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nous nous sommes occupés iei et qui sont aussi les ensembles de
-capacité électro-statique nulle sont également ceux qui ne sau-
~ raient étre ensembles de singularités pour une fonction harmo-
nique bernée, ensembles au sujet desquels M. H. Lebesgue
avait fait connaitre des résultats importants L.

FORMULES ELLIPTIQUES
POUR LA RESOLUTION DE CERTAINES EQUATIONS
~ DE FERMAT

PAR

Emile TurrizRE (Montpellier).

OBSERVATIONS PRELIMINAIRES SUR LES EQUATIONS DE FERMAT
DANS LE CAS OU LE POLYNOME DU QUATRIEME DEGRE
A AU MOINS UN ZERO RATIONNEL.

1. — L’étude d’une equatlon mdetermmee du quatrieme

degré de FERMAT
ay st + ha, z¥ 4 6‘5‘éz2?+ Yagz + @ =y,

dont une selution particuliére est connue a priori, se rameéne
tout d’abord, par une transformatien homographique sur la
‘variable z, a celle d’une équation du meme type, mais avec

ao—-"1 .
'x4+4ax3+6ax2+4a3x+a4’=X:[];

la solution conrrue Z. est devenue la valeur mﬁme de la nouveﬂe
varlable . '

10 R Ac. sc.,,' t. 176, p. 1097, avril 1923.
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Les formules générales de Dinversion elliptique résolvent
alors la question. Les fonctions elliptiques sont caracterisées par
les invariants:

, 2
— 7
g = a, — 4a a, + 3a, ,

3 2 2 .
a,a, + 2a,a,a, — @y — ag — A1 4, ;

I

8

la cubique de Weierstrass est particuliére en ce sens qu'elle
admet au moins un arithmopoint d’argument ¢ tel que:

3
pr = af— a, P’v = a, — 3a,a, + 2a, ;

en général, la cubique admet toute la chaine illimitée dans les
deux sens de solutions — 2¢, — ¢, ¢, 2¢, ... comprises dans la
formule u = n.¢ (n entier algébrique quelconque). Dans le cas
général, on ne connait que ces arithmopoints.

2. — En général, la connaissance des valeurs du systeme des
trois nombres pu,, p'u,, p'u, suffit pour déterminer complete-
ment une cubique de WeIersTrRASS. Les invariants sont définis
par les formules: '

— 2 "”o.
12p 2}) :

I3
|

g = —8p 2t =

dans le cas actuel de fonctions elliptiques liées & une équation
de Fermat, la question est complétement définie par la connais-
sance de pe, p'v et g, par exemple.

Les formules générales de résolution sont alors, avec un
argument variable u: |
1 p'u — })’s'
2 pu — pv '
VX = pu — p(u, + v) .

x = — a; +

Dans le cas de forme illusoire pour I'expression de z (¢’est-a-
dire lorsque u = ¢), la vraie valeur de x est
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" Aux couples de solutions de 1’équation de Fermat correspon-
dant & une méme valeur de z et aux deux déterminations du
radical VX, correspondent des arguments u, u’ tels que:

> U+ uw 4 v= urvle‘_.péri‘ode .

Ces généralités rappelées 1, nous supposerons dorénavant que
’équation considérée est du type spécial pour lequel le polynome
du quatriéme degre X a un zéro ratlonnel

3. — Soient x; ... x, les quatre zeros de X 0; les argu-
ments correspondants sont :

[

U, = — — LW Uy — — — V) U, /] — — . w w, == — — .
=gt g e =gt e, 4= —g

w1, Mg, wg SONE trois demi- perlodes auxquelles correspondent les
trois racines de p'u = 0:

e, = pes €y = pws > X e, _': Pw3

La différence de deux quelconques de ces quatre valeurs de u
“étant une demi- -période, si ces deux arguments représentent deux
zéros rationnels de X, cest -a-dire deux arithmopoints de la
cubique, Pune des trois racines e est rationnelle: aux arithmo-
points u, et u,, par exemple, correspond une valeur rationnelle de
es: \ ’
Uy — Uy == ) — w, = wy + période ;

e, = P‘(ul' — Uy .

D’ou les propositions suivantes:

Si le polynome X a deux zéros rationnels, l’eguatwn pu=0a
une racine ratwnnelle N ) . -

St le polynome X a ses quatre 26ros ratwnnels l’equatwn pu= 0
.a ses trois racines rationnelles. B > |

Réciproquement, dans le cas d’un polynome X gyant déja un
zéro rationnel, la connaissance d’une racine rationnelle de I'éguation
cubique p'u = 0 entraine celle d’un -second zéro rationnel du
polynome X. | ‘ o

" 1 Voir & ce sujet mori étude générale Sur les équations indéterminédes de Fermat du
Bulletin de la. Société mathématique de France (mars 1928).
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Dans le méme cas, Uexistence de trois racines rationnelles de
Péquation cubique, implique ['existence de quatre zéros rationnels
pour le polynome du quatrieme degré.

4. — Toujours dans le cas d’un polynome X doué d’un zéro
rationnel, reprenons les formules d’inversion elliptique. Sans
restreindre la généralité des résultats, on peut supposer que la
racine rationnelle connue a priori est + = 0; le coefficient a, est
nul. 11 existe alors un nouvel arithmopoint w sur la cubique:

1
pw = 5 ay P'n' = a, , P”w = 2a,qa,; ;

d’ou, par application des formules d’addition des fonctions
elliptiques:

/

})2«(' = pv, P"Zw = —pv

20 + v = période ;

argument w est identique a I'une des quatre valeurs wu; ... u,.
La connaissance d’un zéro rationnel de X est ainsi équivalente
a celle d’'une des quatre déterminations de la moitié de 'argu-
ment ¢. |
Inversement, supposons connues les valeurs de pw, p'w,
pw. Les invariants g,, g; en résultent par les formules données
plus haut. Les formules:

P”“'
P’w ’

] %

s = Pv—]—- QPW = , P’v —_ })’w — S(PV——P((')
permettent de calculer successivement le coefficient angulaire s
de la tangente en I’arithmopoint & de la cubique de Weierstrass,
la valeur de p¢ et celle de pe.

I1 existe une infinité de polynomes X associables & une méme
cubique de Weierstrass (tant que l'on ne précise pas la nature
de ¢). Mais la détermination de X s’effectue sans ambiguité
lorsque sont données po, p'e, p'¢ (ou g,). Ici les formules pour
la détermination de X se présentent sous la forme simple

s
a = 5, ay = QPW , a, = P’w , a, = 0 .
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5. — Expression de x en produit de facteurs ¢. — L’expresswn

~ “de z est ensuite:

x (P il ) .
Plt -_— PV
Considérons la fonction entiére: ‘
_f(u) = P’u. —_ P’v — s(pu —pY)
elle admet le zéro simple u = ¢ et le zéro double W = w; elle

s’exprime donc sous la forme

2 c(;t — v) .o (e — w)

f(u):—-(— _ e ,

sdu

G étant une constante qui se détermine simplement en atiri-

buant & u une valeur particuliére telle que u = — v ou u = — w.
fle) = =2y, [l=w) = —2pw.
C=¢ac*w.o2w . ’

D’ailleurs un calcul direct donne:

) _prpe Pt py
f() | Pu-—Pw+2 Pu——Pv'_}- ’

(apres suppression d’un facteur, commun aux deux termes,
- pu — pv). D’our:

f(u)

(la constante additive &¢ + 2&w ‘—i— 2 étant évidemment nulle');

f’ (u) = Clu —v) + 20(u — w) — 3Cu.

- Vintégration donne alors l’expressmn ci- dessus de f(u) en pro-
- duit de fonctions sigma. | o '

‘Finalement I’expression de z (dans le cas ou 'un de* zéro est
z = 0, correspondant au = w)est: \ |

__ o2w 62(u — w)
T ofw T o(u— 2w) .ou

6. — Autre représentation des résultats précédents. — Par.‘le_fai}'t o
que le polynome en z du quatriéme degré a un zéro rationnel z,,
qui est d’ailleurs une solution de I’équation de Fermat, la réso-
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lution de celle-ci est réductible aux fonctions elliptiques quel que
soit le coefficient a,. Il suffit de rendre nul e, en posant x = z — 2y,
puis de poser

pour se ramener a une équation
P — gt — g =1 .

Les invariants se présentent sous leur forme habituelle, ou
a, = 0. Bref, cette méthode conduit a la représentation suivante

de la solution générale de 1’équation de Fermat pour a, = 0:
" — "1
x:-———l)———, \/X:P-,—.xz.
Pt — Pw P W
“ . - G (2w
Comme d’une maniére générale p'w = — —(;,—), ces expres-
= oY

sions sont identiques & celles qui viennent d’étre données, en
liant les arguments u et ¢t par la relation:

w =1t-+ w.

NOUVELLE FORME DE LA QUESTION PRECEDENTE.
ETUDE D'UNE RELATION HOMOGRAPHIQUE.

7. — L’étude arithmogéométrique de certaines classes de
triangles remarquables pose la question suivante:

« Former les équations du second degré, a racines rationnelles,
« dont la somme et le produit sont reliés homographiquement. »

La résolution de cette question dépend des fonctions elliptiques,
avec un cas étendu de dégénérescence.

Voict I’étude complete de cette question.

8. — Formules générales.

Soient S et P la somme et le produit
des racines de I’équation du second degré; ces expressions sont
liées par la relation homographique:
__AS 4B

P — —— ! —
S —s 7
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a trois coefﬁments A, B, s; avec la condition As - B =% O Lesf
racines étant. supposees rationnelles la quantité . = :

) ':_-sz_4p_[j,

est un carré parfait et, par, suite aussi, le polynome suivant du
quatriéme degré en S:

D(S —s)? = 8 — 28 + (s — 4A)_sz + 4(As.——-' B)S 4 4Bs = [J .
La question est ainsi ramenée & une equatmn de FERMAT,
¢’est-a-dire aux fonctions elliptiques. | ST

Les invariants g, et g, des fonctions de WEIERSTRASS ont ici
les expressions suivantes: | : '

4.3.8, .= st 4 16450 + 24Bs + 16A% = (s* -+ 8A)? 4 24 (Bs — 24%) ,
8.27.g, = — [s® + 24As* + 36Bs® 4. 120A%s? 4 288ABs — 64A3 4+ 216B2]
= — [(s* + 8A)® + 36(Bs — 247 (s* + 8A) + 216B7] ;

’expression du discriminant ‘A, ordonnée par rapport au puis-
sances du parameétre s, n’est que du cinquieme degré et se pré-
sente finalement sous la forme suivante:

A = — (As + B)2[Bs® — A%s? 4+ 18ABs + 27B? — 16A9] ,
4278 = — (As + B)*{[54B + s(s? 4 18A)]2 — (s? 4 124)%} .
La solution fondamentale de définition,
| pru = ipu —gapr — s
des fonctions de WEIERSTRASS 'es’p

s? 4 8A

PV = —12—— y P,V‘: e B ’, p”V ‘: 2A2 — Bs .
5T A2 AY &,
PPEn Bt e st
' A2 - At 2 AS A3

Dans le cas actuel, est l’argument d’un arlthmopomt de la
cubique: . o

! s? — 4A Y ___ S LV
P2 =13 Pg=AstB. plg=—sgy
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wo
(op}
~Aa

D’ou:
3 B B2 A
P@Q=D+K+E—§

B B 2 __ A3
'A'( K) AB )7

. ¢ 9
Pour A, B et s quelconques, les arguments +, ¢, 5¢ et 20 donnent

’

ainsi des expressions de pu et p’ u qui sont des polynomes en s,
du second degré au plus.

Les formules de correspondance entre les solutions de I’équa-
tion cubique et ’équation de Fermat sont:
1

S — —§s = —

. PU—PV D V' —= plu ¢y — pu ;
y =g gy E VDB =8 =l —pe

et ihversement:
1\~
2Pu -+ pr = <S — §s> = VD(S — ),
P’u — P’s' = (2S5 — s) (Pu — Pv) .

Pour u = ¢, la vraie valeur de S est:

1 Py
s=3r+ ke

donc une premiere solution de I’équation de Fermat est:

A2 B B2 — A3 — A3
S_S_F’E“‘*XG*_KF»’ VD—S+‘_F—

les racines de 1’équation correspondante du second deoré sont:
P

B B2 — A3
X = — 2 X" = - -
A ST AB
A largument u = —2¢ correspond le méme couple (X', X").
y . . Lo
A Pargument u = — 5 correspond la solution sans intérét
S = s.
3 ;
Aux valeurs u = = et y = — > de I’ar

2 gument correspondent
la solution évidente S = — K’ P = 0.
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, P‘oﬁr u. = 2:

At T B TR T
S = ‘E . A” 2B ’
...... s — ..'B" ‘_}" A -
B A2 2
'S s——(s+1_'§> t
— s = | 5B AT etc.
*tTXTE
9. — En général, le probléme "d’homographie admet ainsi une

infinité de solutions, qui, correspondent aux multiples entiers
de ’argument w. Ainsi que vont le mettre en évidence les consi-
dérations du paragraphe suivant, ’équation présentement étudiée
est équivalente a ’équation la plus générale ayant la solution
donnée w. En général dong, il n’y a pas d’autre solution ration-
nelle que celle de la forme u = n.w, avec v + 2w = période.
En général, ¢ et w ne sont pas des parties aliquotes de période
et il y a une infinité de solutions. Mais lorsque le rapport de ¢ et
d’une période est un nombre commensurable, les solutions
" données par ¢ = nw sont en nombre limité.
Cette circonstance se produit lorsque B = 0, car “alors p'v=20
(voir paragraphe 21). Il en est de méme lorsque A = 0.
Pour A = 0,

12g, = s(s® + 24B) , 8.27g, = 108B2 (s¥ + 18B)2
" . A = — B¥(s? 4 27B) ,
s? 4 | "y » B
=13 Pv._——B, p’v = —Bs,
v
Y e n 9y —
Pz =p=r=1p";

2w etant une perlode Deux amthmopomts seulement sont connus
sur la cublque ce sont des points d’mﬂexmn. ‘

~




EQUATIONS DE FERMAT 269

10. — En dehors de ces cas relativement généraux A = 0 ou
B = 0, on peut encore citer le cas

Av_—:_——-l, B=1, s = 3,
pour lequel

-:—;, P’w = + 2, P”w = 6,

pv =
V“‘;l— o == — 1 "y — — 1
pr=1 P"= P ’
P3w:———i—; , P'3w:0,
i
P2v =15 P'2v:1;

ici encore les arithmopoints de la cubique se réduisent aux points
d’inflexion, & un sommet et aux points qui s’en déduisent par
alignement: au total, cing arithmopoints sur la cubique. C’est
a cette circonstance particuliere qu’est liée 'tnexistence d’arithmo-
triangles pseudoisoscéles.

11. — Le probléme d’homographie, qui vient d’étre posé et
résolu, dépend ainsi d’'une équation de Fermat du type spécial
pour lequel le polynome du quatriéme degré a un zéro rationnel.

L’argument w = ~—;— est tel que:

s? — 4A , : ,
pw:—-—TQ——, Pw:———(As—,—B) %= 0, pw:s.})’w )

Réciproquement, soit I’équation la plus générale de Fermat
pour laquelle se produise la circonstance spécifiée. Elle peut étre
caractérisée par l’ensemble des valeurs numériques de pw,
p'w et p”w. D’ou successivement s, A et B:

"oy 2
3::%,—‘;, A:::f——opw, B =

par trois formules nettes de toute indétermination.
Par suite, les equatwns de Fermat, pour un polynome du qua-
trieme degré avec zéro ratwnnel jouissent de cette nouvelle propriété

— (As + P'w)
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de donner toujours liew & une komographw entre le produzt et la

somme des racines d’équations du second degré.
La valeur de p'w doit essentlellement étre distincte de zéro.

12. — Expression des résultats. — Les considérations exposees
dans la premiére partie de ce travail trouvent une application
immédiate dans l’expressmn finale des résultats du -probléme
d’homographie. -

S — <P_u_j_P_‘: + s>
Pu e PV

- 4 (pu—pv _o2w  olu — w)
S—s_-é-(—-———.———-——s>._~__ . /

pr — p¥ o*w “o'(u — 2w) . cu’

car S — s n’est autre ici que la fonction z des paragraphes 5 et 6;
le polynome en S admet s pour zéro rationnel:

- " S—s=ux.
Il vient ensuite:

VD(S — ) = plu+9) —pus
les racines X' et X" de I’équation du second dergé sont alors:
(S —s).X = pu—pw, |
(S—s). X" = plu—+ ) —pw;

.Xf__A 1 cu.s (3w — u)
T o2w o —w).o(u— 2w)’
xr — 1 o(u + w).o(u — 2w)
< T o2w’ cu.c(w— u) ’
X' o(u4w) o(u— 2w)
X'~ 5w — 3w) s?u ' .
’ ) . O-(u J— 3W) .O'(u + W)
R e e

On peut encore écrire:

IR R

X =

X¥ =
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la constante ; a pour expression:
~ /3 —_
1 ag <—§' ‘V)
Y = — 5y 1 .
o ( W) . <§ W>

En général p( w> et p——sont irrationnelles; cette irration-

nalité n’est introduite qu’en apparence dans les expressions de
X" et X".
Considérées comme fonction de u, les racines X' et X" satisfont

a I'identité
X" () = X' (u + w) ;

c’est la méme fonction avec des arguments différents de la
constante w (propriété caractéristique des relations doublement
quadratiques et symétriques).

13. — Equation avec P pour inconnue. — Comme S — s = z, la
méthode du paragraphe 8 revient & prendre pour inconnue une
quantité inversement proportionnelle & S — s; mais ici:

__As 4+ B
TP — A

en prenant P pour inconnue principale, on est assuré a priori
d’avoir & rendre carré un polynome cubique. En fait l’equatlon

en P est:
D(P — A)? = (Ps 4 B)? — 4P (P — A)?

— 4P3 4 (s + 8A)P? 4 2(Bs — 2A%)P + B? = [] .
Ce qui conduit aux formules suivantes:

‘P:})V—Pt, p_—A:PW“—Pt,a

B LY S
S—s=—2" . yp=_P"
Pt ——-P(V Pt_})w
N L M At S R (G
2 Pt—-Pw 2 Pt———})w

\” — 1 . S(Pt T P(’) + P,V + P,t 1 —f(l)

2 Pl——})w §W’

I
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en mtrodmsant la fonctlon f(t)y du paragraphe 5:
) = - g —slpt—po)

d’ou pour X" et X" les expressions en produits de sigma se'
réduisant & celles du paragraphe 12 par simple changement
dargument =1+ w.

14. — Etude directe de la relation entre X' et X”. — Les racines
X', X” sont liées par la relation

xy(x +y—s) :A(x—}'-y)‘—i—B N

représentative d’une cubique plane. La discussion précédente a
mis en-évidence l’existence d’arithmopoints sur cette cubique
quels que soient A, B et s:

Bﬂ_‘_,_A3
ST RxE

Bl Pl
<
[l

,  y=0, ..

et ceux qui en résultent par symétrie par rapport & 'axe x = y.

D’autre part, si on se donne z, I’équation en y est du second
degré; de méme ’équation en = pour une valeur donnée de y.
Ainsi, de tout couple donné (z,, y,) représentatif d’un arithmo-
. point, il est possible de déduire immédiatement deux nouvelles
solutions (z,, ¥,) et (x,, y,) et ainsi de suite dans les deux sens.

Ceci revient & partir d’un arithmopoint de cette cubique plane
et a mener les paralléles 4 I'une et & Dautre des asymptotes
z =0,y = 0. Cest sous une forme élémentaire ’addition des
arguments des fonctions elliptiques.

La cubique considérée peut-étre représentée par les fonctions
de Weierstrass au moyen des formules qui ont été données aux
paragraphes 12 et 13, pour les expressiens de X' et X".

- INTERPRETATION GEOMETRIQUE.

15, — Soient ¢, t’ deux arithmopoints queleonques d’une arith-
moconique (P) du plan des coordonnées. En désignant par S et P
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la somme et le produit des parametres ¢ et ¢' de ces points, une
relation quelconque entre S et P peut-étre considérée comme
Iéquation tangentielle d’'une courbe (Q) du plan, enveloppée
par la corde #t’; et réciproquement.

L’ensemble de cette équation tangentielle et de celle, S% — 4P
= 0, de la conique (P), représente les tangentes communes a
(P) et a (Q); ’existence des solutions rationnelles pour ce systeme
d’équations équivaut & la détermination rationnelle d’autant de
tangentes communes.

Sans restreindre la généralité de la question, il est toujours
possible de prendre pour (P) une parabole d’équations paramé-
triques x = {2, y = t. La corde #¢" de cette courbe a pour équation:

x—Sy+ P =0;

les coordonnées tangentielles de cette droite sont u =1,V = — S,
W = P. :

Si, d’autre part, I’équation tangentielle d’une seconde conique

(Q) est :}

al? + 20UV + ¢V2 4 2dUW -+ 2eVW 4+ £W2 = 0 |

le probleme de la détermination des cordes joignant deux arith-

mopoints de la parabole (P) et tangentes & la conique (Q) est
réduit a 'équation

@ — 2bS + ¢S? 4 2dP — 2ePS + [P2 = 0 .

La disparition de P2 exige que la conique (Q) soit elle aussi une
parabole (f = 0).

La disparition du terme en S2 exige que la conique () soit
tangente a axe Ox de la parabole (P).
Pour que la relation entre P et S soit homographique, il faut et il

suffit que la conique (Q) soit une parabole tangente « laxe de la
parabole (P).

Comme le coefficient e de PS ne saurait étre nul sans décomposi-
K 7 ’ ’ r
tion d’une part de la parabole (Q) et sans dégénérescence d’autre

[’Enseignement mathém., e annde; 1927, L8
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part de ’homographie, il sera pris égal a ’unité; les formules de
correspondance sont:

A= —b, B:%—, s=d, - e—=1.

‘La parabole (Q) depend de trois parametres son equatlon
tangentielle est:

BUF — AUV 4 sUW + VW = 0 . Q)

L’équation ponctuelle s’obtient immédiatement en . rem-
placant, dans I’équation. de la corde #t’, le produit P par son
expression homographique en S et en égalant a zéro le discrimi-
nant du polynome en S, du second degré, ainsi obtenu:

(x + sy + A)* = 4y(sx — B) , - (Q
ou encore B - - L
| (x—sy+ A)Q+ 4(As+ Bly = 0 ;

cette parabole (Q) touche Oz au point z = Aj; I'autre tangente
issue de O a pour équation Az 4 By = 0: c¢’est une arithmocorde‘

particuliére de (P), qui représente la solution, S = , P=0.

' La directrice a pour equatmn y + sz = B; les coordonnees
du foyer sont: | '
Bs — A As + B’
T+’ Y= 7" Txse

—

- EXAMEN DE CAS SPECIAUX.

16. — Cas oul'équation D = Q a une second}e racinerationnelle. —
Soit S = 2a, la racine rationnelle (autre que S = s). Alors:

S* — s§? — 4AS — 4B = (S — %a) (S* — 2LS + 2M) ;

a, L et M sont supposés donnés; soit ¢ = L2 —2M la quantité dont
dépend la réalité des racines du-facteur quadratique.
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Les formules sont les suivantes. L’équation cubique p'u
a une racine rationnelle e;.

M
s == 2{(a + L) , A:—<aL—}——2—>, B = aM ;
2/ . M — L%
61:Pw1:—§ -+ 3 >,
g = 3¢ + 3L . g = e (e} —3LY) , A= dL(9e; — L2 .
1 o 9 ; ’ ” 2 2 A M?
})s’:g(a“—}-L——M), Pv::—aM, Pv:?a“(L“—./I)—}—Q,
p 1 M ¢ M
—_ 2 ‘ 2 " Y 2 2
nt A
Pz = 5Py
1 , M . M
Pot:—3—<a2—3aL—}-L“—}——2—>, P’a:—QL(aZ—aL-{——Q—),
P”a:——s.P’a.

V

« est 'argument associé & S = 2q; sa valeur est o = oy —3 -

17. — Cas ou toutes les racines de I’équation D = 0 sont ration-
nelles. Soient 2a, 2b, 2¢ les racines de l’équation en S:

S8 — sS% — 4AS — 4B
les expressions de A, B, s sont alors:

s = 2(a 4+ b+ ¢) ,
A = — (ab + bc + ca) , B = 2abc .

D’ou, pour les éléments elliptiques les expressions:

4
= (a* + b* + ¢* — a®b? — b*c? — ¢?a®) >0,

8y — 3
L 2 2 9,2
:E;(a + 0% — 2¢%) (0% + ¢ — 2a%) (c? + a® — 202?)

A = 16(a® — b2)2(h% — c*)?(c® — a?)? >0 .
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Les trois racines de p u = 0 sont réelles et rationnelles:
= -§(b2 —|— 2 — 2a%) , | ey, = §(c”4 + a® — 2b’) ,
e = 3(a2+b2—2c) :

dans Pordre e > ey > e, pour a? < b2 < 02

PY :%(a’ -+ b2 + ¢y , P’v = — 2abc , p”v = 2(a2b2 + bic? + c%a?) ;
p%:%—( 2+b2+c2)+ab+})c+ca , p’i=—2.(a+é)(b+c)(c+a) l.

2 .

Si a, B, y sont les valeurs des arguments associés a S = 2d, 2b
et 2c, les formules générales de correspondance donnent:

P %(az—l—b + )+ bc—a(b+c), p’ai—2(b+c)(a—b)(a—c) ,

i)

ete.
Et, par suite:
— Vv . [% 14
&= ® —3 @'—-“’2_5’ V= 93T g
ey = pu, , T ey = pes €g = pus

Pour u = w,, il vient:

[ J . ;
S—a+b+c-—%c-, P = ab+ ac— be , i’\/ﬁ:(a—bzl(a—'c)‘,
X' =a, X"':b—}-‘c-—-—-lf-:-.
. _ a
18. — Interprétations géométriques. — Les formules ci-dessus

assurent ’existence de trois tangentes rationnelles, communes
aux paraboles (P) et (Q) du paragraphe 15:

U=1, V=—2a, W — a%, etec. ...

Cette question peut encore étre traitée en rapportant les deux
paraboles au triangle de référence formé par les trois tangentes

communes. Sans restriction de généralité, la parabole (P) peut

étre représentée par les équations tangentielle et ponctuelle:

1 1 1 , -~ o _
= e = r + Vi + V% — 0 .
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Si ¢ est le parametre du point courant et de la tangente asso-

ciée, on pourra prendre la représentation paramétrique survante
en coordonnées homogenes:

) 1

—_— - ’ V = L s VV:———,

140+ ¢ 1 —0c — 1t 2
1 0 1 2 1 ’
1:F—2:(t+6—f—1)“, y-———v*g:(t‘\Lc_l) 2= 7wz — !

les coordonnées tangentielles de la corde #’ sont alors:

U= 2— (S + 20 , V =2+ (S + 2q) ,
W =P +¢S 4+3s>—1;

ouS =1¢ 4 t', P = #'. Si maintenant la conique (Q) est représen-
tée par I’équation
M 1

L
TTVEwe

les constantes o, L et M étant liées par la relation
o(M — Ly =1,

homographie définie entre P et S par les tangentes de (Q) a pour
coefficients:
A=140"4 2L+ M),
B=2s(*—1)(L+M+1),
s = 20(L+M—1) .

Les formules d’équivalence entre les deux modes de repré-
sentation sont:

a =1—g,
b ,
¢ =o(L + M4 1),

)

— 11—

le parameétre d’homogénéité étant choisi de telle maniére que
a — b= 2.

19. — Cas de la cubique éguianharmonique. — En prenant A et s
arbitraires, s == 0, la formule

24 (Bs — 2A%) + (s - 8A)2 = 0 ,
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permet. de donner & B une valeur rationnelle assurant ’existence

d’un cas équianharmonique (g, = 0). Ces formules peuvent étre
écrites sous la forme suivante, avec un paramétre rationnel ¢:

12¢ — 2 ¢t L 24gs? — 4812
A= —
8 L B 32s C
(s — 4¢)3(s2 — 36¢
g8 =0, g — 4’ —B?= — 210(82 ),
Pv:t, p’v:-——B, p”v—6t2
v o sP— 4t LA 3 (s2 — &1)?
Pz = 8 ’ P2a— "33 s

20. — Cas de la cubique harmonique. — L’invariant g est nul,-

lorsque se trouve remplie une condition entre les paramétres, qui
s2 4+ 8A

est du second degré en B ; il en résulte que —5

est un carré.

1l faut donc prendre:
' pY =TT] = A%,

A étant un nombre rationnel. D’eu découlent les formules sui-
vantes de représentation générale du cas ou la cubique de
Weierstrass est harmonique: ‘

1202 — 52 s?
P R s 2 S
1 2 ' ’_'
85 :E(s‘_'- 202 (s + 61) (22 — ) g = 0.
‘pv:)\z, p’v:—-B,
p  s2— 42 , v 1 2
—— —_— _— — s (s — 2}) ;

Si la racine nulle ¢; est pw; = 0, on a une nouvelle solution
simple: | |

| P(%"‘ wl>;%(s+ex) (s 4+ 23) , ,P'G"' w1> = (s+2l)-p(-;—+w1') -
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LE cas B = 0 ET LES TRIANGLES HERONIENS.

21. — Pour B = 0, c¢’est-a-dire pour la relation
A $ ._ 1
prg=1.

'équation D = 0 est satisfaite pour S = 0 et P = 0. Par suite,

quels que soient A et s, 'équation cubique a la racine ration-
nelle

s2 A .
e, = Po;, = py = j———E—S— , v = o, + période

Il en résulte les formules suivantes:

)
(]
l
-
PN
()
)
e
|
e
~

p'2u = h(pu —e,). [P2u + e pu + A* — 2e;] ;

s? 4 16A) .

o 2 .8‘2
(e — €5)? = 9e; - 4A% — TG(

Lorsque s? 4 16A est positif, les trois racines existent et e; est
la plus grande des racines:

e, > e, > ¢

(e, — 6’2) (61 - 33) = A%

cette derniere expression se présentant comme un carré parfait,

[3)

) . P .
les valeurs de pu, pour 5 et 5+ + une demi-période, sont ration-

nelles. On obtient ainsi:

s? — 4A , '
P = g prni=EAs . piYy = — A

-c-

Y

s? 4 20A
1

phs = 5 P = AV 4 164, prds = A(s® + 16A) ;

b

24y et 2, étant égaux & w; (& une demi-période preés); au signe
‘}
— !

pres ¢, est d’ailleurs égal & 5 + '
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22, — Les trois racines sont rationnelles, lorsque s + 16A est

un carré; alors g, est ’argument d’un arithmopoint de la cubique.
A — g2

| 16
metres rationnels s et 1, il vient:

Soit, dans ce cas, A = , B = 0. En fonction des para-

3.64.g, M W% 4 st
1 27.2%.g, (A2 4~ s?) (M — 342252 4 s%)
21‘6A — A\2s2 ()\2 . 82)2 .

|

Il

24e, = A2 4 s2>0,
48e, = — (A2 — 6%s + s%) < 0,
48e, — — (A2 4 6As 4 s?) < 0.
1 1 .. . 1
e, — e :-1—6(7&——-5)2 , (31_—e:_‘__—_-i—é(/\-|--s)2 , e, — €, ::Z)\s :

on peut toujours supposer A positif, ce qui assure l’ordre des
racines e; > e, > és.

En posant s = 2(b 4+ ¢), A = 2(¢c — b), ¢ > b, ces formules
rentrent comme cas particulier dans celles qui ont été6 données
plus haut (paragraphe 17); @ est ici égal a zéro:

A= —bc, B=0, s == 2(b + ¢) ,
8 _—_é(b"—bzcg-{—c‘) A :27(1)2—]—(:)(/} — 2¢?) (c? —2[)2)
A = 16b4ct(h? — c2)2
h? | 2 ' 2 — 2p2 b? — 2¢2
6 = —5— € = ——3— . & = —F5—
el—é2=b2, e, —e, = c?, _ezb—egzc’——bz‘.
v — w, , pr=¢6 P’v = 0, pv = 2b%¢* ,
oy h? +-3bc 4 ¢? .
*=3c PE=T 3 Pa= el
b — 3be 4 ¢
pfi:: 3)6 —l-‘c_" ‘ P’B:2bc(c‘—*b) .
y=—8;

‘aux arguments «, (3, y cor’réspondent les racines S = O,Z_b et 2¢ de
Péquation D = 0; & u = w, correspond une valeur infinie de S..
Au = o, et wg correspond S = b+ ¢, P = be, X’ b, X" = c.
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Le cas de B = 0, avec s = 2 et A carré, présente cette particu-
larité intéressante de représenter la solution du probléme suivant :
détermination de tous les triangles héroniens ayant un coté donné
et une aire tmposée. J’étudierai la question prochainement.

(CAS ELEMENTAIRE DE DEGENERESCENCE DES FONCTIONS
ELLIPTIQUES.

23. — LD’expression du discriminant A des fonctions ellip-
tiques, abstraction faite du facteur double As + B, qui ne saurai
étre nul sans dégénérescence de ’homographie, se présente sous
forme d’un polynome du second degré seulement par rapport au
parameétre B. Les deux autres paramétres A et s étant supposés
donnés, rationnels et quelconques, ’équation A = 0 n’a des
racines rationnelles en B que si s 4+ 12 A est un carré. En
introduisant un nouveau parametre rationnel et arbitraire, w,
cette derniére condition est satisfaite de la maniére la plus
générale en prenant:

0)2 —_— 32

A = :
12

d’ou I’expression correspondante du discriminant:

b

A= — 27(As ++ B)?(B — B,)(B — B,)
avec:
1.27B; = s — 30%s — 20° = (s 4+ w)!. (s — 20) ,

4.27By = §% — 3w?s 4+ 203

I

(s — w)®. (s + 20) ;

27 (82 — Bl) = w? .

Le changement de signe sur o produit I’échange des valeurs
de By et B,; en supposant que o» peut prendre toutes les valeurs
rationnelles et algébriques, le discriminant A s’annule donc
lorsque les coefficients A et B sont dela forme générale suivante:

w? — ¢2 1

A= —m, B :1—6—(5 — m)?. (s 4+ 20) ,
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alors: | |

8.3%, = — w¥(w + 25)% ,
A=0

As + B = (v — s) (0 + 25)2

El=

Codd h ' A '
Bs — 2A2 = — 5 97((0—.5) (s 4+ 20s + 30?)

32—{—20)9 : s 4 2w?
3 PP ="3

.vP,Z;:[}[pu— w+26)] [ + w—|;2s) .

~ La solution elementalre correspondant a ce cas de dégéneres-
cence des fonctions elhpthues est dono avec un parametre ¢,
ra‘monnel et quelconque:

s? + 8A =

pe =g —20(+ 291,

pu = pog 4 — 30 (o + 2914 - |
S = —el o (s —of = 4 20)
6 ( —s —2w) "’ b — s —20w) ’
__oo"——s2 b+ o+ 2s w—|—2s)(s—|—5w) -
AS + B = 72 ub-—-.s—-—?co [4/ 3(w + s) ]’
_w?— st k];+w+23 s)(s + 5w)]
P = 12 " —o0—2 [‘-P m-I—s) ]’

Y - $* — do(w + 2s)
_ivDZE(‘P_&’) P —s—20) (0 — o —2s)°

Les racines X’ et X” de I’équation du second degré

| .Xé—SX+P=O
sont ensuite:
X/ :'% (¢—S;iwc)o(¢_-|;sw+ 2s)
y_ 0+ 2+ 50)

‘ " o___ w? —_ s* B , 3!(0) "I" s) g
VeI g — )

(w 4+ s £ 0)
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Pour o + s = 0,

A =20, B:——'Q—:/.,
108g, — s* 8.3%g, — s°, A=20,
S——-s:i——(q]—_sy,
6 4+ s
; 1+ s)? N 4 1
’ 7 o X 3 )
4\_—6—'—_—_&{)-s’ X __3.3 e

Telles sont, dans le cas élémentaire, les expressions générales
des racines d’une équation du second degré, supposées ration-
nelles et telles que leur somme et leur produit soient liés homo-
araphiquement. Ces expressions contiennent trois parametres
quelconques: deux d’entre eux, s et w sont caractéristiques dela
fonction homographique. Pour une telle relation supposée
imposée, il y a donc une infinité d’équations du second degré
(toujours dans le cas élémentaire de dégénérescence des fonctions
elliptiques) qui répondent a la question, sous la condition que les
coefficients A, B, s de la fonction homographique satisfont a la
condition A = 0; la solution dépend alors du parameétre arbi-
traire ¢.

24. — Indépendamment de la considération des fonctions
elliptiques, le cas élémentaire peut étre traité de la maniere
suivante, a partir de ’équation de Fermat

(S — 5)[S*(S — s) — 4AS — 4B] = [ .

Le polynome du quatriéme degré en S a pour racine s et celle-ci
est nécessairement simple, puisque I’expression As -+ B ne saurait
etre nulle. Si donc le polynome du quatriéme degré a une racine
double, cette racine provient du facteur cubique

elle est donc racine de ’équation du second degré, dérivée de
I’équation cubique, ce qui exige que s -~ 12A soit un carré
parfait:

s2 4 120 = o? ;
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la racine double s’ est donc de la forme s = 5 = la racine
simple s; du facteur cubique est s, = s — s, = > 3 2. Les
expressions qui en résultent pour A et B sont:
- (s — s) (s + 3s,) | 1 2 1 y
A:——( *1)1(6 —, B:Zslsl' :Esl(s—sl)‘;

elles conduisent, en s et w, aux expressions précédemment
trouvées. '
Alors:

o S _ ,

D=gHs =),
et le pfoduit, ' -
(S—s).S—s)=0,

~doit étre carré parfait. La question est réduite & un probléme
bien connu d’analyse indéterminée du second degré seulement.
La solution générale est en fonction d’un parametre arbitraire A:

kz—zssl
S = - prara
T %
(—3) (-3)
S —s = 2 - S —'s, = %2
—)\ s+ s’ 1——)\ s+s
T 4 T a
v s—s\2 1 s
B Q“ 21)_8@ s)(s +35) A —2
-+ == . :
——VD . )\__s—l—sl 7&—-——-1
4 2

et, finalement, ces formules’sont équivalentes & celles obtenues
par dégénérescence des résultats généraux sous la seule condition
de poser: | ' |

Yhs—o
% = =
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25. — Solutions remarquables dans le cas de dégénérescence.

I. Solution ¢ = .

3 2
5:_3___":_%2, p:(i_i:__zﬂ)_’ D=0 :
3 36
X’:X":S+2w.
6
II. Solution ¢ = — (o + 2s).
. — 1 (s + 2w) (s — w) .
S_——\/u__§ P , P =0
X' =90, X" =S .
. 1 (0 + 25) (s + 5w)
ITI. Solution ¢ = 7. R
e (s 20).(s — w) _
S=1VD=—3 o ., P =0;
X' = S, X" =0

IV. Le discriminant D de I’équation du second degré en X
n’est, dans le cas général, nul que pour ¢ = 3w (solution I
ci-dessus). Mais si U'expression w(w -+ 2s) est triple d’un carré,
D est nul pour deux nouvelles valeurs particulieres de J.

A un facteur pres, il suffit de prendre

w = 3, s = 262 + 20 — 1, b = + 3(1 4 20) .

A ces deux valeurs de ¢ correspondent les mémes solutions:

X' = X" :,i(c—‘l)(c—{—?) .
A:—-—%—(G—l)(c—}—m(cz—j—c—{—l) ,

B = & (s —1)%(s 4+ 2)*(26* + 26 + 3) ,

7/

1 A
S—s=—z(+1°>. AS+B ::—-—721—7(0'—1)2(0-}-2)2(26—!—1)3,
V. La somme S ne pourrait, en général, étre nulle pour une
valeur rationnelle de ¢. Pour que cette circonstance se produise
il faut que s(s 4+ 2w) soit triple d’un carré.
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En prenant, & un facteur preés,

‘ s = 3, w=20¢ 4 2¢—1,
on obtient’ | |
412202—1-80';1 et 4)2:_20‘2—[16-7-7..

A la solution ¢, correspondent les expressions suivantes:

X' = - X ==+ 1),

A:é@;np+mw+c+ﬁ,
1 | .2 2y 2
B = g5e — 1)°le + 2120 + 1)

- 'B
S=0, P=-—3z.

A la solution {, corréspond un simple changemént de signes sur

XI et Xll: )
X = — X" :—(‘1')-.(0'— )(c 4+ 2)(2s+ 1) .

Apres cette étude générale des équations de Fermat, pour un
polynome ayant au moins un zéro rationnel, il reste & appliquer
les formules qui viennent d’étre établies a I’examen d’un certain
nombre d’applications géométriques: triangles héroniens du
paragraphe 22, triangles pseudo isoceles (paragraphe 10), etc...
Je reviendrai sur ces diverses questions trés prochainement.

Aolt 1927.




	FORMULES ELLIPTIQUES POUR LA RÉSOLUTION DE CERTAINES ÉQUATIONS DE FERMAT
	Observations préliminaires sur les équations de Fermat dans le cas où le polynome du quatrième degré a au moins un zéro rationnel.
	Nouvelle forme de la question précédente. Etude d'une relation homographique.
	INTERPRÉTATION GÉOMÉTRIQUE.
	Examen de cas spéciaux.
	cas B = 0 et les triangles héroniens.
	Cas élémentaire de dégénérescence des fonctions elliptiques.


