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inégalités, les ensembles étudiés pouvant de ce fait présenter une
généralité beaucoup plus grande que les ensembles tombant sous
le coup des considérations de M. Haussdorff, une moins grande
homogénéité dans la structure se trouvait requise et par là, je
me rapprochais du caractère presque complètement arbitraire
des ensembles formant la frontière d'un domaine pour lequel on
cherche à résoudre le problème de Dirichlet, par exemple.

Ces remarques permettront d'apercevoir de prime abord l'esprit

dans lequel est rédigé le présent travail. Dans un premier
chapitre, pour accoutumer le lecteur à la considération du nombre
dimensionnel, nous avons formé différents exemples, aussi

simples que possible, et qui de ce fait même, se rapportent à des

ensembles partitifs. Ces exemples, intéressants par eux-mêmes,
montrent notamment que les courbes rectifiables ne sont qu'un
cas particulier d'une famille de courbes beaucoup plus générales,
"douées d'une métrique, fournissant une représentation intrinsèque.

Dans le second chapitre, nous montrons que là considération
du nombre dimensionnel d'un ensemble permet, d'une manière
incomplète, mais suffisante dans beaucoup d'applications, dè

caractériser les ensembles impropres du problème de Dirichlet:
on étudie pour cela l'allure du potentiel produit par une répartition

de masses, placée sur l'ensemble donné, au voisinage de

ces masses; on obtient ainsi deux théorèmes (A et B), qui sont
la contrepartie l'un de l'autre (sans qu'il y ait toutefois
réciprocité). Malgré quoi, ces théorèmes sont souvent décisifs. Nous

verrons en outre, en les appliquant aux exemples précédemment
étudiés, qu'ils nous conduiront à des remarques importantes,
relatives à la convergence de certaines intégrales dont l'élément
devient infini (n° 13).

Chapitre Premier.

Ensembles,lignes et surfaces ayant des nombres

dimensionnels variés.

3. — Pour donner accès aux considérations que nous allons

exposer, il est opportun de présenter d'abord quelques exemples
à la suite desquels apparaîtra mieux l'utilité des notions que
nous aurons à introduire.
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Nous avons déjà cité au n° 1 l'ensemble triadique de Cantor
et avons montré comment une remarque de similitude permet
immédiatement de prévoir son nombre dimensionnel.

C'est encore de remarques du même genre que prendront
naissance les exemples qui vont suivre et où nous considérerons, au
lieu d'ensembles partout discontinus, des lignes et des surfaces
de Jordan. Toutefois, avant de passer à des continus, indiquons
quelques suggestions émanant de l'exemple précédent.

Envisageons un parallélipipède rectangle construit sur trois
vecteurs (deux à deux orthogonaux) OA, OB, OC. Sur OA
comme base, avec X pour rapport d'ablation rapport du
segment enlevé au segment initial), construisons un premier
ensemble triadique (a); faisons de même sur OB et sur OC comme
bases, avec des rapports d'ablation respectivement égaux à

et v. Soient (ß) et (y) les ensembles ainsi obtenus; soit E
l'ensemble des points projetés sur OA en quelque point de (a), sur
OB en quelque point de (/3), sur OC en quelque point de (y).
Lorsque X uv, l'ensemble E appartient encore à la classe
des ensembles partitifs admettant une infinité de sous-ensembles,
de diamètre arbitrairement petit, semblables à l'ensemble total."
On trouve ainsi son nombre dimensionnel
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si X, [x, v sont distincts, l'ensemble E n'appartient plus à la classe

précédente, mais à une classe plus vaste obtenue en substituant
à la similitude une transformation linéaire. Il serait cependant
facile, après avoir imposé au nombre dimensionnel de E, que
nous désirons définir, quelques postulats géométriques très
simples, de trouver sa valeur qui est ici
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En utilisant un autre mode de définition, ce fait sera d'ailleurs

justifié plus loin (n° 12).

4. — Occupons-nous maintenant des lignes de Jordan. Il va
sans dire qu'une ligne rectifiable, dans la théorie qui nous occupe,
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devra jouer le rôle d'un ensemble partitif et avoir pour nombre
dimensionnel l'unité.

Nous allons montrer la possibilité de définir des lignes dont le
nombre dimensionnel surpasse l'unité. Dans ce but, nous utiliserons

justement les mêmes remarques de similitude que
précédemment. Nous définirons les courbes en question au moyen
d'une suite de lignes polygonales inscrites : soit L* la ligne
polygonale inscrite d'ordre A; nous nous conformerons aux conditions

suivantes :

1° Les sommets de L& sont aussi des sommets de L*+i, quel
que soit A.

2° La figure formée par un côté de L* et le tronçon de L^i substitué

à ce côté est définie à une similitude près.

Ar B'

Fig. 1.

Par exemple, on divise l'unité de longueur OG (choisie pour
Lx) en trois parties égales OA AB BG; sur AB on construit
un carré; soit A'B' le côté opposé à AB; d'un côté de L*, on

passe au tronçon associé de L^+i par une construction semblable
à celle qui remplace OC par OA A' B' BG: ce contour polygonal
sera justement notre ligne L2; au-dessous de lui, sur le dessin ci-
contre, nous avons représenté L3. On imagine ainsi facilement
une succession de lignes crénelées tendant vers la courbe, et
d'après le processus qui permet leur obtention, on pourra
définir sur cette courbe des arcs d'étendue égale. La définition sera
immédiate pour les~ arcs àont les extrémités ont été obtenues
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comme sommets de lignes inscrites; ces sommets formant un
ensemble partout dense sur la courbe en question, on passera
facilement de ce cas particulier au cas général.

Notre courbe possède donc une métrique propre et, par suite,

on peut y définir une répartition uniforme de masses. On voit
de plus que lorsqu'on partage en 3 parties égales l'étalon de

longueur OC, l'étalon associé d'étendue sur notre courbe (c'est-
à-dire la totalité de celle-ci) se subdivise en 5 parties égales. Nous

en déduisons comme précédemment que cette étendue se

rapporte au nombre dimensionnel

* log 5
~~

Jog 3
•

5. — Le processus que nous venons d'indiquer peut être varié
de différentes manières, en conservant les deux conditions de

liaison de L^+i à L*. Nous nous dispenserions d'insister s'il ne
nous semblait intéressant d'attirer l'attention sur des cas
particuliers qui se présentent dans cette théorie et qui en font mieux
comprendre les aspects variés.

Prenons encore pour Lx l'unité de longueur OC et partageons-la
en 3 parties égales OA — AB BC. Nous supposerons que L2
est une ligne gauche, que nous avons représentée sur le dessin
ci-contre en perspective : cette ligne a 9 côtés et la figure formée

A B

o

A" \ b"

B
a

uzA
Fig. 2.

B m

par A, B et les 6 sommets interpolés entre eux est un cube. Nous
pouvons répéter sur cet exemple tout ce que nous avons dit à

propos du précédent: le nombre dimensionnel aura ici pour
valeur

8 Î2K-? 2
log 3
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Cet exemple nous suggère l'existence de continus possédant
un même nombre dimensionnel malgré leurs structures très
différentes; tel est le cas du continu précédent d'une part, de
l'ensemble des points d'un carré, d'autre part.

A cette occasion, remarquons que l'exemple indiqué au n° 3

permettrait d'obtenir des ensembles parfaits discontinus de
nombre dimensionnel égal ou bien à 1, ou bien à 2: ces ensembles
sont réalisés, dans un espace à 3 dimensions. Dans la théorie de
la mesure de M. Lebesgue les ensembles parfaits discontinus
mesurables en volume (auxquels on devra attribuer un nombre
dimensionnel égal à 3) sont classiquement connus.

6. — Dans les exemples de courbes donnés au nos 4 et 5, on
peut disposer des indéterminées (subsistant aux conditions qui
lient Lfc-j-i à L/c) de manière à ce que les lignes obtenues soient
sans point double.

D'ailleurs, la présence de points doubles serait ici sans importance.

Il y a un exemple classique où de tels points existent et
qu'on peut rattacher à nos considérations actuelles: c'est celui

A ß

de la courbe de Peano. On obtient en effet une telle courbe par
une construction respectant les deux conditions du n° 4. Soit
ABCD un carré de côté égal à l'unité de longueur. On partage
encore l'unité en trois parties égales, si nous prenons pour Lx la
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diagonale AC du carré, la seconde ligne polygonale inscrite L2

sera formée avec des diagonales de nos carrés divisionnaires,
prises dans l'ordre de succession indiqué par la figure. Pour

passer d'une ligne inscrite à la suivante, on fera toujours sur

chaque côté, à une similitude près, la même construction.
Finalement, nous pourrons encore (quelque paradoxal que cela

puisse sembler) définir sur la courbe de Peano ainsi construite
des arcs de même étendue : on commencera par le cas, immédiatement

résolu, d'arcs ayant leurs extrémités en des noeuds du
7 ty

réseau progressif, obtenu à partir du carré par subdivision
ternaire indéfini, on passera encore de là au cas général en remarquant

que l'ensemble des nœuds précédents est partout dense

sur la courbe de Peano. Bien entendu, le nombre dimensionnel
est ici égal à 2.

6 bis. — Partant de la courbe étudiée au n° 4 ou de la courbe
de Peano étudiée au n° 6, on pourrait en déduire dans l'espace
des lignes analogues aux hélices. Soit M un point d'une de nos
courbes planes: menant en M la perpendiculaire au plan de la

courbe, on porterait sur cette perpendiculaire une longueur
proportionnelle au paramètre qui définit d'une manière intrinsèque

la position du point M sur la courbe. Il est facile de voir
que les lignes brisées inscrites dans cette hélice généralisée,
projetées sur le plan de la courbe initiale suivant les lignes L/.

respectent les conditions auxquelles nous nous sommes conformés

dans la construction de ces lignes. Il s'ensuit que l'on peut
aussi définir sur ces hélices des répartitions uniformes de masses
et que la projection d'une répartition uniforme sur l'hélice est

encore une répartition uniforme sur la courbe initiale: l'hélice
aura un nombre dimensionnel égal à celui de la courbe initiale h

7. — Les mêmes considérations permettent d'obtenir des
surfaces de Jordan qui sont des ensembles partitifs dont les nombres

i Les résultats obtenus ici apportent, dans des cas particuliers., une contribution à ce
problème :

Trouver une représentation paramétrique intrinsèque (c'est-à-dire invariante par le
groupe des déplacements) d'une courbe de Jordan.

Ce problème a été résolu dans un tout autre sens, mais avec une entière et remarquable
généralité par M. Maurice Fréchet (Journ. de Math., t. 4, 1925, p. 281-297).
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dimensionnels pourront prendre des valeurs variées. Nous
définirons ces surfaces comme limites de suites de surfaces polyé-
drales, qui pour fixer les idées, respecteront les conditions
suivantes:

1° Chaque surface polyédrale 2* de notre suite a des facettes
rectangulaires semblables, dont chaque arête est parallèle à l'un
des trois axes de coordonnées (choisis orthogonaux);

2° Les sommets de 2* sont encore sommets de 2jt+t ;

3° La figure formée par une facette de 2 et la figure polyédrale

qui lui est substituée dans 2*+i est définie à une similitude
près.

Par exemple, partant d'un carré (qui sera 2X) nous subdiviserons

son arête en 3 parties égales, puis le carré se trouvant ainsi
partagé en 9 autres, noiis laisserons subsister ceux qui sont situés
aux 4 coins et le carré central, les 4 autres se trouvant remplacés

par des assemblages de facettes tels que chaque assemblage
forme un cube avec la facette qu'il remplace : nous avons représenté

ci-contre la forme de la surface 22 ainsi obtenue. Cela

posé, en itérant indéfiniment cette opération, nous pourrons
obtenir une portion de surface, image topologique d'un carré:
sur cette surface, on pourra définir des étendues égales, délimitées

par des lignes fermées simples de Jordan: cela sera immédiat
lorsque ces lignes seront des lignes brisées empruntant leurs arêtes

aux facettes des surfaces polyédrales 2*. Comme toute ligne de

notre surface finale est d'ailleurs la limite de telles lignes brisées,
on généralise aisément la notion de l'étendue délimitée par une
courbe simple de la surface, en spécifiant par exemple qu'il
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s'agit soit du domaine ouvert, soit du domaine fermé qu'elle
délimite. Cette étendue sera comparée à celle de la surface

totale, prise pour unité (par exemple). Lorsqu'on subdivise

l'unité de longueur en 3 parties égales, l'étalon de l'étendue

actuellement considérée se subdivise en 25 parties égales. Le

nombre dimensionnel est donc ici

Indiquons sans insister qu'on pourrait beaucoup varier les

considérations précédentes, et à l'exemple de ce que nous avons

vu au n° 4, tirer parti de transformations linéaires qui
supplanteraient les similitudes intervenues ici.

Uallured'un potentiel au voisinage de Vensemble potentiant.
Application au problème de Dirichlet.

8. —- Au cours des travaux récents sur le problème de Dirichlet,
on a pris l'habitude de raisonner avec le maximum de généralité;

on formule l'énoncé de la manière suivante:
Soit un domaine ouvert Q (c'est-à-dire exclusivement composé

de points intérieurs) tout entier à distance finie ; soit la frontière

de ce domaine, dont on sait seulement:
1° Qu'elle constitue un ensemble fermé;
2° Qu'elle comprend nécessairement un continu externe.
On donne une fonction continue /(Q) sur l'ensemble fermé 2.

et on cherche à trouver une fonction F (P), harmonique dans Q,
et possédant en général, en chaque point de 2, une valeur limite
unique égale à / (Q), l'ensemble des points exceptionnels étant
aussi raréfié que possible.

J'ai présenté une étude détaillée de ce problème, envisagé
avec ce degré de généralité dans mon mémoire des Annales de la
Société Polonaise de Mathématique (t. IV, année 1925, p. 59-
112), qui est en même temps la rédaction des leçons que j'ai
faites sur cette question, pendant le dernier trimestre de 1925,
à l'Université de Cracovie.

log 3 log 3

Chapitre II.
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