence l'existence d'arithmopoints sur cette cubique
quels que soient A, B et s:

B B3 — A8
* - - j - y- «+ ab •

B.
^ ^ » y — o j t • •

et ceux qui en résultent par symétrie par rapport à l'axe
D'autre part, si on se donne x, l'équation en y est du second

degré; de même l'équation en x pour une valeur donnée de y.
Ainsi, de tout couple donné (a^, 2/x) représentatif d'un arithmo-
point, il est possible de déduire immédiatement deux nouvelles
solutions (xx, y2) et (x2J yx)et ainsi de suite dans les deux sens.

Ceci revient à partir d'un arithmopoint de cette cubique plane
et à mener les parallèles à l'une et à l'autre des asymptotes
x 0, y 0. C'est sous une forme élémentaire l'addition des

arguments des fonctions elliptiques.
La cubique considérée peut-être représentée par les fonctions

de Weierstrass au moyen des formules qui ont été données aux
paragraphes 12 et 13, pour les expressions de X' et X".
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15. — Soient trt'deux arithmopoints quelconques d'une arith-
moconiqué (P) du plan dés coordophéos. "En désignant par S et P
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la somme et le produit des paramètres £ et de ces points, une
relation quelconque entre S et P peut-être considérée comme

l'équation tangentielle d'une courbe (Q) du plan, enveloppée

par la corde ££'; et réciproquement.
L'ensemble de cette équation tangentielle et de celle, S2 — 4P

0, de la conique (P), représente les tangentes communes à

(P) et à (Q) ; l'existence des solutions rationnelles pour ce système
d'équations équivaut à la détermination rationnelle d'autant de

tangentes communes.
Sans restreindre la généralité de la question, il est toujours

possible de prendre pour (P) une parabole d'équations paramétriques

x }i2,yt.Lacorde tt' de cette courbe a pour équation:

x — Sy-f*P rz: 0 ;

les coordonnées tangentiales de cette droite sont 1, V — S,
W P.

Si, d'autre part, l'équation tangentielle d'une seconde conique
(Q) est:

«U2 + 2//UV + c\2 + 2dUW + VW + /'W2 — 0

le problème de la détermination des cordes joignant deux arith-
mopoints de la parabole (P) et tangentes à la conique (Q) est
réduit à l'équation

a — 2bS+ cS2 -f 2<*P — 2e?S + / FrO. :

La disparition de P2 exige que la conique (Q) soit elle aussi une
parabole (/ 0).

La disparition du terme en S2 exige que la conique Q soit
tangente à l'axe Ox de la parabole (P).

Pour que la relation entre P et S homographique, il faut et il
suffit que la conique (Q) soit une parabole tangente à Vaxe de la
parabole (P).

Comme le coefficient e de PS ne saurait être nul sans décomposition
d une part de la parabole (Q) et sans dégénérescence d'autre
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part, de l'homographie, il sera pris égal à l'unité; les formules de

correspondance sont:

A =— b,B y,e l.
0

La parabole (Q) dépend de trois paramétrés; son équation
tangentielle est:

BU2 _ AUV + sUW + VW 0 (Q),

t '

L'équation ponctuelle s'obtient immédiatement en
remplaçant, dans l'équation de la corde le produit P par son
expression homographique en S et en égalant à zéro le discriminant

du polynome en S, du second degré, ainsi obtenu:

[x4- sy+ A)2 4 — B) (Q)

ou encore
(x— sy-j-A)8 + 4 (As + B 0 ;

cette parabole (Q) touche Oxau point A; l'autre tangente
issue de 0 a pour équation Ax + B0: c'est une arithmocorde

particulière de (P), qui représente la solution S — 2, P 0.
r

La directrice a pour équation y + sx '= B ; les coordonnées
dù foyer sont:

Bs—A As -j- B
x — i + s* • y — - i + -

Examen de cas spéciaux.

16. — Cas qùVéquationDÇ aune seconde racine rationnelle. —
Soit S 2a, la racine rationnelle (autre que S s). Alors:

/

s» — iS2 — 4AS — 4B= (S — (S® — 2LS 2M) ;

a, L et M sont supposés donnés; soit L2— 2M la quantité dont
dépend la réalité des racines du facteur quadratique.
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