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SUR L'INTÉGRATION DES ÉQUATIONS
DIFFÉRENTIELLES

PAR

E. Laine (Angers)

1. — Sophus Lie a déduit de la théorie des transformations de

contact une méthode bien connue d'intégration de l'équation
différentielle du 1er ordre,

F (x,y y px) — a

où nous écrivons p1 à la place de y'. Cette méthode consiste à

déterminer une intégrale, distincte de F cte, du système
différentiel

_
öF

dxdy ö Pi
P1

\dx)
où l'on a posé

/rfFy_ ôf ÔF

\d.r / ö x

Soit $(#, ?/, Px) cte une telle intégrale. L'éhmination de px
entre les équations

F a,$ aj

donne l'intégrale générale de l'équation proposée.
Je me propose, dans le présent travail, de généraliser cette

méthode pour l'intégration des équations d'ordre supérieur au
premier1.

i Cf. Comptes rendus de l'Académie des Scien,1923, 1er semestre, p. 1600.
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2. — Nous appellerons élément du 72ième ordre, dans le plan
tout ensemble de valeurs des variables /q,

Quand nous aurons à considérer des fonctions de ces variables,
nous nous placerons toujours dans des domaines d'analyticité.

Si l'on établit, entre les variables + 1 relations
distinctes, on obtient oo1 éléments d'ordre on peut alors supposer
que x,y, pisontfonctions d'une même variable, par exemple.
On dira que ces éléments forment une multiplicité quand
on aura identiquement

dy — Pldx0 dp1 — p2dx— 0 dp ^ — — 0 (J)

Les équations x x(t),y définissent alors en général
une courbe, qui est le support ponctuel de la multiplicité. Il
peut se faire que le support ponctuel se réduise à un point: les

équations (1) montrent alors que i sont
constants, et que pn reste arbitraire.

Notons encore que la multiplicité mn est complètement
déterminée par la donnée de son support ponctuel.

De toute courbe y f(x) du plan xy, on déduit une multiplicité

mn en posant

Pif'{x) P2 f"(*) •••

3. — Soit

cd Xj (dy— Pldx)+ + —

une forme de Pfafî où les A sont des fonctions arbitraires, non
toutes nulles, des variables x,y,Je dis que cette forme est
au moins de classe 3. En effet, s'il n'en était pas ainsi, on pourrait,
en la multipliant au besoin par un facteur convenable, la
supposer de classe 1; il existerait donc une fonction U(x, px)
telle que

d U \(dy— Pldx+ •• + — •

On en déduirait d'abord
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puis
öU l— \Pl \••• *nPn

et par suite

öU öU 5U bU
~— ~J- p| -— -f~ P„ 0 0
bar ^ öt/ *Pn-l *Pn

ce qui entraînerait nécessairement U cte: les coefficients X

seraient donc tous nuls, contrairement à l'hypothèse.
Nous allons maintenant généraliser un peu la notation des

crochets de Jacobi. Etant données deux fonctions des variables
xi ViPii • • • Pn7soient X et Y, nous poserons

rv vi _*xfdY\ÖY
L ' ]n~*Pn\<**J *P,\dx) '

le symbole {fa)désignant l'expression

0 ô ô

rr. + ^77 + ••• + Pnbx llùy ô/V-i

On vérifie immédiatement les relations

[X, X]„ 0 [X, Y], - IY, XX, [F(X), 4>(Y)]„ g fj* [X, Y]„

Soient encore U, V, W trois fonctions des variables x, ;

on aura identiquement

bU bV ôW
^[V>w]» + f^[W' ^ u. =0 • <2>

et aussi

(g) (V. Wj, + (g) [W, U]„ + [ü. V), 0 (3)

Nous dirons enfin que deux fonctions F et $ sont involution
d'ordre n quand on a

0
> (/j)

ce qui a lieu en particulier si F et $ sont indépendants de pn.
L'équation (4), où l'on considère 3> comme une fonction inconnue,
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admet, outre la solution manifeste F, intégrales distinctes. Ceci
ö F

est évident si F dépend de pn.Si — 0, notons qu'on ne

pourra avoir 0 que si F se réduit à une constante, hypothèse

que nous écarterons ; l'équation (4) se réduit donc à 0,

et elle admet encore n+ 1 intégrales distinctes, par exemple

yi Pii ' ' "i p?i-i•

On déduit des formules (2) et (3) que deux fonctions en
involution avec une troisième qui ne se réduit pas à une constante
sont en involution entre elles.

Soient X et Y deux fonctions des variables x1 Je dis que
si l'on peut trouver une troisième fonction P telle que l'on ait
l'identité

d\— P dX.— Xj (dy— p1 dx)—{— Xg (dpi — j— •.

+ 1 — ' (5)

les coefficients X n'étant pas tous nuls, les fonctions X et Y sont
en involution.

En effet, en identifiant les deux membres de la relation (5), on
a successivement

öY pöX \Pi \P2 ^
ö.x- iri nfn

öY nöX ö Y ^ ÖX-P— Ai -—_P -Xi 1, 2, — 1) (6)öy 0 y 0pi ùpi *+'

sY-p— 0.
dp,i

Eliminons les X entre les équations (6) des deux premières
lignes; on obtient d'abord

£)-'(£) •
d'où, en tenant compte de la dernière équation (6),

[X, Y] 0
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4. — Nous avons vu qu'une multiplicité mn était définie par

n -f- 1 relations distinctes entre pn- Il est clair que
ces relations ne peuvent être prises arbitrairement, car pour
qu'elles définissent une multiplicité il faut qu'elles aient pour
conséquences les équations (1): la condition est d'ailleurs
suffisante.

Soient Xx, X2, Xn+i, (n+ 1) fonctions de #,..., pn.
Nous allons chercher à quelles conditions les équations

•xi(*> y> Pi) ai> •••> xn+l(x> y> Pi) an+l (7)

définissent, quelles que soient les valeurs données aux constantes
arbitraires aï,une multiplicité mn.

Remarquons d'abord que les n+ 1 fonctions X doivent être
distinctes. En effet, si elles vérifiaient une relation telle que

6 (Xj, X2, X/J+1) 0

les équations (7) ne seraient compatibles que pour les valeurs
de a1? dn+i satisfaisant à la condition

0 a.., ctnj — o

et dans ce cas elles se réduiraient à n équations distinctes au

plus: elles ne pourraient donc définir une multiplicité mn.
Ceci posé, les équations (1) devant être des conséquences des

équations (7), on devra pouvoir trouver +1) coefficients
tels que l'on ait identiquement

oc^ c?Xj |1 &2 dX.^I ••• I —• "doc

ai dXi-f- a 2dX2+an_|_i —
'

: (8)

a ?dX1+ a ldX%+ 4- a;;+l^X/i+1 =s — pndx

Il est impossible de tirer du tableau un déterminant d'ordre
n qui soit nul. En effet, supposons par exemple que l'on ait- '

11 1
Ct^ OC^

2 2 2

al a2 • ' • a/i A
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On pourrait alors trouver ncoefficients non tous nuls Xl7 X2,

Xn tels que l'on ait identiquement

\(dV — Pidx)+ ••• +\i(dPn-\ — Pndx) dXn+l '

ce qui est impossible, puisque la forme de Pfaff qui figure au

premier membre est au moins de classe 3.

On pourra donc résoudre le système (8) par rapport à

quelconques des différentielles dX^...,i; on aura par exemple

dXi+ UirfXn + l \\{dy—Pi+— + 1 —

(i — 1 2 7?)

Les fonctions Lfi sont, à un facteur non nul près, des déterminants

d'ordre n tirés du tableau (otf) ; elles sont donc différentes
de zéro. Les coefficients [É,^nepeuvent être tous nuls,
puisque X* et Xn+i sont des fonctions distinctes. Ainsi, pour que
les équations (7) définissent une multiplicité mni il est nécessaire

que l'on ait
[Xi> x*l„ 0

quels que soient les indices iet k
»

Nous allons montrer que ces conditions sont suffisantes. En
effet, supposons-les vérifiées, et. cherchons s'il est possible de

trouver n (n+ 1) coefficients ofivérifiantles équations (8).
La première donne, par identificalion,

iöX ibx2 öX„+i
ai~^ + a-*j^ + - + a»+i + Pi •

ift \ i ?» V * X
1 u, 1 u

i i 1
oc. -4-a» —- -4- 4- a

« + 1

+ a^ + - + Vi^-1 =01 2 *y ^ "• T "+1

löXl
I alÖX2 1 ÖX" + 1

n
(9)

1 H- OCo -——- —J— —f— Ol 0
dPl *Pl "+1 Ô/.J

'

* •

löXl I 4 Ö X2
I 4 öX«+la + 4~ + + al

dPn 'bPn ,i + 1

ö/;
0 ;

L'Enseignement mathém., 26e année; 1927.
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ces n + 2 équations à w + 1 inconnues sont compatibles, car le
déterminant

ôX, öX2
b x

öX, öX2

öXrt+1
ö x

Pi

bX" + 1 __1
by

öXj
bpt

by by

0

• •

bX1 bX(i bX
n +1

öPn ô/',t ÖP„
0

peut s écrire encore, au signe près,

dx.'dX1
dx)1

\dx
öX, ôX2

ôp,
•

ft/'i
•

ôX, ôX2

dxdx

bX«4-1

bpi

öX fl -j- 1

dPn ô/'« ô/>«

ce dernier déterminant est égal à la somme d'un certain nombre
de termes de la forme _

A* pfi W, _ ^» [öp,, \ dxi>pn

5X,.

dx
A* |V X,]„ :

il est donc nul en vertu dès relations d'involution.

Les équations (9), qui sont compatibles, donnent d'ailleurs

pour aj, aj, a*+1 un système unique de solutions, car les

fonctions Xv Xn+i étant distinctes par hypothèse, on peut
tirer, du tableau des coefficients du système (9), au moins un
déterminant d'ordre n+ 1 qui ne soit pas nul. On verrait de

même que l'on peut toujours, et d'une seule façon, déterminer
les coefficients a\, a\demanière à satisfaire à l'équa-
tion

ai dX1 -{- -j- ah+LdXn + ]

i Pi^x »

(ï 2 3
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Ainsi, pour que les équations (7) quelles que soient
les constantes ai, une multiplicité mn, il faut et il suffit que les

fonctions Xi soient distinctes et deux à deux en involution n.
Remarquons que ceci a lieu en particulier quand tontes les

fonctions Xisont indépendantes de pn; pour tout système de

valeurs attribuées aux constantes a^ on obtient alors une multiplicité

mn dont le support ponctuel se réduit à un point.

5. — Plus généralement considérons les équations, supposées
algébriquement compatibles et distinctes,

xi (x > 2/> Pi)«i» •••> Xqix> Pi)— aq (<7 < + M » (10)

où les paramètres aq, aq ont reçu des valeurs particulières.
Elles définissent oon"«+2 éléments d'ordre n. Cherchons s'il
est possible de grouper ces éléments de façon à obtenir une
famille de multiplicités mn à n — q + i paramètres, et cela quelles
que soient les valeurs attribuées aux paramètres Il faut pour
cela et il suffit qu'on puisse adjoindre aux équations (10) n— 1

équations de la forme

X7 + I ~ aq+1' "•* X«-fl +1 ' (1R

telles que, quelles que soient les valeurs attribuées aux
paramètres ax,a2,an+i, les équations (10) et (11) définissent une
multiplicité mn.

Il faut donc tout d'abord que les fonctions Xlf Xq soient
deux à deux en involution. Cette condition est en effet,
supposons-la remplie et considérons le système linéaire

PO > H0
- [X2 > Ht[X? *]„ 0 (12)

où cï> est la fonction inconnue. Si nous posons, pour simplifier,

Pxi> *]» - >

on aura, il est facile de s'en assurer,

(V U) [[Xi, x,]„, <]»]„ o

Le système (12)- est done un système en involution; par
hypothèse, il admet les q intégrales Xx, X2, Xq; il admet
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donc en outre n—#+ 1 intégrales distinctes '

X3+i, Xn+i,
I

et toutes ces fonctions Xi seront deux à deux en involution.
Notre proposition est donc établie.

En particulier l'équation différentielle d'ordre

F (x, y, py, pn)a(13)

définit oon+1 éléments d'ordre n.Intégrercette équation, ce sera
répartir les éléments qu'elle définit suivant une famille de

multiplicités mnà nparamètres, problème équivalent à la
résolution complète de l'équation

[F X]„ 0 ; (14)

on peut donc, au moyen des opérations1 n—1,..., 2,1, intégrer
les oo1 équations différentielles représentées par l'équation (13)
où l'on donne à la constante a toutes les valeurs possibles.
L'intégration de l'équation (14) est d'ailleurs elle-même
équivalente à celle du système

dx_dy_ d
1 _ *Pn 1

1 Pi~~~~
Pn

6. — Revenons à l'équation différentielle (13), et soit

Xi (x7 y,pi) une intégrale, distincte de F, de l'équation (14).
Les équations

F aXjrtj (15)

représentent, d'après ce que nous avons vu, oo71-1 multiplicités
mUy qui sont des intégrales de l'équation proposée.

Inversement, sur toute multiplicité intégrale de l'équation (13)

on a

^-)dx+—dpn 0,dx) *Pn

ou, en vertu de la relation d'involution,

ûF r/dXA, ô

t>pn\_\dxj dpn

i GrOURSAT. Leçons sur l'intégration des équations du premier ordre, p. 88.
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D'autre part, en écartant les intégrales exceptionnelles

x — cte, on voit que la multiplicité intégrale mn ne peut annuler

sans annuler en même temps • nous appellerons

intégrales singulières les multiplicités, s'il en existe, qui satisfont

aux équations
ôF „ fd?\K a0 — 0
hpn \dx)

Sur toute intégrale non singulière de l'équation (13) on aura
donc

c'est-à-dire X1 — cte. Par suite, en faisant varier la constante al7

on pourra obtenir toutes les intégrales non singulières de l'équation

(13) à partir des équations (15).
L'élimination de pnentre ces deux équations donnera donc

une équation différentielle d'ordre n — 1 qui sera une intégrale
intermédiaire de l'équation (13). Mais cette élimination sera
inutile si l'on sait intégrer l'équation Xx ; son intégrale
générale contiendra en effet, outre a1} n constantes arbitraires,
a2, an+i, et, en portant dans l'équation F les valeurs
correspondantes de y1p11 pn, on aura une relation, indépendante

de x, entre les constantes al7 i. Compte tenu de cette
relation, l'intégrale générale de l'équation Xj fera connaître
l'intégrale générale de l'équation (13).

Considérons, par exemple, l'équation

p -j- cip -4- p"
p2 + 2D LL 0 (16)

x — y

Lie a montré 1 que cette équation admet un groupe de trois
transformations infinitésimales et en a déduit l'intégrale générale.
L'équation (16) peut s'écrire

-i / 1 _I\
F(.r y, Pi, pj ^* (X — y) + 2 \p; + P1 a ;

i Vorlesungen über Differentialgleichungen, p. 533.
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l'équation

_ôX öX «X 3ft »X[f. ^ + P.^ + + îf,^T «

admet visiblement l'intégrale Xx On a alors successivement

—i _i 1

PiPl - 2«, V —a*x + a^+ "*

En portant cette valeur de y et les valeurs correspondantes
de p± et p2dans l'équation (16) on obtient la relation

l'intégrale générale de l'équation (16) s'écrit donc

a\V a2 a ~ ^ •

axx -J- a2

Supposons, plus généralement, que l'on connaisse, outre F,
m intégrales distinctes de l'équation (14), Xx,..., Xm; les équations

F — a Xj — X,„ — atn

représentent oon~ multiplicités mn qui sont des intégrales (non
singulières) de l'équation proposée. Si, entre ces équations,
on élimine pn, pn-i, Pn-m+i> on aura une équation différentielle

d'ordre n—m qui sera une intégrale intermédiaire de la
proposée.

Dans ce cas encore il pourra être plus avantageux, pour
l'intégration effective, de déduire des équations (17) une équation
d'ordre supérieur à n—m, mais dont l'intégration soit plus simple
que celle de l'équation résultant de l'élimination de pn,..., pn-w+i •

On disposera donc de plusieurs procédés pour continuer
l'intégration, et, en dehors du cas où on intégrera l'équation d'ordre
n— m, il se présentera comme ci-dessus un calcul d'identification
fournissant une ou plusieurs relations entre les constantes
arbitraires introduites au cours du calcul, le nombre des constantes
indépendantes restant en définitive égal à

La théorie de Sophus Lie est ainsi complètement généralisée.
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7. — Nous avons vu que l'intégration de l'équation

F {oc,y; pn) a

était équivalente à celle du système.

— dpn
dxdy dPl^Pn

39

1 P1 P2 Pn
\dx

(18)

pour déterminer une solution de ce système autre que F cte

il faut en général une opération n: mais il peut arriver que, pour
certaines formes particulières de la fonction F, cette détermination
n'exige qu'une opération n'n.C'est ce qui se produira en particulier

si F satisfait à l'une des relations

dF\ ôF

J-J + Pm«ï(Pm-\>Pn)^0 ("l 1 « ï Po V)

dF\t v
ôF

+ ?(/>,„• Pm+x P«)^ 0

(m 1 Ai — 1)
/</F\ ^ôF A

1 '

\d^) + ^x- p»+i Pa)^rtt=

Dans le premier cas on tirera du système (18) l'équation

_
dPn

P"'-1 ~
• Pn) '

et on aura, par une opération 1, une intégrale première. Dans
le second cas, on aura le système

dPm dP,n dPn

P,n +1 Pm + 2 ?(Pm> Pm+1' Pn)

et on aura une intégrale première par une opération n —
Même conclusion pour le 3me cas.

Cherchons, par exemple, à déterminer la fonction F de telle
sorte que l'on ait

dv

dx
0

c'est-à-dire
ö F ö F ö F ö F

Ôtf Plny + + ~ 0
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on aperçoit immédia,tement les n + 1 solutions

OC
^

Pn'Pn—X Phx ' 'Pn—mPn—m—\X 4~ 2 2~î "*

2 r"
"• + (— V — Pi* + ^2 2~j — + X)nP**Z\

Les équations cherchées, qui généralisent à l'ordre n l'équation
de Clairaut1, peuvent donc s'écrire

9 11 '

OC oc

y ~ Pix + P251 — - + (— ^npnZ•

F désignant une fonction arbitraire, et l'on voit immédiatement
que l'intégrale générale a pour expression

x11 xn~x
y— <*1^-7 + ^2 ï~Y)!"* F (^1 ' ••• » •

Après l'équation de Clairaut, nous allons de même généraliser
à l'ordre n l'équation de Lagrange. Montrons d'abord qu'une
équation de Lagrange mise sous ïa forme

F (x, y p,)=2/ 4- + h (p,) 0

est caractérisée par le fait qu'on peut trouver deux fonctions
9 (p±) et <p (#, px) telles que l'on ait

Ö F ö F - ö F ö
h Pi— — Ö(Pi) © (x d1 (19)

On tire, en effet, de la seconde équation (19),

F EE <?(x,Pl)4y)

et la première s'écrit alors

—— 4" Pt — 0 (p.) L
(Doi à y öa?

Le premier membre de cette identité est linéaire en /q, et le
second ne contient pas y\ on peut donc écrire

d d öd»
ft*.ö ©

—~ 4" Pt — ^ (pi) ——~ :::::: ^ (•* )Pi 4" F (**) •

öa;
1 1 v

i Raffy. Bulletin de la Société mathématique dé France, t. 25, p. 71.
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On en tire

^ B'(,r) p- A (*)

ce qui montre que A est une constante qu'on peut toujours
prendre égale à 1 ; il vient alors

4 (x> y) y+ B -

D'autre part on a aussi

PHP,)-Pi-B'W
et par suite

<P x[Q(Pl) — pj — B(x) +
donc enfin

F y+ x1\{p\) + »

j1 et /2 désignant deux fondions arbitraires.
Cherchons de même les fonctions F(&, y, pn) telles que

l'on ait

F
1

ô F
i

ö F ft F ö

^ +^ + + p"^pZx~*pn ôv(a:' '

On aura d'abord

F <d(x,pn)-f ^(.x, pt p^)
et par suite

ft 'l>, ft à. ft tl ö cd

+ Plïy + "• + p^ ~ ai + B'(,r) '

On en déduit, comme précédemment,

H*') — pn A (x) B(.r) -f C(pJ
et ensuite

ft <!>, ft <!>« ft h 6^ + P'^ + - + /v.^ - B'(') ^ A'(-o
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De ces deux dernières équations on tire successivement

K Pn-1 k'(x) + +2 «. y - Pi p,,-*)

+ Air + -• + Pn»T-k-B'(*) •' — A"(-r)Ö* by ^ ' "-2 ö^„_3
^ 1

Ö
1 '

4*2 P/i—2 ^ ix) ~4~ 4.3 [x ' » /*i » ».

• 9

+ Pl B'(x) (_ 1)« A«»"1) (*)d# öy öPi

(- îr^Af-V) + ^„(x, y)

et enfin
H.. ô<]-„

» n
— B'(xy — (—l)"+1A(")(a;)

ö .r ô
y

Il en résulte immédiatement que A(n+1> est nul; A(x) est donc
un polynome de degré /&, N (x). Nous poserons

N(a?) (— 1)"+1— -f- ajO;n
1 + -j- aÄ-1# + a.n

f L •

a1? an désignant des constantes arbitraires. On aura alors

+» — V + B(x) •

et, en remontant de proche en proche,

+1 Pn-l1*» —Pn-2N"(X) + P„-3N'"{X) — ••• + V + B (*) •

Les équations cherchées sont donc de la forme

F f(pn) + *«(/»„) — P„N(.r) + pn_x N'(x) —

- (- N*"-,>(.r) + y 0 (20)

où / et 9 sont des fonctions arbitraires, et N un polynome en
/ |\"+ 1

x de degré n dont le premier coefficient est égal à v

,— les
/î •

n autres étant arbitraires.
Pour intégrer cette équation, remarquons que l'on a

lyn =f'(Pn)+*«,(Pn)-«M (S) «W ;
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le système différentiel associé fournit donc l'équation

0 ;

Pn

supposons cette équation intégrée et soit

pn oj (*,

son intégrale générale. L'équation pn cer(^, a) donne en

fonction de xpar n— 1 quadratures: on a alors et en fonction

de px sans autre intégration. Ainsi l'intégration de l'équation
(20) se ramène à celle d'une équation du premier ordre suivie
de n — 1 quadratures.

En particulier, pour n —2, on obtient les équations

y— pxx + p2 y+ «öW + f(Pt) 0

dont l'intégrale générale s'obtient par l'intégration d'une équation

de Riccati suivie d'une quadrature.

8. — Considérons, d'une façon plus générale encore, les équations

de la forme

F u{x,pn) + v(x, y,p,,pn_x) 0

dont le premier membre satisfait identiquement à une relation
telle que

fdF\ öF
(sï) + 6 (-r • P=0• (21)

Il est clair que l'équation de Lagrange, généralisée sous la
forme (20), rentre dans cette classe d'équations.

En écrivant que la fonction F satisfait à la condition (21), on
aura

5 u. ö« i) i' ö ö
— -J- 0 (x p)-|— — -{- py— -j— -j— p : 0

bx vpn 0 ^Pn-\

ou, en introduisant une inconnue auxiliaire «(#, pn),

uö u
— + ö (x pn) — + a (x pn) 0

ô v 0 i' bv
r Pi * h • • • + P„

ö yàp_x
n
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/ *

On en déduit d'abord

<x{x, pn)/?wA(.r) + B'(.r)

et par suite on a, pour déterminer p, les deux équations

Öf ^ i

57 +/^ + - + /»-I s^r2 B'(*)
Ö i' A

En se reportant au calcul qui a été fait pour généraliser l'équation

de Lagrange, on voit que A est un polynome arbitraire
de degré n — 1 : nous poserons

A (x) (— 1)
n—1 ^n-l

(n — 1) y -\- axxn ^
v-n_2x + a„_i »

«15 an_i désignant des constantes arbitraires. On aura alors

v — y — (—'1)""Vi a<"_2)W + ••• — P„-*É'(x) + tA(x) + B(.r)

et l'on voit que les équations cherchées sont de la forme

K y- (-l)"-V,A("-2|(x) +
••• — P,1-2 A'(x) + p„_, A (x) <f(x, 0 (22)

On a ici
öF Ö ©

ö/>«
et

dF\ ö©
-y— —-—|- p A (if) ;dx) hx "fl

du système différentiel associé à l'équation (22) on tire alors

l'équation
^±P+^+PnAWE 0*Pndx

et l'on voit que, dans ce cas encore, l'intégration de l'équation
proposée se ramène à celle d'une équation du premier ordre
suivie de n-—1) quadratures.

Comme exemple, on voit aisément que les équations

m-i
y —' Pi * +>2 2l — "• + (— l)'lPn-l TJ __ I) ï + + (Pn) 0 '

où / et 9 sont des fonctions arbitraires, s'intègrent par + 1

quadratures.
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Enfin, pour donner une dernière application, supposons que,
dans l'équation de condition (21), la fonction 9 se réduise à une
fonction de la seule variable xque nous désignerons par
l'équation (21) s'écrit alors

— + Pi4-+ Pn——hÖ("+1,W— 0 (23)ö# ^ Fl*y ^ Pn—\*Pn
Posons

-y.2 "
tA.' - t)P — V — Pi X + P-i 2~j — ••• + WPn '

Q#(*) (- 1)"+' T0(«)(x)+ (_ i)» 6(»-il(at) +

4* xU(.r)— 0 (.r)

n—m n—m—\

Q'»w +

+ (_
On aura d'abord

öQ„
_

^ Pa

o

ce qui montre que P + Q0 est une solution de l'équation (23).
D'autre part, on aura encore

db"!P\0> Ô^p _ 1)n
.P'-'"

"

7\ n * '«D' b.r"7
'

öp„ ôx'« (» — '») '

'dQ \ -n-tn |\f)-p) (- i)»+» * e<»+V), odx / — //i)

on en déduit n nouvelles solutions distinctes de l'équation (23),
savoir

öP ^ ôsp _ &"p
Ö.T + Q1 ' 7^2 + Q2 + Q„ •
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Les équations cherchées sont donc de la forme

F (P + Qo ' ^ + Ql • + Q") 0 '

et, comme les arguments de la fonction F sont en involution, elles

s'intègrent par des éliminations seulement, outre + 1

quadratures pour déterminer 9 {x).

9. — Nous avpns vu que la condition nécessaire et suffisante

pour que les équations

X.(x, y, px) a,Yreprésentent, quelles que soient les valeurs attribuées aux
paramètres a et 6, une multiplicité m1 est que les fonctions X et Y
soient en involution. Cherchons maintenant à quelle condition
les équations

V> Pi)0 Y(i, 0 (24)

supposées distinctes et compatibles, définiront une multiplicité

mv
On tire des équations (24), en introduisant, pour plus de

généralité, une variable auxiliaire £,

x x(t),• y=f y(t),(25)

Si ces équations définissent une multiplicité, on aura
identiquement

|M|

de plus cette multiplicité vérifiera les relations

dXd# dXdi/ dX dp1

bxdt by dt dt
(27)

bYdx ôY dy
bx dtby dt

qu'on peut encore écrire

/dX\ dxbXdPl_ 0\dx) dt
/dY\ dx ö Y

q
\dx) dt bpx dt
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On ne peut avoir simultanément

$ 0 $1 0,d t c/t

car la relation (26) donnerait alors ~ 0, et les équations (25)

définiraient un seul élément. On aura donc, sur la multiplicité (25),

[X, YJj 0: autrement dit les équations (24) ont alors pour
conséquence algébrique

[X Yfi 0 (28)

Réciproquement,supposons que les équations (24) aient pour
conséquence algébrique [X, Y]1 0. On déduit aisément, des

relations (27) et (28), les équations

dx_dy\D(XY) __Plàtdt) D ~~

n _ d-y\P(X-Y) _ 0
dldt) \0(x, px)

qui doivent être vérifiées identiquement quand on remplace
x, y, p±par leurs valeurs (25). Si les deux déterminants fonctionnels

j? ^ ^|—ne sont pas nuls tous deux, les équations
r* [y 5 Pi)
(25) définissent bien une multiplicité.

Supposons que ces deux jacobiens soient nuls, et considérons
se, ?/, p± comme les coordonnées cartésiennes rectangulaires
d'un point de l'espace à trois dimensions; les équations (24)

définissent alors une courbe. Si le iacobien était nul luiJ D(s, t/)

aussi, tous les points de cette courbe seraient des points singuliers :

on peut évidemment écarter ce cas exceptionnel. La courbe (24)
se réduit donc à une droite perpendiculaire au plan c'est-
à-dire que dans les équations (25) et sont des constantes; ces

équations représentent donc une multiplicité mx dont le support
ponctuel se réduit à un point.

En résumé, pour que les équations (24) définissent une
multiplicité, c'est-à-dire, encore, pour que les équations différentielles
(24) aient une intégrale commune, il faut et il suffit qu'elles aient
pour conséquence algébrique

[X, Y]t o
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Il est clair que*cette conclusion a une portée générale, et
l'on voit aisément comment doivent être modifiés dans ce sens
les énoncés des théorèmes généraux établis précédemment. Par
exemple, pour que les équations

^1 » V» Pi» • • • Pn)— Ö Xq [x, y } — 0

< + 1)

supposées compatibles et distinctes, définissent une famille de

multiplicités mnàn— q+ 1 paramètres, il faut et il suffit que
ces équations aient pour conséquence algébrique

Fi. X*X, °

quels que soient les indices i et h

10. — Nous pouvons déduire de ce qui précède une méthode
générale d'intégration des systèmes d'équations différentielles
à une fonction inconnue. Soit

Xj (pc, y, p1pn)— 0 (x p/{) 0

[q — n +1) (29) -

un- tel système, pn désignant la dérivée d'ordre le plus élevé qui
figure dans les fonctions Xl7 Xg, dont certaines peuvent
d'ailleurs être indépendantes de nous supposons bien entendu
que ces équations sont algébriquement compatibles.

Si toutes les équations

Fi.xj„ o

sont des conséquences algébriques du système (29), ce système
admet une famille à n—q+ 1 paramètres de multiplicités
intégrales. L'élimination de pn, pn-i, —, Pn-q+z entre les équations
(29) conduit alors à une équation différentielle d'ordre n—q + 1

qui est équivalente au système (29).
Si quelques-unes des équations

• "Fi. x,]„ o

ne sont pas des conséquences algébriques du système (29), elles

fourniront un certain nombre d'équations nouvelles

Xgr +1
®

» ••• » ^
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qui devront être vérifiées par les multiplicités intégrales du

système (29). En les adjoignant aux équations de ce système,

on obtiendra un nouveau système sur lequel on pourra raisonner
de la même façon. On arrivera donc ainsi, par des éliminations
seulement, soit à une équation différentielle unique, dont
l'intégration sera équivalente à celle du système (29), soit à des

équations algébriquement incompatibles, soit enfin à un système
de n+ 1 équations définissant des éléments isolés.

11. — Nous avons appelé précédemment intégrales singulières
de l'équation

F(,x,y, p10 (30)

les multiplicités, s'il en existe, qui satisfont aux équations

l' °- ë;, 0' (£) 0' 1311

En appliquant au système (31) la méthode indiquée au n° 10,

on voit qu'on pourra toujours, par des éliminations seulement,
reconnaître s'il existe des intégrales singulières.

Considérons d'abord le cas où le système (31) se réduit à deux
équations compatibles et distinctes; comme on peut toujours
supposer que l'équation (30) a été mise sous une forme telle

5 F
qu'elle n'entraîne pas — — 0, notre hypothèse sera donc que la

troisième équation (31) est une conséquence des deux premières.
On a alors

ôF / d öF\ ö2F

[PVJ; àpn[dxDpn) î>p2n\dï) '

et le crochet est nul en vertu des équations (31): donc ces équations

définissent oon_1 intégrales singulières, ce qui généralise
un résultat classique dans la théorie des équations du premier
ordre.

Parmi les équations de ce type, on peut citer1 les équations
de Clairaut généralisées, pour lesquelles on a

ax

i Bounitzky. Bulletin des Sciences mathématiques, t. 31, p. 250.
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M. Appell a démontré1 que pour qu'une équation

F (* - y- Pio

algébrique, entière et irréductible par rapport à y, pn,
admette une intégrale générale de la forme

y ~f~ ^23/a ~l~ ••• ~l~ \Vn-\-\ '

où les yi sont des fonctions de x linéairement indépendantes et
les Q des constantes liées par une relation algébrique entière,
il faut et il suffit qu'il existe une fonction A(a:) telle que l'expression

fdF\ôF\Tx)+Pn+^n-XF
se décompose en deux facteurs dont l'un soit linéaire et homogène
en y, plt pn+i. Soit P ce facteur; on aura alors une identité
de la forme

M. Appell ajoute que l'équation

Q 0

pourra donner des intégrales singulières.
Or remarquons que l'on peut toujours supposer le coefficient

de pn+i dans P égal à 1: on aura donc

Q - r~;*Pn.

d'ailleurs l'équation

(£) —
est dans ce cas une conséquence des équations

F o — o
*>Pn

Par suite, sous la seule condition que ces deux équations
soient algébriquement compatibles, l'équation proposée aura
effectivement oon_1 intégrales singulières.

i Comptes rendus de l'Académie des Sciences. 12 novembre 1888.
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Supposons en second lieu que les équations (31) soient
algébriquement distinctes. Elles ont pour conséquence

k.i.- M£)i=°
si donc elles entraînent en outre

ftF

*Pn' \dxJ
'rfF\l _j 0 (32)

l'équation (30) aura oon~2 intégrales singulières. Sinon on adjoindra

l'équation (32) au système (31), et on continuera suivant
la méthode indiquée au n° 10.

Soit, par exemple, l'équation

F EE 3 — 0

dont l'intégrale générale peut s'écrire

"-/{"-jw'T''"
On a ici

ft F „
/dv

0

*P2

les équations
spl — 0

> 0 px o

définissent une intégrale singulière qui est la courbe 0.
Soit encore l'équation du premier ordre

t — p1(^x2 'Sxyy — 4) —|— 2/ (3 — 4 ~ 0 ;

les trois équations

F 0, ~ 0, (Ç) 0
ïpi \dxj

sont ici distinctes, et elles déterminent six éléments du premier
ordre à distance finie

(1,0,1), (—1,0,2); (1,0,0). (—1,0,0);
(-3,-4,1), (—3,-4,2).
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L'intégrale généraleIx2—3 ocy^y2— y — 2 0

se compose de coniques qui admettent toutes les deux éléments

(1, 0, 1) et (-1, 0, 2), à l'exception de l'intégrale 0 (X infini);
les deux éléments (1, 0, 0) et (-1, 0, 0) appartiennent à cette
intégrale; enfin les deux éléments (-3, -4, 1) et (-3, -4, 2)
correspondent au point commun aux deux droites en lesquelles dégénère

la conique pour X 1.

SUR UNE NOUVELLE ET IMPORTANTE
GÉNÉRALISATION DE L'ÉQUATION DE LAPLACE

PAR

André Bloch (Paris).

1. — Dans une Note remarquable x, qui resta malheureusement

sans continuation, M. G. Giraud a établi qu'une certaine
fonction, déduite d'un système de fonctions hyperfuchsiennes,
et qui constitue un invariant différentiel de ce système par
par rapport à l'hypersphère fondamentale, satisfait à l'équation
aux dérivées partielles:

/a*« àhi\ _ / s» m y / **u _ y_ „
\ö#2 Ö2/2/\ÖS2 bl2 /\öic ö

Cette équation présente une analogie parfaite avec l'équation
bien connue A ueu de la théorie des fonctions fuchsiennes.

L'expression qui figure au premier membre est extrêmement
intéressante; nous l'appellerons double laplacien de la fonction u

i Surune équation aux dérivées partielles, non linéaire, du second ordre, se rattachant
à la théorie des fonctions hyperfuchsiennes Rendus de 1' Ac. des Sc., t. 166,
1918, p, 893).
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