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1négalités, les ensembles étudiés pouvant de ce fait présenter une
généralité beaucoup plus grande que les ensembles tombant sous
le coup des considérations de M. Haussdorff, une moins grande
homogénéité dans la structure se trouvait requise et par 13, je
me rapprochais du caractére presque complétement arbitraire
des ensembles formant la frontiére d’'un domaine pour lequel on
cherche & résoudre le probléme de Dirichlet, par exemple.

Ces remarques permettront d’apercevoir de prime abord Des-
prit dans lequel est rédigé le présent travail. Dans un premier
chapitre, pour accoutumer le lecteur a la considération du nombre
dimensionnel, nous avons formé différents exemples, aussi
simples que possible, et qui de ce fait méme, se rapportent & des
ensembles partitifs. Ces exemples, intéressants par eux-mémes,
montrent notamment que les courbes rectifiables ne sont qu’un
cas particulier d’une famille de courbes beaucoup plus générales,
‘douées d’'une métrique, fournissant une représentationintrinseque.

Dans le second chapitre, nous montrons que la considération
du nombre dimensionnel d’un ensemble permet, d’'une maniére
incompleéte, mais suffisante dans beaucoup d’applications, de
caractériser les ensembles impropres du probléme de Dirichlet:
on étudie pour cela I'allure du potentiel produit par une répar-
tition de masses, placée sur ’ensemble donné, au voisinage de
ces masses; on obtient ainsi deux théorémes (A et B), qui sont
" la contrepartie I'un de l'autre (sans qu’il y ait toutefois réci-
‘procité). Malgré quoi, ces théorémes sont souvent décisifs. Nous
verrons en outre, en les appliquant aux exemples précédemment
étudiés, qu’ils nous conduiront & des remarques importantes,
relatives & la convergence de certaines intégrales dont ’élément
devient infini (n° 13). ‘

CHAPITRE PREMIER.

Ensembles, lignes et surfaces ayant des nombres
dimenstonnels variés.

3. — Pour donner acces aux considérations que nous allons
exposer, il est opportun de présenter d’abord quelques exemples
a la suite desquels apparaitra mieux l'utilité des notions que
nous aurons & introduire. ‘
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Nous avons déja cité au n® 1 ’ensemble triadique de Cantor
et avons montré comment une remarque de similitude permet
immeédiatement de prévoir son nombre dimensionnel.

C’est encore de remarques du méme genre que prendront nais-
sance les exemples qui vont suivre et ou nous considérerons, au
lieu d’ensembles partout discontinus, des lignes et des surfaces
de Jordan. Toutefois, avant de passer a des continus, indiquons
quelques suggestions émanant de l'exemple précédent.

Envisageons un parallélipipéde rectangle construit sur trois
vecteurs (deux a deux orthogonaux) OA, OB, OC. Sur OA
comme base, avec A pour rapport d’ablation (= rapport du seg-
ment enlevé au segment initial), construisons un premier en-
semble triadique (e«); faisons de méme sur OB et sur OC comme
bases, avec des rapports d’ablation respectivement égaux a u
et v. Soient (3) et (y) les ensembles ainsi obtenus; soit E I'en-
semble des points projetés sur OA en quelque point de («), sur
OB en quelque point de (), sur OC en quelque point de (y).
Lorsque A = p = v, 'ensemble E appartient encore a la classe
des ensembles partitifs admettant une infinité de sous-ensembles,
de diametre arbitrairement petit, semblables & ’ensemble total.
On trouve ainsi son nombre dimensionnel

3 log 2

ot

log 1

81 X, i, v sont distincts, ’ensemble E n’appartient plus & la classe
precédente, mais & une classe plus vaste obtenue en substituant
a la similitude une transformation linéaire. 11 serait cependant
facile, aprés avoir imposé au nombre dimensionnel de E, que
nous désirons définir, quelques postulats géométriques trés
simples, de trouver sa valeur qui est ici

G = log Z -+
log T log

log 2 log 2

+ 8
1
Ogl-——v

T—up
En utilisant un autre mode de définition, ce fait sera d’ail-
leurs justifié plus loin (n° 12).

4. — Occupons-nous maintenant des lignes de Jordan. Il va
sans dire qu’une ligne rectifiable, dans la théorie qui nous occupe,
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devra jouer le réle d’un ensemble partitif et avoir pour nombre
dimensionnel 'unité. - .

Nous allons montrer la possibilité de définir des lignes dont le
nombre dimensionnel surpasse 'unité. Dans ce but, nous utilise-
rons justement les mémes remarques de similitude que précé-

demment. Nous définirons les courbes en question au moyen

d’une suite de lignes polygonales inscrites: soit Ly la ligne poly-
gonale inscrite ‘d’ordre %; nous nous conformerons aux condi-
tions suivantes:

1o Les sommets de Ly sont aussi des sommets de Lk+1, quel
que soit k. ~

20 La figure formée par un coté de Ly et le trongon de L1 subs-
titué & ce coté est définie & une similitude pres.

A' Bl
0 A 12
A’ B’
O A B c
Fig. 1.

Par exemple, on divise I'unité de longueur OGC (choisie pour
L,) en trois parties égales OA = AB = BC; sur AB on construit
un carré; soit A’ B’ le c6té opposé & AB; d’un c6té de Ly, on
passe au trongon associé de Li4i par une construction semblable
a celle qui remplace OC par OA A’ B’ BC: ce contour polygonal
sera justement notre ligne L,; au-dessous de lui, sur le dessin ci-
contre, nous avons représenté L. On imagine ainsi facilement
une succession de lignes crénelées tendant vers la courbe, et
d’aprés le processus qui permet leur obtention, on pourra dé-
finir sur cette courbe des arcs d’étendue égale. La définition sera
immédiate pour les arcs dont les extrémités ont été obtenues

rl
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comme sommets de lignes inscrites; ces sommets formant un
ensemble partout dense sur la courbe en question, on passera
facilement de ce cas particulier au cas général.

Notre courbe posséde donc une métrique propre et, par suite,
on peut y définir une répartition uniforme de masses. On voit
de plus que lorsqu’on partage en 3 parties égales I’étalon de
longueur OC, Pétalon associé d’étendue sur notre courbe (c’est-
a-dire la totalité de celle-ci) se subdivise en 5 parties égales. Nous
en déduisons comme précédemment que cette étendue se rap-
porte au nombre dimensionnel

lo
5 — 1085
log 3
5. — Le processus que nous venons d’indiquer peut étre varié

de différentes maniéres, en conservant les deux conditions de
liaison de Lyii a L. Nous nous dispenserions d’insister s’il ne
nous semblait intéressant d’attirer I'attention sur des cas parti-
culiers qui se présentent dans cette théorie et qui en font mieux
comprendre les aspects variés.

Prenons encore pour L; I'unité de longueur OC et partageons-la
en 3 parties égales OA = AB = BC. Nous supposerons que L,
est une ligne gauche, que nous avons représentée sur le dessin
cl-contre en perspective: cette ligne a 9 cotés et la figure formée

A R'
A" \ 3"
o o -
A

e B/”
Fig. 2.

par A, B et les 6 sommets interpolés entre eux est un cube. Nous
pouvons répéter sur cet exemple tout ce que nous avons dit a
propos du précédent: le nombre dimensionnel aura ici pour
valeur

5 log 9

= -2 — 2 .
log 3
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Cet exemple nous suggére existence de continus possédant

un méme nombre dimensionnel malgré leurs structures trés diffé-
rentes; tel est le cas du continu précédent d’une part, de ’en-
semble des points d’un carré, d’autre part.
A cette occasion, remarquons que l’exemple indiqué au n°® 3
permettrait d’obtenir des ensembles parfaits discontinus de
nombre dimensionnel égal ou bien & 1, ou bien & 2: ces ensembles
sont réalisés, dans un espace & 3 dimensions. Dans la théorie de
la mesure de M. Lebesgue les ensembles parfaits discontinus
mesurables en volume (auxquels on devra attribuer un nombre
dimensionnel égal & 3) sont classiquement connus.

6. — Dans les exemples de courbes donnés au n® 4 et 5, on
peut disposer des indéterminées (subsistant aux conditions qui
lient Lxyq & L;) de maniére a ce que les lignes obtenues soient
sans point double.

D’ailleurs, la présence de points doubles serait ici sans impor-
tance. Il y a un exemple classique ou de tels points existent et
qu’on peut rattacher & nos considérations actuelles: c’est celui

A, B
1 ¢ 7
2 5 8
3 4 g
D c
Fig. 3.

de la courbe de Peano. On obtient en effet une telle courbe par
une construction respectant les deux conditions du n° 4. Soit
ABCD un carré de coté égal a 'unité de longueur. On partage
encore I'unité en trois parties égales, si nous prenons pour L, la
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diagonale AC du carré, la seconde ligne polygonale inscrite Li,
sera formée avec des diagonales de nos carrés divisionnaires,
prises dans Pordre de succession indiqué par la figure. Pour
passer d’une ligne inscrite & la suivante, on fera toujours sur
chaque coté, & une similitude preés, la méme construction. Fi-
nalement, nous pourrons encore (quelque paradoxal que cela
puisse sembler) définir sur la courbe de Peano ainsi construite
des arcs de méme étendue: on commencera par le cas, immeédiate-
ment résolu, d’arcs ayant leurs extrémités en des nceuds du
réseau progressif, obtenu a partir du carré par subdivision
ternaire indéfini, on passera encore de la au cas général en remar-
quant que I’ensemble des nocuds précédents est partout dense
sur la courbe de Peano. Bien entendu, le nombre dimensionnel
est ic1 égal & 2.

6 bis. — Partant de la courbe étudiée au n® 4 ou de la courbe
de Peano étudiée au n°® 6, on pourrait en déduire dans l'espace
des lignes analogues aux hélices. Soit M un point d’une de nos
courbes planes: menant en M la perpendiculaire au plan de la
courbe, on porterait sur cette perpendiculaire une longueur
proportionnelle au parametre qui définit d’une maniere intrin-
seque la position du point M sur la courbe. Il est facile de voir
que les lignes brisées inscrites dans cette hélice généralisée,
projetées sur le plan de la courbe initiale suivant les lignes Ly
respectent les conditions auxquelles nous nous sommes confor-
més dans la construction de ces lignes. Il s’ensuit que I'on peut
aussi définir sur ces hélices des répartitions uniformes de masses
et que la projection d’une répartition uniforme sur I’hélice est
encore une répartition uniforme sur la courbe initiale: I’hélice
aura un nombre dimensionnel égal & celui de la courbe initiale 1.

7. — Les mémes considérations permettent d’obtenir des sur-
faces de Jordan qui sont des ensembles partitifs dont les nombres

L Les résultats obtenus ici apportent, dans des cas particuliers, une contribution & ce
probléme:

Trouver une représentation paramétrique intrinséque (c¢’est-a-dire invariante par le
groupe des déplacements) d’une courbe de Jordan.

Ce probleme a ¢té résolu dans un tout autre sens, mais avee une entitre et remarquable
géncralité par M. Maurice Fréchet (Journ. de Math., t. 4, 1925, p. 281-297).
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dimensionnels pourront prendre des valeurs variées. Nous défi-
nirons ces surfaces comme limites de suites de surfaces polyé-
drales, qui pour fixer les idées, respecteront les conditions sui-
vantes: : \ | ,

1o Chaque surface polyédrale 3; de notre suite a des facettes
rectangulaires semblables, dont chaque aréte est paralléle & 'un
des trois axes de coordonnées (choisis orthogonaux);

20 Les sommets de 2, sont encore sommets de Zit;

3° La figure formée par une facette de 2, et la figure polyé-
~drale qui lui est substituée dans X4 est définie & une similitude
pres. - ‘ ‘

Par exemple, partant d’un carré (qui sera 3;) nous subdivise-
rons son aréte en 3 parties égales, puis le carré se trouvant ainsi
.partagé en 9 autres, nous laisserons subsister ceux qui sont situés
aux 4 coins et le carré central, les 4 autres se trouvant remplacés

gl

S~
a4
| Ve

| &,4 )

L

Fig. 4.

par des assemblages de facettes tels que chaque assemblage
forme un cube avec la facette qu’il remplace: nous avons repré-
senté ci-contre la forme de la surface 2, ainsi obtenue. Cela
posé, en itérant indéfiniment cette opération, nous pourrons
obtenir une portion de surface, image topologique d’un carré:
sur cette surface, on pourra définir des étendues égales, -délimi-
tées par des lignes fermées simples de Jordan: cela sera immédiat
lorsque ces lignes seront des lignes brisées empruntant leurs arétes
aux facettes des surfaces polyédrales 2,. Comme toute ligne de
notre surface finale est d’ailleurs la limite de telles lignes brisées,
- on généralise aisément la notion de I’étendue délimitée par une
courbe simple de la surface, en spécifiant par exemple qu’il
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s’agit soit du domaine ouvert, soit du domaine fermé qu’elle
délimite. Cette étendue sera comparée a celle de la surface
totale, prise pour unité (par exemple). Lorsqu’on subdivise
'unité de longueur en 3 parties égales, P'étalon de I'étendue
actuellement considérée se subdivise en 25 parties égales. Le
nombre dimensionnel est dongc ici

log 25 _log < log 27>
8—_‘log3—_‘210g3' <log3

Indiquons sans insister qu’on pourrait beaucoup varier les
considérations précédentes, et a ’exemple de ce que nous avons
vu au n® 4, tirer parti de transformations linéaires qui sup-
planteraient les similitudes intervenues ici.

CuapriTre II.

L’allure d’un potentiel au voisinage de U'ensemble potentiant.
Application au probléme de Dirichlet.

8. — Au cours des travaux récents sur le probleme de Dirichlet,
on a pris ’habitude de raisonner avec le maximum de généra-
lité; on formule I’énoncé de la maniére suivante:

Soit un domaine ouvert Q (c¢’est-a-dire exclusivement composé
de points intérieurs) tout entier a distance finie; soit X la fron-
tiere de ce domaine, dont on sait seulement:

1o Qu’elle constitue un ensemble fermé;

20 Qu’elle comprend nécessairement un continu externe.

On donne une fonction continue f(Q) sur I’ensemble fermé 3.
et on cherche a trouver une fonction F (P), harmonique dans Q,
et possédant en général, en chaque point de X, une valeur limite
unique égale a f(Q), I'ensemble des points exceptionnels étant
aussl raréfié que possible.

J’al présenté une étude détaillée de ce probléme, envisagé
avec ce degré de généralité dans mon mémoire des Annales de la
Société Polonaise de Mathématique (t. IV, année 1925, p. 59-
112), qui est en méme temps la rédaction des lecons que j’ai
faites sur cette question, pendant le dernier trimestre de 1925,
& 'Université de Cracovie.
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