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'

nous nous sommes occupés ici et qui sont aussi les ensembles de

capacité électro-statique nulle sont également ceux qui ne
sauraient être ensembles de singularités pour une fonction harmonique

bornée/ensembles au sujet desquels M. H. Lebesgue
avait fait connaître des résultats importantsK

FORMULES ELLIPTIQUES
POUR LA RÉSOLUTION DE CERTAINES ÉQUATIONS

DE FERMAT

PAR

Emile Turrière (Montpellier).

Observations préliminaires sur les équations de Fermât
DANS LE CAS OU LE POLYNOME DU QUATRIÈME DEGRÉ

A AU MOINS UN ZÉRO RATIONNEL.

1. — L'étude d'une équation indéterminée du quatrième
degré de Fermât

ol0z4-f4'o^Ä,r'+ Ö a^js2'+• -f- a4 - assf. y%,
dont t solution particulière est connue a se ramène
tout d'abord, par une transformation homographique sur la
variable z, à celle d'une équation du même type, mais avec

a0 — 1 :

xA+ kax + 6 a2x2-}-ka3x + X Q ;

la solution connue z0estdevenue la valeur infinie de la nouvelle
variable

1 O. R. Ac. Sc., t. 176, p. 1097, avril 1923.
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Les formules générales de l'inversion elliptique résolvent

alors la question. Les fonctions elliptiques sont caractérisées par
les invariants:

2

g2 ai~~4aiÄ8 + 3ä2 '

gza2«42 a1a2o3a2as #i#4 >

la cubique de Weierstrass est particulière en ce sens qu'elle
admet au moins un arithmopoint d'argument v tel que:

pr a\— a2,pV — 3 + 2 ;

en général, la cubique admet toute la chaîne illimitée dans les

deux sens de solutions — 2e, — e, e, 2e, comprises dans la
formule un.v (nentieralgébrique quelconque). Dans le cas

général, on ne connaît que ces arithmopoints.

2. — En général, la connaissance des valeurs du système des

trois nombres jm0, p'tf0, p"u0suffitpour déterminer complètement

une cubique de Weierstrass. Les invariants sont définis

par les formules:
g2 12p2 — 2p" ;

t* - - 8p3 + 2pp" - p'2 ;

dans le cas actuel de fonctions elliptiques liées à une équation
de Fermât, la question est complètement définie par la connaissance

de pe, p'e et g2parexemple.
Les formules générales de résolution sont alors, avec un

argument variable u:
1 ~ p'r

s _ + L
t2 ri - p,

Vx p" — p(w -t- »') •

Dans le cas de forme illusoire pour l'expression de (c'est-à-
dire lorsque u e), la vraie valeur de x est

1

X
II

~ + 2 j/«
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Aux couples de solutions dé l'équation de Fermât correspondant
à une^même valeur de xet aux deux déterminations du

radical l/X, correspondent des arguments tels que:
1

u.-f- u'v:=une période
•

'
•. f

Ces généralités rappelées r1, nous supposerons dorénavant que
l'équation considérée est du type spécial pour lequel le polynome
du quatrième degré X a un zéro rationnel.

3. — Soient xx...les quatre zéros de X 0; les
arguments correspondants sont :

v V-

U1 — ~~
.2" "T- W1 » u% — — 2" + w2 ' M3 2" + w3 ' ~~ "2 •

w2v Qt)3 sont trois demi-périodes auxquelles correspondent les

trois racines de p'& 0 :

e1 5= e2 po)2 e3 po>3

La différence de deux quelconques de ces quatre valeurs
étant une demi-période, si ces deux arguments représentent deux
zéros rationnels de X, c'est-à-dire deux arithmopoints de la
cubique, l'une des trois racines e est rationnelle: aux arithmopoints

uxet u2,par exemple, correspond une valeur rationnelle de

e3:
u1 — u2— — ^2 (1)3 ~{~ période ;

e3 p(uj-
D'où les propositions suivantes:

Si le polynome X a deux zéros p'u — 0 a

une racine rationnelle.
Si lepolynome X a ses quatre zérosVéquation p'u — 0

a ses trois racines rationnelles. %

Réciproquement, dans le cas d'un polynome X ayant déjà un
zéro rationnel, la connaissanced'une rrationnelle de l'équation
cubique p'u 0 entraîne celle d'un second zéro rationnel du
polynome X.

i Voir à ce sujet mon étude générale Sur équations indéterminées de Fermât du
Bulletin de ta Société mathématique de France (mars 1928).
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Dansle même cas,V existence de trois racines rationnelles de

Véquation cubique,implique V existende quatre zéros rationnels

pour le polynômedu quatrième degré.

4. — Toujours dans le cas d'un polynôme X doué d'un zéro

rationnel, reprenons les formules d'inversion elliptique. Sans

restreindre la généralité des résultats, on peut supposer que la
racine rationnelle connue a priori est x 0; le coefficient a4 est

nul. Il existe alors un nouvel arithmopoint w sur la cubique:

1

pu — --a2 p'u' — * p",v — a3 >

d'où, par application des formules d'addition des fonctions
elliptiques :

==: pr p'2w — — p'i' ;

2iv -}- r m période ;

l'argument w est identique à l'une des quatre valeurs
La connaissance d'un zéro rationnel de X est ainsi équivalente

à celle d'une des quatre déterminations de la moitié de l'argument

v.

Inversement, supposons connues les valeurs de pc, p'w,
p"w. Les invariants g2, gsen résultent par les formules données

plus haut. Les formules:

p'V s2'= P" + 2P"' 4 ' v'v~ p'"' s _ Pl,,)

permettent de calculer successivement le coefficient angulaire s
de la tangente en l'arithmopoint «• de la cubique de Weierstrass,
la valeur de pe et celle de p'e.

Il existe une infinité de polynômes X associables à une même
cubique de Weierstrass (tant que l'on ne précise pas la nature
de v).Mais la détermination de X s'effectue sans ambiguïté
lorsque sont données pe, p'e, p"e (ou g2). Ici les formules pour
la détermination de X se présentent sous la forme simple

S

(lly » °2 2PU' » «3 p'U' > ^4 0.
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5. — Expression de x en produit de facteurs c\ — L'expression
de x est ensuite:

Considérons la fonction entière:

f(u) z=p'ti — pV — — p*') ;

elle admet le zéro simple u —vetle zéro double elle
s'exprime donc sous la forme

C;

C étant une constante qui se détermine simplement en
attribuant à uune valeur particulière telle que — p ou —

f{— v) — 2pV f(— — 2p

C <j2if a2w

D'ailleurs un calcul direct donne:
/

f'{u) _ p'« + p'*'
t

1 p'«+p'f s
/"(a) p« — p<v 2 "

j)(t — jjv 2

/

(après suppression d'un facteur, commun aux deux termes,
p u — pt>). D'où:

ç(B _ v) + _ w) _ 3ç„

(la constante additive Çe + 2Çw + ~ étant évidemment nulle);

l'intégration donne alors l'expression ci-dessus de produit

de fonctions sigma.
Finalement l'expression de x (dans le cas où l'un de^ zéro est

x 0, correspondant à uw) est:

<7 2«' — w)
x~r~x-7-7—ö~\—<sdw <s(u—2 .<311

6. — Autre représentation des résultats — Par le fait
que le polynome en z du quatrième degré a un zéro rationnel z0,

qui est d'ailleurs une solution de l'équation de Fermât, la réso-
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lution de celle-ci est réductible aux fonctions elliptiques quel que

soit le coefficient a0. Il suffit de rendre nul «4 en posant x z z0l

puis de poser
a3

X~"l T
Ç-

pour se ramener à une équation

4P —== •

Les invariants se présentent sous leur forme habituelle, où

a4 0. Bref, cette méthode conduit à la représentation suivante
de la solution générale de l'équation de Fermât pour a4 — 0:

' p'w'

Comme d'une manière générale — —, ces expressions

sont identiques à celles qui viennent d'être données, en

liant les arguments u et t par la relation:

a — tw

Nouvelle forme de la question précédente.
Etude d'une relation homographique.

7. — L'étude arithmogéométrique de certaines classes de

triangles remarquables pose la question suivante:
« Former les équations du second à racines

« dont la somme et le produit sont reliés homographiquement. »

La résolution de cette question dépend des fonctions elliptiques,
avec un cas étendu de dégénérescence.

Voici l'étude complète de cette question.

8. — Formules générales. — Soient S et P la somme et le produit
des racines de l'équation du second degré; ces expressions sont
liées par la relation homographique:

p
AS -{- B

S 5
'
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à trois coefficients A, B, s; avec la condition As + B 5^ 0. Les
• ^

racines étant supposées rationnelles la quantité -

D S2 — 4P

est un carré parfait et, par. suite aussi, le polynome suivant du
quatrième degré en S:

D (S — s)2 S4 — 2sS3 + (s2 — 4A) S2 -j- 4(As — B) S + 4Bs

La question est ainsi ramenée à une équation de Fermât,
c'est-à-dire aux fonctions elliptiques.

Les invariants g2 et g3 des fonctions de Weierstrass ont ici
les expressions suivantes:

4.3. g2 ,z=s4+ 16As2 + 24Bs + 16A2 (s2 + 8A)2 + 24 (Bs — 2A2)

8 27 — [s6 + 24As4q- 36Bs3 + 120A2s2 + 288ABs64A3 + 216B2]

[(s2 4. SA)3 + 36 (Bs — 2A2) (s2 + 8A) + 216B2] ;

l'expression du discriminant A, ordonnée par rapport au
puissances du paramètre s, n'est que du cinquième degré et se

présente finalement sous la forme suivante:

A — (As -1- B)2[Bs3 — A2s2 + 18ABs + 27B2 — 16A3]

4 27 A. — (As + B)2 { [54B + s (s2 + 18A)]2 ~ (s2 + 12A)3}

La solution fondamentale de définition,

p ,2u4p3w — —

des fonctions de Weierstrass est /
ç2 I Ô A

p*> —^2— * p'f' B » p'V 2A2 — Bs

^ 2 4 À 2 A 4 [à

ya„ + (2A ^ 8||U + 4^ + b

Dans le cas actuel, est l'argument d'un arithmopoint delà
cubique: „

v s2 — 4A ,.v i ^ „ v v

2 12 P'â As + B ' s ' P'~2 *
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D'où:
3 \ - A'2 B

V Ï2 ÂA

3
P' 2" =X ' +

B2 A
A2

"

3" '

/y 2B2
[S +

B B\ / 2B2 — A3

A 'l ^ AB

p 3
Pour A, B et 5 quelconques, les arguments -, e, ^ e et 2e donnent

+ÊÂ *ai

ainsi des expressions de pu et p' u qui sont des polynômes en s,

du second degré au plus.
Les formules de correspondance entre les solutions de l'équation

cubique et l'équation de Fermât sont:

1 i p'« — p'v
s — -s - - .£ ± VD(S — •*) p(" + L — p"2 2 p« — py

® 9

et inversement:

2pw + p*' (s — -i-s) q= VD(S — 5) >

p'ït — p'i- (2S — s) (ptt — pL

Pour u — e, la vraie valeur de S est :

p-v+ h3=4

donc une première solution de l'équation de Fermât est:

A2 B / B2 — As\ 2B2 — A3
S W ' P-""Ä(s+ AB ' VD - s + ^ ;

les racines de l'équation correspondante du second degré sont

x' -2, x» + B'-A'
A ' - — i AB

A l'argument u —2e correspond le même couple (X', X").
F

2
À l'argument u — ~ correspond la solution sans intérêt

S 5.

v 3 vAux valeurs u — ^ et u — de l'argument correspondent

la solution évidente S — t P 0.
A 7
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Pour u

S ~
A2

B *

S — s

A2
4-

2B B3

B A A4

S -r-
A2

B
2B

+ A
*

(s +
B Asy
A ~~

B

s *4"
2B A2

A B"

etc,

9. — En général, le problème d'homoadmet ainsi une
infinité de solutions,qui/correspondent aux multiples entiers
de l'argument w.Ainsi que vont le mettre en évidence les
considérations du paragraphe suivant, l'équation présentement étudiée
est équivalente à l'équation la plus générale ayant la solution
donnée w.En général donc, il n'y a pas d'autre solution rationnelle

que celle de la forme u —avec + période.
En général, v et w ne sont pas des parties aliquotes de période

et il y a une infinité de solutions. Mais lorsque le rapport de v et
d'une période est un nombre commensurable, les solutions
données par ç nw sont en nombre limité.

Cette circonstance se produit lorsque B 0, car alors V 0

(voir paragraphe 21). Il en est de même lorsque A 0.

Pour A 0,

12&> s (s3+ 24B) 8 .27 108B2 — (.s3 + 18B)2

A — B3(s3 + 27B) ;

p" ß p'" - B pV= - Bs

p2" ~ y ;

p3 wdevient infini, et par suite :

•
'

•' 2
w j w ;

2 métant une période. Deux arithmopoints seulement sont connus
sur la cubique; ce sont des points d'inflexion.
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0 OU

JLJ Wj yjiJL W.U vixuvx u v^-L u VX 1.W VVI.M

A — 1 B 1 s 3

pour lequel

vw ii ' — +2 > v"a> 6 '

1

12 ' pV — 1 p'V — 1

p3"'=_ s p'3'"=° •

P2'' 12 • P'2" 1

___
2ftj

v ~~ 3
;

ici encore les arithmopoints de la cubique se réduisent aux points
d'inflexion, à un sommet et aux points qui s'en déduisent par
alignement: au total, cinq arithmopoints sur la cubique. C'est
à cette circonstance particulière qu'est liée Vinexistence iïarithmo-
triangles pseudoisoscèles.

11. •— Le problème d'homographie, qui vient d'être posé et

résolu, dépend ainsi d'une équation de Fermât du type spécial

pour lequel le polynome du quatrième degré a un zéro rationnel.

L'argument w — jesttel que:

s2 4^
pw — p'tr m — (As-fB) ^ 0 p"w — s. p'w

Réciproquement, soit l'équation la plus générale de Fermât
pour laquelle se produise la circonstance spécifiée. Elle peut être
caractérisée par l'ensemble des valeurs numériques de pw,
p'w et p"w. D'où successivement 5, A et B:

V"iV s2
s — ' A ~ T ~~ 3P<P ' B — (As +

par trois formules nettes de toute indétermination.
Par suite, les équations de Ferm,pour un polynome du qua

trième degré avec zéro rationnel,jouissent de cette nouvelle propriét
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de donner toujours lieu à une homographie entre le produit et la
somme des racines d'équations du second degré.

La valeur de f'wdoitessentiellement être distincte de zéro.

12. — Expression des résultats. — Les considérations exposées
dans la première partie de ce travail trouvent Une application
immédiate dans l'expression finale des résultats du problème
d'homographie.

J,\ t'-f.
_ 1 (?'u ~~ A _ ®2,v a2(u — w)

D S
2 y yu-— pt> J 'u

*

car S— s n'est autre ici que la fonction x des paragraphes 5 et 6;
le polynome en S admet s pour zéro rationnel:

S S Z=

Il vient ensuite:

yD (S — s)p +. p) — pM »

les racines X' et X" de l'équation du second dergé sont alors:

(S — s) .X' pit — p«>

(S — s) X" p (u -j- v)— p<v ;

1 gu.g(3— u)X'

X"

G 2W '
G (a— «»j —- 2«') '

1 g(U+ w) 2w)
G 2wGII .G — u)

X' g (il-j- w) g2 (a — 2w)X""" Œ (u — 3mc>)
"

G2 u

-— 3w) a + w)
P p2lv-p(«_w) -—j—J——.

On peut encore écrire:

p(" — 4w)'—
X' T

p(» - î) - r(l-)
"T ' "Mi) '

P " ~2
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la constante y a pour expression:

En général et p^-sont irrationnelles; cette irration-

nalité n'est introduite qu'en apparence dans les expressions de

X' et X".
Considérées comme fonction de les racines X' et X" satisfont

à l'identité
X"(w) X'(u + «') ;

c'est la même fonction avec des arguments différents de la
constante w (propriété caractéristique des relations doublement
quadratiques et symétriques).

13. — Equation avec P pour inc.— Comme S — x, la
méthode du paragraphe 8 revient à prendre pour inconnue une
quantité inversement proportionnelle à S — ; mais ici:

q P* + B _ -f- B
S T3T • S " s -FTTT •

en prenant P pour inconnue principale, on est assuré a priori
d'avoir à rendre carré un polynome cubique. En fait, l'équation
en P est:

D (P — A)2 (Ps + B)2 — 4P(P — A)2

_ 4P3 -f (5* + 8A) P2 -f 2 (Bs — 2A2) P + B2

Ce qui conduit aux formules suivantes:

p P" - J>« P - A p<v — pi

,/n _ ?'f

7 fX

A'//

S - s —£ ; VD
P'-P'" P' — P"'

1 *(p* - p") +pV- p'< _ 1. - /(-' 2 •

pi - p«' - 2
•

pi _ p«>

1 s {pi — pc) + p'v + p't t
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1

< - '

en introduisant la fonction- f(t)duparagraphe 5 :
* '

f(t)p'f — p'»> — *(pt — p?) ; -

d'où pour X' et X" les expressions en produits de sigma se*

réduisant à celles du paragraphe 12 par simple changement
d'argument u t+ w.

14. — Etude directe de la relation entre X' X*; — Les racines

X', X" sont liées par la relation

XV(*+ y— 5) A (a? -f y) -f- B

représentative d'une cubique plane. La discussion précédente a
mis en évidence l'existence d'arithmopoints sur cette cubique
quels que soient A, B et s:

B B3 — A8
* - - j - y- «+ ab •

B.
^ ^ » y — o j t • •

et ceux qui en résultent par symétrie par rapport à l'axe
D'autre part, si on se donne x, l'équation en y est du second

degré; de même l'équation en x pour une valeur donnée de y.
Ainsi, de tout couple donné (a^, 2/x) représentatif d'un arithmo-
point, il est possible de déduire immédiatement deux nouvelles
solutions (xx, y2) et (x2J yx)et ainsi de suite dans les deux sens.

Ceci revient à partir d'un arithmopoint de cette cubique plane
et à mener les parallèles à l'une et à l'autre des asymptotes
x 0, y 0. C'est sous une forme élémentaire l'addition des

arguments des fonctions elliptiques.
La cubique considérée peut-être représentée par les fonctions

de Weierstrass au moyen des formules qui ont été données aux
paragraphes 12 et 13, pour les expressions de X' et X".

INTERPRÉTATION GÉOMÉTRIQUE.

15. — Soient trt'deux arithmopoints quelconques d'une arith-
moconiqué (P) du plan dés coordophéos. "En désignant par S et P



ÉQUATIONS DE FERMAT 273

la somme et le produit des paramètres £ et de ces points, une
relation quelconque entre S et P peut-être considérée comme

l'équation tangentielle d'une courbe (Q) du plan, enveloppée

par la corde ££'; et réciproquement.
L'ensemble de cette équation tangentielle et de celle, S2 — 4P

0, de la conique (P), représente les tangentes communes à

(P) et à (Q) ; l'existence des solutions rationnelles pour ce système
d'équations équivaut à la détermination rationnelle d'autant de

tangentes communes.
Sans restreindre la généralité de la question, il est toujours

possible de prendre pour (P) une parabole d'équations paramétriques

x }i2,yt.Lacorde tt' de cette courbe a pour équation:

x — Sy-f*P rz: 0 ;

les coordonnées tangentiales de cette droite sont 1, V — S,
W P.

Si, d'autre part, l'équation tangentielle d'une seconde conique
(Q) est:

«U2 + 2//UV + c\2 + 2dUW + VW + /'W2 — 0

le problème de la détermination des cordes joignant deux arith-
mopoints de la parabole (P) et tangentes à la conique (Q) est
réduit à l'équation

a — 2bS+ cS2 -f 2<*P — 2e?S + / FrO. :

La disparition de P2 exige que la conique (Q) soit elle aussi une
parabole (/ 0).

La disparition du terme en S2 exige que la conique Q soit
tangente à l'axe Ox de la parabole (P).

Pour que la relation entre P et S homographique, il faut et il
suffit que la conique (Q) soit une parabole tangente à Vaxe de la
parabole (P).

Comme le coefficient e de PS ne saurait être nul sans décomposition
d une part de la parabole (Q) et sans dégénérescence d'autre

L'Enseignement mathém., 3fi« année - 1007 ,Q> * L o
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part, de l'homographie, il sera pris égal à l'unité; les formules de

correspondance sont:

A =— b,B y,e l.
0

La parabole (Q) dépend de trois paramétrés; son équation
tangentielle est:

BU2 _ AUV + sUW + VW 0 (Q),

t '

L'équation ponctuelle s'obtient immédiatement en
remplaçant, dans l'équation de la corde le produit P par son
expression homographique en S et en égalant à zéro le discriminant

du polynome en S, du second degré, ainsi obtenu:

[x4- sy+ A)2 4 — B) (Q)

ou encore
(x— sy-j-A)8 + 4 (As + B 0 ;

cette parabole (Q) touche Oxau point A; l'autre tangente
issue de 0 a pour équation Ax + B0: c'est une arithmocorde

particulière de (P), qui représente la solution S — 2, P 0.
r

La directrice a pour équation y + sx '= B ; les coordonnées
dù foyer sont:

Bs—A As -j- B
x — i + s* • y — - i + -

Examen de cas spéciaux.

16. — Cas qùVéquationDÇ aune seconde racine rationnelle. —
Soit S 2a, la racine rationnelle (autre que S s). Alors:

/

s» — iS2 — 4AS — 4B= (S — (S® — 2LS 2M) ;

a, L et M sont supposés donnés; soit L2— 2M la quantité dont
dépend la réalité des racines du facteur quadratique.
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Les formules sont les suivantes. L'équation cubique — 0

a une racine rationnelle ev

s ~ 2 {a L) A — (ah -f- ^ ~ >

_ 2 / M — L2\
L p<»i - ~ 3^" H 2~~

A 3e* + 8L2 gt e, (e\ - 8L2) A SL2(9< _ SL2)2

l M2

pv j(a2 + L2 — M) p'v — aM p'V 2«-'(L2 — M) q——

fi i(a2 +3aL + L2 + y) ' PJ=- 2LC +aL + y) •

V f
P"l= ~S'P 2

1 / M \ / M
pa —la2 —3aL + L2 -j- — J p'a — — 2L I — -f- —

//„ — „A',!)«P

x est l'argument associé à S 2a; sa valeur est x oq
1'

2

17. — Cas où toutes les racines de V D — 0 -
nettes. Soient 2a, 2è, 2c les racines de l'équation en S:

S3 _ $ S2 — 4AS — 4B ;

les expressions de A, B, s sont alors:

s — 2 (a bc),A — — (ab -f - bcca) B zzz

D'où, pour les éléments elliptiques les expressions:

g2~ (a4 -f- b*-f-c4 — a2b2 — 2 — > 0
O

g3 — ~(a2b2 — 2c2) (b2 + c2 — 2a2) (c2 -f- a2 — 2b2)
Lé

A 16 (a-— t3)2(t2 — c2)2(c2 — a2)2 > 0
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Les trois racines de p'u0 sont réelles et rationnelles:

ei j(fj2 + c2 — 2«2) > j(C'J + — '

<?3 — 4 ;

dans l'ordre e1 > e2 > c3, pour a2 < ô2 < c2.

py — -7^-
(«2 + b2-f6'2)

» p'f — 2a6c p"y 4 ^6'2 + c'a*) ;

p2"==-j(«2 + ^24c2)4«^ + ^c4c« — 2(Ä 4- b)(b+ +

Si a, /3, y sont les valeurs des arguments associés à S 2

et 2c, les formules générales de correspondance donnent :

pa (< a24 h2 + c2) + bc— a{b c)p'a — 2(6 + — b) (a — c)

etc.

Et, par suite:

— v «

'

v
__

^
a — o)t 2» ß — w2 2 ' T — w3 "2"'

pWj ^2 —— p ^2 » ^3 — P^î *

Pour u wj, il vient :

s =a + b + c-t, p ab + *c-bc, ± VP («-»)(«-*)
a a

X' a x" 6 + c — —
«

18. — Interprétations géométriques.— Les formules ci-dessus
assurent l'existence de trois tangentes rationnelles, communes
aux paraboles (P) et (Q) du paragraphe 15:

U 1 Y —2a W m etc.

Cette question peut encore être traitée en rapportant les deux
paraboles au triangle de référence formé par les trois tangentes
communes. Sans restriction de généralité, la parabole (P) peut
être représentée par les équations <tangentielle et ponctuelle:

ü 4" V ~f" 0
> ± V* ± ± V* o
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Si test le paramètre du point courant et de la tangente associée,

on pourra prendre la représentation paramétrique suivante
en coordonnées homogènes:

u —
* v — w — —

1 + <J + * ' 1 — a —
~~ 2'

ÏÏ2 — (^ + Œ + t)2 ' 2/ ~ yo — (^ + G O2 > * — YJ2
1 ;

les coordonnées tangentielles de la corde sont alors:

U 2 — (S -j- 2cr) V 2 + (S + 2<j)

W P + aS + a2 — 1 ;

où S t+ t\ P tt'.Si maintenant la conique (Q) est représentée

par l'équation
L M _ 1

Ü + V — W '

les constantes <7, L et M étant liées par la relation

g(M — L) 1

l'homographie définie entre P et S par les tangentes de (Q) a pour
coefficients :

A 1 + a2 + 2cr (L + M)

B 2a (a2 — 1) (L + M + 1)

5 — 2a(L -)- M — J)

Les formules d'équivalence entre les deux modes de
représentation sont :

a —1 — a

b — 1 — a

c — a(L —f— M —j— t)

le paramètre d'homogénéité étant choisi de telle manière que
a — b2.

19- — Cas dela cubique équianharmoni— En prenant A et 5

arbitraires, 5 0, la formule

24 (Bs — 2A2) -j- (s2 -f 8A)2 0
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permet de donner à B une valeur rationnelle assurant l'existence
d'un cas équianharmonique (g2 0). Ces formules peuvent être
écrites soùs la forme suivante, avec un paramètre rationnel t:

12 t —s*'— 24«s2 — 48<2
A -^—' B

"32s

„_0 -_4f» Ba — ^-^«(^-360.
02 U ' OS D .»io c2 »

Àm O

p v •=. t,pV— B p'V — 6

v s2— 4 t -v3— 41)2
P 2" ~~ 8 ' P 2* ~~~ 32 ' s

'

20. — Cas dela cubique harmonique.— L'invariant g3 est nul,
lorsque se trquve remplie une condition entre les paramètres, qui

est du second degré en B ; il en résulte que
5

es^ un carra-

Il faut donc prendre:
pt>

X2

1 étant un nombre rationnel. D'où découlent les formules
suivantes de représentation générale du cas où la cubique de

Weierstrass est harmonique:

* m*8 B >(>-2 - - Ç, •

8, r('.+ 2X,2(S + 6X) (2X ~ S) • S* ° •

pt>
X2 p'v — B

v s2 — 4a2 ,v 1

P2" 8 ' P 2 ~ ~~ "8(S + } ' (S ~ } ;

Si la racine nulle exest poô10, on a une nouvelle solution
simple:

p(j + ~ g"(5 + 6X) (s + 2X) p'^2 + (s + 2^) *
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LE CAS B 0 ET LES TRIANGLES HERÖNIENS.

21.— Pour B 0, c'est-à-dire pour la relation

A s

¥ + s ~

l'équation D 0 est satisfaite pour S 0 et P 0. Par suite,

quels que soient A et s, l'équation cubique a la racine rationnelle

.S-2 -I- 8A
ei PC01 Ï2' v' Wl + Perlode •

Il en résulte les formules suivantes :

g24 (3e? — A2)

S3K (A2 - 2e?)

A 16A4 — 4A2) ;

y%u— 4 (p ^ — e!)-[p2"+ eip" -f- A2 — 2e?] ;

(e2 - e3)2 9e? — 4A2 A (5a _|_ 16A)

Lorsque .s2 + 16A est positif, les trois racines existent et e1 est

la plus grande des racines:ei^^ ^3

(ei — *2) K — es) A2 ;

cette dernière expression se présentant comme un carré parfait,
les valeurs de pw, pour ^ et y + une demi-période, sont rationnelles.

On obtient ainsi:

6-2 — 4A
pL P2 ' p L ± As — As2

s2 -i- 20A - -
pL -J2 ~ ' P'^2 ± A Vs2-b16A -p% A(s2 + 16A) ;

2et 2{p2étantégaux à w1 (à une demi-période près); au signe

près <{4 est d'ailleurs égal à -f &>'.
Z*
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22,—- Les trois racines sont rationnelles, lorsque s2 + 16A est

un carré; alors \p2estl'argument d'un arithmopoint de la cubique.
X2 — s2

Soit, dans ce cas, A =.<— ^—B 0. En fonction des

paramètres rationnels s et X, il vient:

3.64.^2 m X4 -|- X2s2 -j- 54

27.29.^3 (X2 -f s2)(X4— 34X2s2 + s4),
2li6A =- X2s2(X2 — s2)2

24ex X2 -f s2 > 0

» 48e2 — (X2 — 6Xs + < 0

48es — (X2 + 6X5 + < 0

1 1 1
— e2 îg(X — 5)2 •" ei — Jg(X + s)2 » e2 — e3 -Xs ;

on peut toujours supposer X positif, ce qui assure l'ordre des

racines e1 ^ e2 ^ eZ'

En posant 5 2(J + c), X 2(c — 5), c > 5, ces formules
rentrent comme cas particulier dans celles qui ont été données

plus haut (paragraphe 17); a est ici égal à zéro:

A — bc,B 0 2 -j-

& =Ub*- b*c- + c*) g3 ^(<>2 -|- c2) (62 - 2c2) (c2 - 262).
3 v ' '' 03 "" 2^

A ="16Ä4c4(j>2 — c2)2

__
/,2 c2 —Ä Y;2 —- 2c2

g
» e2

g ' ^8 g '

e2 b2 e1 — e3 =zc2,e2 — e3 c2 — b2

v Wj py Cj pV 0 p'V 2b2c2

«" 2

v v b24"-3 be4i\C2fp-i= ~~ 3"—> P'% ~ %bc{-b + c> •b2— 3/;c -f c2
pß —-

_ p'ß 2

T •— ß ;

aux arguments a, /3, y correspondent les racines S 0,25 et 2c de

l'équation D — 0; à h wj correspond une valeur infinie de S.

A u w2 et od3 correspond: S 5 + c, P 5c, X' 5, X"= c.
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Le cas de B 0, avec s — 2 et A carré, présente cette particularité

intéressante de représenter la solution du problème suivant :

détermination de tous les triangles héroniens ayant un côté donné

et une aire imposée. J'étudierai la question prochainement.

Cas élémentaire de dégénérescence des fonctions
ELLIPTIQUES.

23. — L'expression du discriminant A des fonctions
elliptiques, abstraction faite du facteur double As -f- B, qui ue saurait
être nul sans dégénérescence de l'homographie, se présente sous
forme d'un polynome du second degré seulement par rapport au
paramètre B. Les deux autres paramètres A et s étant supposés
donnés, rationnels et quelconques, l'équation A 0 n'a des

racines rationnelles en B que si s2 -f- 12 A est un carré. En
introduisant un nouveau paramètre rationnel et arbitraire, co,

cette dernière condition est satisfaite de la manière la plus
générale en prenant:

d'où l'expression correspondante du discriminant:

A ~ — 27 (As + B)*(B - Bj) (B _ B2)

avec:
4.27B, s* — 3o>26- — 2(o3 (.s + - 2to)

4 27B2 rr: s3 — Hto2s-f 2to3 (s — (s + 2to) ;

27 (B, - Bt) (o3

Le changement de signe sur w produit l'échange des valeurs
de B1 et B2; en supposant que w peut prendre toutes les valeurs
rationnelles et algébriques, le discriminant A s'annule donc
lorsque les coefficients A et B sont de la forme générale suivante:



v
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alors :
f •

1 * L

108^ to2(to +,2s)2 v
8,36g3 ='-r co3(co -|- 2s)3

As-j- B - (to — s) (to -|— 2s)2

Bs — 2Â2 (to — s)2.(s2 +2 tos + 3 to2)
O.IJ

Q.s2 + 2to2 s2 + 2to2
*2 + 8A —3—r 36

•

4 -
*

P 'to (to + 2s)-]2 p to (to-f-2s)~|
p " — 4

LP 36 J : LP" + is J-

La solution élémentaire, correspondant à ce cas de dégénérescence

des fonctions elliptiques, est donc avec un paramètre
rationnel et quelconque:

PM ^ 2to(to -f'2s)|

P'M 1Ö8 — 3<u> (o> + 2^)]

• (^ — 2s —-to)2 (4 -j- s — to)2 — 3s (s -f- 2 to)
S ~ * 6> _ 5 _ 2o.) ' S= 6fl-s-2.to) ,;

AS + B — ~ f+^ + 2s
_

r _ (" + 2s)(s + 5o>)-|
72 & — s — 2 to L 3 (d) -h s) J

to2

3 (to -J- s)

— s2 4 -J- to -f- 2s p, (o) -|- 2s) -j- 5co)~]

12 (tp — eu — 2s)2 L 3 (to + s) J ;

± VD s«). + 2s)
6 s — 2 to) (4 — to — 2s)

Les racines X' et X"de l'équation du second degré

x2 — sx + p o

sont ensuite:

v, _T'1 (4 — s — 2 to) (4 -f to -j- ,2s)
6 4» — to — 2s

(to ~J— 2s) (s -j— 5 to)
2 o2 4 —

x» _- — t 3i(M -M ; /w + sioi2 (.<(> — s — 2 oj) (i — to —" 2s)
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Pour û> + s 0,
S3

A 0 B - r,
1<%j s4 8.36g3 s" A 0

g s —
1 W -
6 <I> T 5

X' A. (*.+ s)2, x"=4-*8.
6 '

•!/ — 6-
' — 3 <i2 — 6-2

Telles sont, dans le cas élémentaire, les expressions générales
des racines d'une équation du second degré, supposées rationnelles

et telles que leur somme et leur produit soient liés homo-

graphiquement. Ces expressions contiennent trois paramètres
quelconques: deux d'entre eux, 5 et &> sont caractéristiques delà
fonction homographique. Pour une telle relation supposée
imposée, il y a donc une infinité d'équations du second degré
(toujours dans le cas élémentaire de dégénérescence des fonctions
elliptiques) qui répondent à la question, sous la condition que les

coefficients A, B, s de la fonction homographique satisfont à la
condition A 0; la solution dépend alors du paramètre
arbitraire ip.

24. — Indépendamment de la considération des fonctions
elliptiques, le cas élémentaire peut être traité de la manière
suivante, à partir de l'équation de Fermât

(S — s) IS2 (S — s)— 4AS — 4B]

Le polynôme du quatrième degré en S a pour racine s et celle-ci
est nécessairement simple, puisque l'expression As + B ne saurait
être nulle. Si donc le polynome du quatrième degré a une racine
double, cette racine provient du facteur cubique

S3 _ s s2 — 4AS — 4B 0 ;

elle est donc racine de l'équation du second degré, dérivée de

l'équation cubique, ce qui exige que s2 + 12A soit un carré
parfait :

.s-2 + 12A O.)2 ;



284 T UB RI E RE

la racine double s'est donc de la forme —3— ; la racine

simple s1 du facteur cubique est ^ s — s't Les

expressions qui en résultent pour A et B sont :

(s- sj (s+ 3^) B — s* _ _ s V2~ * 16 ' 4 11 16 1 ' l} '

elles conduisent, en set w, aux expressions précédemment
trouvées.

Alors:

et le produit,
(S — ^) .(S ~

doit être carré parfait. La question est réduite à un problème
bien connu d'analyse indéterminée du second degré seulement.
La solution générale est en fonction d'un paramètre arbitraire X:

X2 - -55l
S. —

X
S -h St

x _ f_±_fi T * +.*i

~f~ yD ~
- '•>(s +3s>> x - j

; s + s, s
x r- T

et, finalement, ces formules'sont équivalentes à celles obtenues

par dégénérescence des résultats généraux sous la seule condition
de poser :

-j— S —— 03
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25. — Solutions remarquables dans le cas de dégénérescence.

I. Solution, ip 3co.

s =1 + 1^. P=(L±^, D 0:
3 ' 36

x' x"
o

II. Solution <J/ — (&> + 2s).

!— 1 (s —{— 2 to) (s Cjl>) n AS - Vu 7T.-L-r P L. P — 0 ;
* 9 co —{—

X' 0 X" s

TTT O 1 4.- I
^ (w 4" 2s) (s -f 5w)III. Solution (L •$>-:

* O tö —j— S

/— 1 (s + 2 fi)). Is — to) n ^S V D — 77 — ~— —, P 0 ;
9 6' -j- CO

X' S X" 0

IV. Le discriminant D de l'équation du second degré en X
n'est, dans le cas général, nul que pour (solution I
ci-dessus). Mais si l'expression co(+ 2s) est triple d'un carré,
D est nul pour deux nouvelles valeurs particulières de

A un facteur près, il suffit de prendre

co 3, s —2 a2 -f- 2 a — 1 + 3 (1 -f- 2 a)

A ces deux valeurs de (p correspondent les mêmes solutions:

X' X"=i(«-i)(«j + 2)

A 77 (g 1) (g -f~ 2) (<32 -{- G -f- 1)
O

B — (a — 1)2(^ + 2)2(2œ2 -{- 2a + 5)

S -5 - I(2a + l)2 XS + B -~(a-l)2(a + 2)2(2a + l)2e

V. La somme S ne pourrait, en général, être nulle pour une
valeur rationnelle de ip. Pour que cette circonstance se produise
il faut que s (s-f- 2w) soit triple d'un carré.
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En prenant, à un facteur près,

s zez 3 to 2 œ2 -f- 2

on obtient \ '
1

2 a2 -|- 8<j —-1 et 2<j2 — 4<j ~ 7

A la solution <p2 correspondent les expressions suivantes:

X" -X' =£(« — 1)(<Î-+a)(2« + l)'

A g(a — 1) (<j + 2) (i2 + a + 1)

B =i(a-l)> + 2)2(2a + l)2

s o, p — 2

A la solution correspond un simple changement de signes sur
X' et X":

X' — X" i (<j — 1) (s + 2) (2a + 1)

Après cette étude générale des équations de Fermât, pour un
polynome ayant au moins un zéro rationne], il reste à appliquer
les formules qui viennent d'être établies à l'examen d'un certain
nombre d'applications géométriques: triangles héroniens du
paragraphe 22, triangles pseudo isocèles (paragraphe 10), etc...
Je reviendrai sur ces diverses questions très prochainement.

Août 1927.

\
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