Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 26 (1927)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR L'INTÉGRATION DES ÉQUATIONS DIFFÉRENTIELLES

Autor: Lainé, E.

DOI: https://doi.org/10.5169/seals-21246

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR L'INTÉGRATION DES ÉQUATIONS DIFFÉRENTIELLES

PAR

E. Lainé (Angers)

1. — Sophus Lie a déduit de la théorie des transformations de contact une méthode bien connue d'intégration de l'équation différentielle du 1^{er} ordre,

$$F(x, y, p_1) = a,$$

où nous écrivons p_1 à la place de y'. Cette méthode consiste à déterminer une intégrale, distincte de $F=c^{te}$, du système différentiel

$$\frac{dx}{1} = \frac{dy}{p_1} = \frac{-\frac{\partial F}{\partial p_1} dp_1}{\left(\frac{dF}{dx}\right)},$$

où l'on a posé

$$\left(\frac{dF}{dx}\right) = \frac{\partial F}{\partial x} + p_1 \frac{\partial F}{\partial y} .$$

Soit $\Phi(x, y, p_1) = e^{te}$ une telle intégrale. L'élimination de p_1 entre les équations

$$F = a , \quad \Phi = a_1 ,$$

donne l'intégrale générale de l'équation proposée.

Je me propose, dans le présent travail, de généraliser cette méthode pour l'intégration des équations d'ordre supérieur au premier ¹.

¹ Cf. Comptes rendus de l'Académie des Sciences, 1923, 1er semestre, p. 1600.

2. — Nous appellerons élément du $n^{\text{ième}}$ ordre, dans le plan xy, tout ensemble de valeurs des variables $x, y, p_1, ..., p_n$.

Quand nous aurons à considérer des fonctions de ces variables, nous nous placerons toujours dans des domaines d'analyticité.

Si l'on établit, entre les variables $x, y, p_i, n+1$ relations distinctes, on obtient ∞^1 éléments d'ordre n; on peut alors supposer que x, y, p_i sont fonctions d'une même variable, t, par exemple. On dira que ces éléments forment une multiplicité m_n quand on aura identiquement

$$dy - p_1 dx = 0$$
, $dp_1 - p_2 dx = 0$, ..., $dp_{n-1} - p_n dx = 0$. (1)

Les équations x = x(t), y = y(t) définissent alors en général une courbe, qui est le *support ponctuel* de la multiplicité. Il peut se faire que le support ponctuel se réduise à un point: les équations (1) montrent alors que $x, y, p_1, ..., p_{n-1}$ sont constants, et que p_n reste arbitraire.

Notons encore que la multiplicité m_n est complètement déterminée par la donnée de son support ponctuel.

De toute courbe y = f(x) du plan xy, on déduit une multiplicité m_n en posant

$$p_1 = f'(x)$$
, $p_2 = f''(x)$, ..., $p_n = f^{(n)}(x)$.

3. — Soit

$$\omega = \lambda_1 (dy - p_1 dx) + \dots + \lambda_n (dp_{n-1} - p_n dx)$$

une forme de Pfaff où les λ sont des fonctions arbitraires, non toutes nulles, des variables x, y, p_i . Je dis que cette forme est au moins de classe 3. En effet, s'il n'en était pas ainsi, on pourrait, en la multipliant au besoin par un facteur convenable, la supposer de classe 1; il existerait donc une fonction $U(x, y, p_i)$ telle que

$$d\mathbf{U} \equiv \lambda_{\mathbf{1}}(dy - p_{\mathbf{1}}dx) + \dots + \lambda_{n}(dp_{n-1} - p_{n}dx) .$$

On en déduirait d'abord

$$\frac{\partial \mathbf{U}}{\partial y} = \lambda_1$$
, $\frac{\partial \mathbf{U}}{\partial p_1} = \lambda_2$, ..., $\frac{\partial \mathbf{U}}{\partial p_{n-1}} = \lambda_n$, $\frac{\partial \mathbf{U}}{\partial p_n} = 0$,

puis

$$\frac{\partial \mathbf{U}}{\partial x} = -\lambda_1 p_1 - \lambda_2 p_2 - \dots - \lambda_n p_n$$

et par suite

$$\frac{\partial \mathbf{U}}{\partial x} + p_1 \frac{\partial \mathbf{U}}{\partial y} + \dots + p_n \frac{\partial \mathbf{U}}{\partial p_{n-1}} = 0 , \quad \frac{\partial \mathbf{U}}{\partial p_n} = 0 ,$$

ce qui entraînerait nécessairement $U = c^{te}$: les coefficients λ seraient donc tous nuls, contrairement à l'hypothèse.

Nous allons maintenant généraliser un peu la notation des crochets de Jacobi. Etant données deux fonctions des variables $x, y, p_1, \ldots p_n$, soient X et Y, nous poserons

$$[X, Y]_n = \frac{\delta X}{\delta p_n} \left(\frac{dY}{dx} \right) - \frac{\delta Y}{\delta p_n} \left(\frac{dX}{dx} \right) ,$$

le symbole $\left(\frac{d}{dx}\right)$ désignant l'expression

$$\frac{\delta}{\delta x} + p_1 \frac{\delta}{\delta y} + \dots + p_n \frac{\delta}{\delta p_{n-1}} .$$

On vérifie immédiatement les relations

$$[X, X]_n = 0$$
, $[X, Y]_n = -[Y, X]_n$, $[F(X), \Phi(Y)]_n = \frac{dF}{dX} \frac{d\Phi}{dY} [X, Y]_n$,

Soient encore U, V, W trois fonctions des variables x, y, p_i ; on aura identiquement

$$\frac{\partial \mathbf{U}}{\partial p_n} [\mathbf{V}, \mathbf{W}]_n + \frac{\partial \mathbf{V}}{\partial p_n} [\mathbf{W}, \mathbf{U}]_n + \frac{\partial \mathbf{W}}{\partial \dot{p}_n} [\mathbf{U}, \mathbf{V}]_n = 0 , \qquad (2)$$

et aussi

$$\left(\frac{d\mathbf{U}}{dx}\right)[\mathbf{V}, \mathbf{W}]_n + \left(\frac{d\mathbf{V}}{dx}\right)[\mathbf{W}, \mathbf{U}]_n + \left(\frac{d\mathbf{W}}{dx}\right)[\mathbf{U}, \mathbf{V}]_n = 0 . \quad (3)$$

Nous dirons enfin que deux fonctions F et Φ sont en involution d'ordre n quand on a

$$[F, \Phi]_n = 0 , \qquad (4)$$

ce qui a lieu en particulier si F et Φ sont indépendants de p_n . L'équation (4), où l'on considère Φ comme une fonction inconnue,

admet, outre la solution manifeste F, n intégrales distinctes. Ceci est évident si F dépend de p_n . Si $\frac{\delta F}{\delta p_n} = 0$, notons qu'on ne pourra avoir $\left(\frac{dF}{dx}\right) = 0$ que si F se réduit à une constante, hypothèse que nous écarterons; l'équation (4) se réduit donc à $\frac{\delta \Phi}{\delta p_n} = 0$, et elle admet encore n+1 intégrales distinctes, par exemple $x, y, p_1, \ldots, p_{n-1}$.

On déduit des formules (2) et (3) que deux fonctions en involution avec une troisième qui ne se réduit pas à une constante sont en involution entre elles.

Soient X et Y deux fonctions des variables x, y, p_i . Je dis que si l'on peut trouver une troisième fonction P telle que l'on ait l'identité

$$\begin{split} d\mathbf{Y} - \mathbf{P} \, d\mathbf{X} &= \lambda_1 (dy - p_1 \, dx) \, + \, \lambda_2 \, (dp_1 - p_2 \, dx) \, + \, \dots \\ &+ \, \lambda_n \, (dp_{n-1} - p_n \, dx) \ , \end{split} \tag{5}$$

les coefficients λ n'étant pas tous nuls, les fonctions X et Y sont en involution.

En effet, en identifiant les deux membres de la relation (5), on a successivement

$$\frac{\partial Y}{\partial x} - P \frac{\partial X}{\partial x} = -\lambda_1 p_1 - \lambda_2 p_2 - \dots - \lambda_n p_n$$

$$\frac{\partial Y}{\partial y} - P \frac{\partial X}{\partial y} = \lambda_1 , \quad \frac{\partial Y}{\partial p_i} - P \frac{\partial X}{\partial p_i} = \lambda_{i+1} \quad (i = 1, 2, \dots, n-1) \quad (6)$$

$$\frac{\partial Y}{\partial p_n} - P \frac{\partial X}{\partial p_n} = 0 .$$

Eliminons les λ entre les équations (6) des deux premières lignes; on obtient d'abord

$$\left(\frac{d\mathbf{Y}}{dx}\right) - \mathbf{P}\left(\frac{d\mathbf{X}}{dx}\right) = 0 ,$$

d'où, en tenant compte de la dernière équation (6),

$$[X, Y]_n = 0.$$

4. — Nous avons vu qu'une multiplicité m_n était définie par n+1 relations distinctes entre $x, y, p_1, ..., p_n$. Il est clair que ces relations ne peuvent être prises arbitrairement, car pour qu'elles définissent une multiplicité il faut qu'elles aient pour conséquences les équations (1): la condition est d'ailleurs suffisante.

Soient $X_1, X_2, ... X_{n+1}, (n+1)$ fonctions de $x, y, p_1, ..., p_n$. Nous allons chercher à quelles conditions les équations

$$X_1(x, y, p_i) = a_1, \dots, X_{n+1}(x, y, p_i) = a_{n+1}$$
 (7)

définissent, quelles que soient les valeurs données aux constantes arbitraires a_i , une multiplicité m_n .

Remarquons d'abord que les n+1 fonctions X doivent être distinctes. En effet, si elles vérifiaient une relation telle que

$$\theta\left(\mathbf{X}_{1}\,,\,\,\mathbf{X}_{2}\,,\,\,\ldots\,,\,\,\mathbf{X}_{n+1}\right)\,\equiv\,0$$
 ,

les équations (7) ne seraient compatibles que pour les valeurs de $a_1, \ldots a_{n+1}$ satisfaisant à la condition

$$\theta(a_1, \ldots, a_{n+1}) = 0$$
,

et dans ce cas elles se réduiraient à n équations distinctes au plus: elles ne pourraient donc définir une multiplicité m_n .

Ceci posé, les équations (1) devant être des conséquences des équations (7), on devra pouvoir trouver n(n+1) coefficients α_i^k tels que l'on ait identiquement

Il est impossible de tirer du tableau (α_i^k) un déterminant d'ordre n qui soit nul. En effet, supposons par exemple que l'on ait

$$\left| \begin{array}{cccc} \alpha_1^1 \, \alpha_2^1 \, \dots \, \alpha_n^1 \\ \alpha_1^2 \, \alpha_2^2 \, \dots \, \alpha_n^2 \\ & \ddots & \ddots \\ \alpha_1^n \, \alpha_2^n \, \dots \, \alpha_n^n \end{array} \right| = 0 \; .$$

On pourrait alors trouver n coefficients non tous nuls λ_1 , λ_2 , ..., λ_n tels que l'on ait identiquement

$$\lambda_{1}(dy - p_{1}dx) + \dots + \lambda_{n}(dp_{n-1} - p_{n}dx) = \left(\sum_{i=1}^{n} \lambda_{i} \alpha_{n+1}^{i}\right) dX_{n+1} ,$$

ce qui est impossible, puisque la forme de Pfaff qui figure au premier membre est au moins de classe 3.

On pourra donc résoudre le système (8) par rapport à n quelconques des différentielles $dX_1, ..., dX_{n+1}$; on aura par exemple

$$\begin{split} d\mathbf{X}_i + \mathbf{U}_i d\mathbf{X}_{n+1} &= \mu_i^1 (dy - p_1 dx) + \ldots + \mu_i^n (dp_{n-1} - p_n dx) \\ (i &= 1 \;,\; 2 \;,\; \ldots \;,\; n) \;\;. \end{split}$$

Les fonctions U_i sont, à un facteur non nul près, des déterminants d'ordre n tirés du tableau (α_i^k) ; elles sont donc différentes de zéro. Les coefficients μ_i^1 , ..., μ_i^n ne peuvent être tous nuls, puisque X_i et X_{n+1} sont des fonctions distinctes. Ainsi, pour que les équations (7) définissent une multiplicité m_n , il est nécessaire que l'on ait

$$[X_i, X_k]_n = 0$$

quels que soient les indices i et k.

Nous allons montrer que ces conditions sont suffisantes. En effet, supposons-les vérifiées, et cherchons s'il est possible de trouver n (n + 1) coefficients α_i^k vérifiant les équations (8).

La première donne, par identification,

ces n+2 équations à n+1 inconnues sont compatibles, car le déterminant

peut s'écrire encore, au signe près,

$$\begin{vmatrix}
\left(\frac{dX_{1}}{dx}\right) & \left(\frac{dX_{2}}{dx}\right) & \cdot & \cdot & \left(\frac{dX_{n+1}}{dx}\right) \\
\frac{\delta X_{1}}{\delta p_{1}} & \frac{\delta X_{2}}{\delta p_{1}} & \cdot & \cdot & \frac{\delta X_{n+1}}{\delta p_{1}} \\
\cdot & \cdot & \cdot & \cdot \\
\frac{\delta X_{1}}{\delta p_{n}} & \frac{\delta X_{2}}{\delta p_{n}} & \cdot & \cdot & \frac{\delta X_{n+1}}{\delta p_{n}}
\end{vmatrix};$$

ce dernier déterminant est égal à la somme d'un certain nombre de termes de la forme

$$\mathbf{A}_{i}^{k} \left[\frac{\delta \mathbf{X}_{i}}{\delta p_{n}} \left(\frac{d \mathbf{X}_{k}}{d x} \right) - \frac{\delta \mathbf{X}_{k}}{\delta p_{n}} \left(\frac{d \mathbf{X}_{i}}{d x} \right) \right] = \mathbf{A}_{i}^{k} \left[\mathbf{X}_{i}, \ \mathbf{X}_{k} \right]_{n} :$$

il est donc nul en vertu des relations d'involution.

Les équations (9), qui sont compatibles, donnent d'ailleurs pour α_1^1 , α_2^1 , ... α_{n+1}^1 un système unique de solutions, car les fonctions X_1 , ... X_{n+1} étant distinctes par hypothèse, on peut tirer, du tableau des coefficients du système (9), au moins un déterminant d'ordre n+1 qui ne soit pas nul. On verrait de même que l'on peut toujours, et d'une seule façon, déterminer les coefficients α_1^i , α_2^i , ..., α_{n+1}^i de manière à satisfaire à l'équation

$$a_1^i dX_1 + ... + a_{n+1}^i dX_{n+1} = dp_{i-1} - p_i dx$$
,
 $(i = 2.3, ... n)$.

Ainsi, pour que les équations (7) définissent, quelles que soient les constantes a_i , une multiplicité m_n , il faut et il suffit que les fonctions X_i soient distinctes et deux à deux en involution d'ordre n.

Remarquons que ceci a lieu en particulier quand toutes les fonctions X_i sont indépendantes de p_n ; pour tout système de valeurs attribuées aux constantes a_i , on obtient alors une multiplicité m_n dont le support ponctuel se réduit à un point.

5. — Plus généralement considérons les équations, supposées algébriquement compatibles et distinctes,

$$X_1(x, y, p_i) = a_1, \dots, X_q(x, y, p_i) = a_q \qquad (q < n + 1), \quad (10)$$

où les paramètres $a_1, ..., a_q$ ont reçu des valeurs particulières. Elles définissent ∞^{n-q+2} éléments d'ordre n. Cherchons s'il est possible de grouper ces éléments de façon à obtenir une famille de multiplicités m_n à n-q+1 paramètres, et cela quelles que soient les valeurs attribuées aux paramètres a_i . Il faut pour cela et il suffit qu'on puisse adjoindre aux équations (10) n-q+1 équations de la forme

$$X_{q+1} = a_{q+1}, \dots, X_{n+1} = a_{n+1},$$
 (11)

telles que, quelles que soient les valeurs attribuées aux paramètres $a_1, a_2, ..., a_{n+1}$, les équations (10) et (11) définissent une multiplicité m_n .

Il faut donc tout d'abord que les fonctions X_1, \ldots, X_q soient deux à deux en involution. Cette condition est suffisante; en effet, supposons-la remplie et considérons le système linéaire

$$[X_1, \Phi]_n = 0$$
, $[X_2, \Phi]_n = 0$, ..., $[X_q, \Phi]_n = 0$, (12)

où Φ est la fonction inconnue. Si nous posons, pour simplifier,

$$[X_i, \Phi]_n = Y_i(\Phi),$$

on aura, il est facile de s'en assurer,

$$(\mathbf{Y}_i, \mathbf{Y}_k) = [[\mathbf{X}_i, \mathbf{X}_k]_n, \Phi]_n \equiv 0$$
.

Le système (12) est donc un système en involution; par hypothèse, il admet les q intégrales $X_1, X_2, ..., X_q$; il admet

donc en outre n-q+1 intégrales distinctes X_{q+1} , ..., X_{n+1} , et toutes ces fonctions X_i seront deux à deux en involution. Notre proposition est donc établie.

En particulier l'équation différentielle d'ordre n

$$F(x, y, p_1, ..., p_n) = a$$
 (13)

définit ∞^{n+1} éléments d'ordre n. Intégrer cette équation, ce sera répartir les éléments qu'elle définit suivant une famille de multiplicités m_n à n paramètres, problème équivalent à la résolution complète de l'équation

$$[F, X]_n = 0 ; (14)$$

on peut donc, au moyen des opérations n, n-1, ..., 2, 1, intégrer les ∞^1 équations différentielles représentées par l'équation (13) où l'on donne à la constante a toutes les valeurs possibles. L'intégration de l'équation (14) est d'ailleurs elle-même équivalente à celle du système

$$\frac{dx}{1} = \frac{dy}{p_1} = \dots = \frac{dp_{n-1}}{p_n} = \frac{-\frac{\delta F}{\delta p_n} dp_n}{\left(\frac{dF}{dx}\right)}$$

6. — Revenons à l'équation différentielle (13), et soit X_1 (x, y, p_i) une intégrale, distincte de F, de l'équation (14). Les équations

 $F = a X_1 = a_1 (15)$

représentent, d'après ce que nous avons vu, ∞^{n-1} multiplicités m_n , qui sont des intégrales de l'équation proposée.

Inversement, sur toute multiplicité intégrale de l'équation (13) on a

$$\left(\frac{d\mathbf{F}}{dx}\right)dx + \frac{\partial\mathbf{F}}{\partial p_n}dp_n = 0 ,$$

ou, en vertu de la relation d'involution,

$$\frac{\partial F}{\partial p_n} \left[\left(\frac{dX_1}{dx} \right) dx + \frac{\partial X_1}{\partial p_n} dp_n \right] = 0.$$

¹ Goursat. Leçons sur l'intégration des équations du premier ordre, p. 88.

D'autre part, en écartant les intégrales exceptionnelles $x = c^{te}$, on voit que la multiplicité intégrale m_n ne peut annuler $\frac{\partial F}{\partial p_n}$ sans annuler en même temps $\left(\frac{dF}{dx}\right)$: nous appellerons intégrales singulières les multiplicités, s'il en existe, qui satisfont aux équations

$$F = a \qquad \frac{\partial F}{\partial p_n} = 0 \qquad \begin{pmatrix} dF \\ d\bar{x} \end{pmatrix} = 0 \quad .$$

Sur toute intégrale *non singulière* de l'équation (13) on aura donc

$$\left(\frac{dX_1}{dx}\right)dx + \frac{\partial X_1}{\partial p_n}dp_n = 0 ,$$

c'est-à-dire $X_1 = c^{te}$. Par suite, en faisant varier la constante a_1 , on pourra obtenir toutes les intégrales non singulières de l'équation (13) à partir des équations (15).

L'élimination de p_n entre ces deux équations donnera donc une équation différentielle d'ordre n-1 qui sera une intégrale intermédiaire de l'équation (13). Mais cette élimination sera inutile si l'on sait intégrer l'équation $X_1 = a_1$; son intégrale générale contiendra en effet, outre a_1 , n constantes arbitraires, $a_2, ..., a_{n+1}$, et, en portant dans l'équation F = a les valeurs correspondantes de $y, p_1, ..., p_n$, on aura une relation, indépendante de x, entre les constantes $a_1, ..., a_{n+1}$. Compte tenu de cette relation, l'intégrale générale de l'équation $X_1 = a_1$ fera connaître l'intégrale générale de l'équation (13).

Considérons, par exemple, l'équation

$$p_2 + 2\frac{p_1 + ap_1^{\frac{3}{2}} + p_1^2}{x - y} = 0 . (16)$$

Lie a montré ¹ que cette équation admet un groupe de trois transformations infinitésimales et en a déduit l'intégrale générale. L'équation (16) peut s'écrire

$$\mathrm{F}\left(x\,,\;y\,,\;p_{_{1}},\;p_{_{2}}\right)\,\equiv\,p_{_{2}}p_{_{1}}^{-\frac{3}{2}}(x\,-\,y)\,+\,2\Big(p_{_{1}}^{\frac{1}{2}}\,+\,p_{_{1}}^{-\frac{1}{2}}\Big)\,\equiv\,a\ ;$$

¹ Vorlesungen über Differentialgleichungen, p. 533.

l'équation

$$[F, X]_{2} \equiv \frac{\delta X}{\delta x} + p_{1} \frac{\delta X}{\delta y} + p_{2} \frac{\delta X}{\delta p_{1}} + \frac{3 p_{2}^{2}}{2 p_{1}} \frac{\delta X}{\delta p_{2}} = 0$$

admet visiblement l'intégrale $X_1 = p_2 p_1^{-\frac{3}{2}}$. On a alors successivement

$$p_2 p_1^{-\frac{3}{2}} = -2a_1$$
 , $p_1^{-\frac{1}{2}} = a_1 x + a_2$, $y = -\frac{1}{a_1^2 x + a_1 a_2} + a_3$.

En portant cette valeur de y et les valeurs correspondantes de p_1 et p_2 dans l'équation (16) on obtient la relation

$$a_1 a_3 + a_2 + a = 0$$
:

l'intégrale générale de l'équation (16) s'écrit donc

$$\frac{1}{a_1x + a_2} + a_1y + a_2 + a = 0.$$

Supposons, plus généralement, que l'on connaisse, outre F, m intégrales distinctes de l'équation (14), $X_1, ..., X_m$; les équations

$$F = a$$
, $X_1 = a_1, ..., X_m = a_m$ (17)

représentent ∞^{n-m} multiplicités m_n qui sont des intégrales (non singulières) de l'équation proposée. Si, entre ces équations, on élimine $p_n, p_{n-1}, ..., p_{n-m+1}$, on aura une équation différentielle d'ordre n-m qui sera une intégrale intermédiaire de la proposée.

Dans ce cas encore il pourra être plus avantageux, pour l'intégration effective, de déduire des équations (17) une équation d'ordre supérieur à n-m, mais dont l'intégration soit plus simple que celle de l'équation résultant de l'élimination de $p_n, ..., p_{n-m+1}$. On disposera donc de plusieurs procédés pour continuer l'intégration, et, en dehors du cas où on intégrera l'équation d'ordre n-m, il se présentera comme ci-dessus un calcul d'identification fournissant une ou plusieurs relations entre les constantes arbitraires introduites au cours du calcul, le nombre des constantes indépendantes restant en définitive égal à n.

La théorie de Sophus Lie est ainsi complètement généralisée.

7. — Nous avons vu que l'intégration de l'équation

$$F(x, y, p_1, ..., p_n) = a$$

était équivalente à celle du système.

$$\frac{dx}{1} = \frac{dy}{p_1} = \frac{dp_1}{p_2} = \dots = \frac{dp_{n-1}}{p_n} = -\frac{\frac{\delta F}{\delta p_n} dp_n}{\left(\frac{dF}{dx}\right)}; \tag{18}$$

pour déterminer une solution de ce système autre que $F = c^{te}$ il faut en général une opération n: mais il peut arriver que, pour certaines formes particulières de la fonction F, cette détermination n'exige qu'une opération n' < n. C'est ce qui se produira en particulier si F satisfait à l'une des relations

$$\left(\frac{d\mathbf{F}}{dx}\right) + p_m \varphi(p_{m-1}, p_n) \frac{\delta \mathbf{F}}{\delta p_n} = 0 \qquad (m = 1, \dots, n ; p_0 = y)$$

$$\left(\frac{d\mathbf{F}}{dx}\right) + \varphi(p_m, p_{m+1}, \dots, p_n) \frac{\delta \mathbf{F}}{\delta p_n} = 0$$

$$\left(\frac{d\mathbf{F}}{dx}\right) + \varphi(x, p_{m+1}, \dots, p_n) \frac{\delta \mathbf{F}}{\delta p_n} = 0$$

$$(m = 1, \dots, n - 1)$$

Dans le premier cas on tirera du système (18) l'équation

$$dp_{m-1} = \frac{dp_n}{\varphi(p_{m-1}, p_n)},$$

et on aura, par une opération 1, une intégrale première. Dans le second cas, on aura le système

$$\frac{dp_m}{p_{m+1}} = \frac{dp_m}{p_{m+2}} = \dots = \frac{dp_n}{\varphi(p_m, p_{m+1}, \dots, p_n)},$$

et on aura une intégrale première par une opération n-m. Même conclusion pour le 3^{me} cas.

Cherchons, par exemple, à déterminer la fonction F de telle sorte que l'on ait

$$\left(\frac{d\mathbf{F}}{dx}\right) \equiv 0 \quad ,$$

c'est-à-dire

$$\frac{\partial F}{\partial x} + p_1 \frac{\partial F}{\partial y} + p_2 \frac{\partial F}{\partial p_1} + \dots + p_n \frac{\partial F}{\partial p_{n-1}} = 0 :$$

on aperçoit immédiatement les n + 1 solutions

$$p_{n}, p_{n-1} - p_{n}x, \dots, p_{n-m} - p_{n-m-1}x + p_{n-m-2}\frac{x^{2}}{2!} - \dots$$

$$\dots + (-1)^{m} p_{n} \frac{x^{m}}{m!}, \dots, y - p_{1}x + p_{2}\frac{x^{2}}{2!} - \dots + (-1)^{n} p_{n} \frac{x^{n}}{n!}.$$

Les équations cherchées, qui généralisent à l'ordre n l'équation de Clairaut 1 , peuvent donc s'écrire

$$y - p_1 x + p_2 \frac{x^2}{2!} - \dots + (-1)^n p_n \frac{x^n}{n!} = F(p_n, p_{n-1} - p_n x, \dots)$$

F désignant une fonction arbitraire, et l'on voit immédiatement que l'intégrale générale a pour expression

$$y = a_1 \frac{x^n}{n!} + a_2 \frac{x^{n-1}}{(n-1)!} + \dots + a_n x + F(a_1, a_2, \dots, a_n)$$

Après l'équation de Clairaut, nous allons de même généraliser à l'ordre n l'équation de Lagrange. Montrons d'abord qu'une équation de Lagrange mise sous la forme

$$F(x, y, p_1) \equiv y + x f_1(p_1) + f_2(p_1) = 0$$

est caractérisée par le fait qu'on peut trouver deux fonctions $\theta(p_1)$ et $\varphi(x, p_1)$ telles que l'on ait

$$\frac{\partial \mathbf{F}}{\partial x} + p_1 \frac{\partial \mathbf{F}}{\partial y} = \theta(p_1) \qquad \frac{\partial \mathbf{F}}{\partial p_1} = \frac{\partial}{\partial p_1} \varphi(x, p_1) . \tag{19}$$

On tire, en effet, de la seconde équation (19),

$$F \equiv \varphi(x, p_1) + \psi(x, y) ,$$

et la première s'écrit alors

$$\frac{\partial \psi}{\partial x} + p_1 \frac{\partial \psi}{\partial y} \equiv \theta(p_1) - \frac{\partial \varphi}{\partial x}.$$

Le premier membre de cette identité est linéaire en p_1 , et le second ne contient pas y; on peut donc écrire

$$\frac{\partial \psi}{\partial x} + p_1 \frac{\partial \psi}{\partial y} \equiv \theta(p_1) - \frac{\partial \varphi}{\partial x} \equiv A(x) p_1 + B'(x) .$$

¹ RAFFY. Bulletin de la Société mathématique de France, t. 25, p. 71.

On en tire

$$\frac{\partial \psi}{\partial x} = B'(x)$$
, $\frac{\partial \psi}{\partial y} = A(x)$,

ce qui montre que A est une constante qu'on peut toujours prendre égale à 1; il vient alors

$$\psi(x, y) = y + B(x).$$

D'autre part on a aussi

$$\frac{\partial \varphi}{\partial x} = 0 (p_1) - p_1 - B'(x) ,$$

et par suite

$$\varphi = x[\theta(p_1) - p_1] - B(x) + \varpi(p_1),$$

donc enfin

$$F \equiv y + x f_1(p_1) + f_2(p_1)$$
,

 f_1 et f_2 désignant deux fonctions arbitraires.

Cherchons de même les fonctions $F(x, y, p_1, ..., p_n)$ telles que l'on ait

$$\frac{\partial F}{\partial x} + p_1 \frac{\partial F}{\partial y} + \dots + p_n \frac{\partial F}{\partial p_{n-1}} = \theta(p_n) \qquad \frac{\partial F}{\partial p_n} = \frac{\partial}{\partial p_n} \varphi(x, p_n) .$$

On aura d'abord

$$F = \varphi(x, p_n) + \psi_1(x, y, p_1, ..., p_{n-1}) ,$$

et par suite

$$\frac{\partial \psi_1}{\partial x} + p_1 \frac{\partial \psi_1}{\partial y} + \dots + p_n \frac{\partial \psi_1}{\partial p_{n-1}} = \theta(p_n) - \frac{\partial \varphi}{\partial x} = A'(x)p_n + B'(x) .$$

On en déduit, comme précédemment,

$$\varphi(x) = x \theta(p_n) - p_n A(x) - B(x) + C(p_n)$$

et ensuite

$$\frac{\partial \psi_1}{\partial x} + p_1 \frac{\partial \psi_1}{\partial y} + \dots + p_{n-1} \frac{\partial \psi_1}{\partial p_{n-2}} = B'(x) , \qquad \frac{\partial \psi_1}{\partial p_{n-1}} = A'(x) .$$

De ces deux dernières équations on tire successivement

$$\frac{\partial \psi_{n-1}}{\partial x} + p_1 \frac{\partial \psi_{n-1}}{\partial y} = B'(x) , \qquad \frac{\partial \psi_{n-1}}{\partial p_1} = (-1)^n A^{(n-1)} (x)$$

$$\psi_{n-1} = (-1)^n p_1 A^{(n-1)} (x) + \psi_n (x, y)$$

et enfin

$$\frac{\delta \psi_n}{\delta x} = B'(x) \qquad \frac{\delta \psi_n}{\delta y} = (-1)^{n+1} A^{(n)}(x) .$$

Il en résulte immédiatement que $A^{(n+1)}$ est nul; A(x) est donc un polynome de degré n, N(x). Nous poserons

$$N(x) = (-1)^{n+1} \frac{x^n}{n!} + \alpha_1 x^{n-1} + \dots + \alpha_{n-1} x + \alpha_n ,$$

 $\alpha_1, \ldots \alpha_n$ désignant des constantes arbitraires. On aura alors

$$\psi_n = y + B(x) ,$$

et, en remontant de proche en proche,

$$\psi_1 = p_{n-1} N'(x) - p_{n-2} N''(x) + p_{n-3} N'''(x) - \dots + y + B(x)$$

Les équations cherchées sont donc de la forme

$$F \equiv f(p_n) + x \theta(p_n) - p_n N(x) + p_{n-1} N'(x) - \dots - (-1)^{n-1} p_1 N^{(n-1)}(x) + y = 0 , \qquad (20)$$

où f et θ sont des fonctions arbitraires, et N un polynome en x de degré n dont le premier coefficient est égal à $\frac{(-1)^{n+1}}{n!}$, les n autres étant arbitraires.

Pour intégrer cette équation, remarquons que l'on a

$$\frac{\partial F}{\partial p_n} = f'(p_n) + x \theta'(p_n) - N(x) , \qquad \left(\frac{dF}{dx}\right) = \theta(p_n) ;$$

le système différentiel associé fournit donc l'équation

$$\theta(p_n)\frac{dx}{dp_n} - N(x) + x\theta'(p_n) + f'(p_n) = 0 ;$$

supposons cette équation intégrée et soit

$$p_n = \boldsymbol{\varpi}(x, a)$$

son intégrale générale. L'équation $p_n = \varpi(x, a)$ donne p_1 en fonction de x par n-1 quadratures: on a alors x et y en fonction de p_1 sans autre intégration. Ainsi l'intégration de l'équation (20) se ramène à celle d'une équation du premier ordre suivie de n-1 quadratures.

En particulier, pour n = 2, on obtient les équations

$$y - p_1 x + p_2 \frac{x^2}{2} + x \theta(p_2) + f(p_2) = 0$$

dont l'intégrale générale s'obtient par l'intégration d'une équation de Riccati suivie d'une quadrature.

8. — Considérons, d'une façon plus générale encore, les équations de la forme

$$F \equiv u(x, p_n) + v(x, y, p_1, ..., p_{n-1}) = 0$$
,

dont le premier membre satisfait identiquement à une relation telle que

$$\left(\frac{dF}{dx}\right) + \theta(x, p_n) \frac{\delta F}{\delta p_n} \equiv 0 . \qquad (21)$$

Il est clair que l'équation de Lagrange, généralisée sous la forme (20), rentre dans cette classe d'équations.

En écrivant que la fonction F satisfait à la condition (21), on aura

$$\frac{\partial u}{\partial x} + \theta(x, p_n) \frac{\partial u}{\partial p_n} + \frac{\partial v}{\partial x} + p_1 \frac{\partial v}{\partial y} + \dots + p_n \frac{\partial v}{\partial p_{n-1}} = 0 ,$$

ou, en introduisant une inconnue auxiliaire $\alpha(x, p_n)$,

$$\frac{\partial u}{\partial x} + \theta(x, p_n) \frac{\partial u}{\partial p_n} + \alpha(x, p_n) = 0$$

$$\frac{\partial v}{\partial x} + p_1 \frac{\partial v}{\partial y} + \dots + p_n \frac{\partial v}{\partial p_{n-1}} = \alpha(x, p_n) .$$

On en déduit d'abord

$$\alpha(x, p_n) = p_n A(x) + B'(x)$$

et par suite on a, pour déterminer e, les deux équations

$$\frac{\partial v}{\partial x} + p_1 \frac{\partial v}{\partial y} + \dots + p_{n-1} \frac{\partial v}{\partial p_{n-2}} = B'(x) , \qquad \frac{\partial v}{\partial p_{n-1}} = A(x) .$$

En se reportant au calcul qui a été fait pour généraliser l'équation de Lagrange, on voit que A(x) est un polynome arbitraire de degré n-1: nous poserons

$$A(x) = (-1)^{n-1} \frac{x^{n-1}}{(n-1)!} + \alpha_1 x^{n-2} + \dots + \alpha_{n-2} x + \alpha_{n-1},$$

 $\alpha_1, \ldots \alpha_{n-1}$ désignant des constantes arbitraires. On aura alors

$$y = y - (-1)^{n-1} p_1 A^{(n-2)}(x) + \dots - p_{n-2} A'(x) + p_{n-1} A(x) + B(x)$$

et l'on voit que les équations cherchées sont de la forme

$$F \equiv y - (-1)^{n-1} p_1 A^{(n-2)}(x) + \dots \dots - p_{n-2} A'(x) + p_{n-1} A(x) + \varphi(x, p_n) = 0 .$$
 (22)

On a ici

$$\frac{\partial F}{\partial p_n} = \frac{\partial \varphi}{\partial p_n} \quad \text{et} \quad \left(\frac{dF}{dx}\right) = \frac{\partial \varphi}{\partial x} + p_n A(x) ;$$

du système différentiel associé à l'équation (22) on tire alors l'équation

$$\frac{\partial \varphi}{\partial p_n} \frac{dp_n}{dx} + \frac{\partial \varphi}{\partial x} + p_n \mathbf{A}(x) \equiv 0 ,$$

et l'on voit que, dans ce cas encore, l'intégration de l'équation proposée se ramène à celle d'une équation du premier ordre suivie de (n-1) quadratures.

Comme exemple, on voit aisément que les équations

$$y - p_1 x + p_2 \frac{x^2}{2!} - \dots + (-1)^n p_{n-1} \frac{x^{n-1}}{(n-1)!} + x^n f(p_n) + \varphi(p_n) = 0,$$

où f et φ sont des fonctions arbitraires, s'intègrent par n+1 quadratures.

Enfin, pour donner une dernière application, supposons que, dans l'équation de condition (21), la fonction θ se réduise à une fonction de la seule variable x que nous désignerons par $\theta^{(n+1)}(x)$; l'équation (21) s'écrit alors

$$\frac{\delta F}{\delta x} + p_1 \frac{\delta F}{\delta y} + \dots + p_n \frac{\delta F}{\delta p_{n-1}} + \theta^{(n+1)}(x) \frac{\delta F}{\delta p_n} = 0 .$$
 (23)

Posons

$$P = y - p_1 x + p_2 \frac{x^2}{2!} - \dots + (-1)^n p_n \frac{x^n}{n!},$$

$$Q_0(x) = (-1)^{n+1} \frac{x^n}{n!} \theta^{(n)}(x) + (-1)^n \frac{x^{n-1}}{(n-1)!} \theta^{(n-1)}(x) + \dots$$

$$\dots + x \theta'(x) - \theta(x)$$

$$Q_{m}(x) = (-1)^{n+1} \frac{x^{n-m}}{(n-m)!} \theta^{(n)}(x) + (-1)^{n} \frac{x^{n-m-1}}{(n-m-1)!} \theta^{(n-1)}(x) + \dots + (-1)^{m+1} \theta^{(m)}(x) .$$

On aura d'abord

ce qui montre que $P + Q_0$ est une solution de l'équation (23). D'autre part, on aura encore

$$\left(\frac{d}{dx}\frac{\delta^m P}{\delta x^m}\right) = 0 , \quad \frac{\delta}{\delta p_n}\frac{\delta^m P}{\delta x^m} = (-1)^n \frac{x^{n-m}}{(n-m)!} ,$$

$$\left(\frac{dQ_m}{dx}\right) = (-1)^{n+1} \frac{x^{n-m}}{(n-m)!} \theta^{(n+1)}(x) , \quad \frac{\delta Q_m}{\delta p_n} = 0 ;$$

on en déduit n nouvelles solutions distinctes de l'équation (23), savoir

$$\frac{\partial P}{\partial x} + Q_1$$
, $\frac{\partial^2 P}{\partial x^2} + Q_2$, ..., $\frac{\partial^n P}{\partial x^n} + Q_n$.

Les équations cherchées sont donc de la forme

$$F\left(P + Q_0 \cdot \frac{\partial P}{\partial x} + Q_1 \cdot \dots \cdot \frac{\partial^n P}{\partial x^n} + Q_n\right) = 0 ,$$

et, comme les arguments de la fonction F sont en involution, elles s'intègrent par des éliminations seulement, outre n + 1 quadratures pour déterminer θ (x).

9. — Nous avons vu que la condition nécessaire et suffisante pour que les équations

$$X(x, y, p_1) = a$$
, $Y(x, y, p_1) = b$

représentent, quelles que soient les valeurs attribuées aux paramètres a et b, une multiplicité m_1 est que les fonctions X et Y soient en involution. Cherchons maintenant à quelle condition les équations

$$X(x, y, p_1) = 0$$
, $Y(x, y, p_1) = 0$, (24)

supposées distinctes et compatibles, définiront une multiplicité m_1 .

On tire des équations (24), en introduisant, pour plus de généralité, une variable auxiliaire t,

$$x = x(t)$$
, $y = y(t)$, $p_1 = p_1(t)$. (25)

Si ces équations définissent une multiplicité, on aura identiquement

$$\frac{dy}{dt} = p_1(t) \frac{dx}{dt} ; \qquad (26)$$

de plus cette multiplicité vérifiera les relations

$$\frac{\partial X}{\partial x} \frac{dx}{dt} + \frac{\partial X}{\partial y} \frac{dy}{dt} + \frac{\partial X}{\partial p_1} \frac{dp_1}{dt} = 0$$

$$\frac{\partial Y}{\partial x} \frac{dx}{dt} + \frac{\partial Y}{\partial y} \frac{dy}{dt} + \frac{\partial Y}{\partial p_1} \frac{dp_1}{dt} = 0 ,$$
(27)

qu'on peut encore écrire

$$\left(\frac{dX}{dx}\right)\frac{dx}{dt} + \frac{\partial X}{\partial p_1}\frac{dp_1}{dt} = 0$$

$$\left(\frac{dY}{dx}\right)\frac{dx}{dt} + \frac{\partial Y}{\partial p_1}\frac{dp_1}{dt} = 0 .$$

On ne peut avoir simultanément

$$\frac{dx}{dt} \equiv 0 , \qquad \frac{dp_1}{dt} \equiv 0 ,$$

car la relation (26) donnerait alors $\frac{dy}{dt} = 0$, et les équations (25) définiraient un seul élément. On aura donc, sur la multiplicité (25), $[X, Y]_1 = 0$: autrement dit les équations (24) ont alors pour conséquence algébrique

 $[X, Y]_1 = 0.$ (28)

Réciproquement, supposons que les équations (24) aient pour conséquence algébrique $[X, Y]_1 = 0$. On déduit aisément, des relations (27) et (28), les équations

$$\left(p_1 \frac{dx}{dt} - \frac{dy}{dt}\right) \frac{D(X, Y)}{D(y, p_1)} = 0$$

$$\left(p_1 \frac{dx}{dt} - \frac{dy}{dt}\right) \frac{D(X, Y)}{D(x, p_1)} = 0$$

qui doivent être vérifiées identiquement quand on remplace x, y, p_1 par leurs valeurs (25). Si les deux déterminants fonctionnels $\frac{D(X, Y)}{D(y, p_1)}$, $\frac{D(X, Y)}{D(x, p_1)}$ ne sont pas nuls tous deux, les équations (25) définissent bien une multiplicité.

Supposons que ces deux jacobiens soient nuls, et considérons x, y, p_1 comme les coordonnées cartésiennes rectangulaires d'un point de l'espace à trois dimensions; les équations (24) définissent alors une courbe. Si le jacobien $\frac{D(X, Y)}{D(x, y)}$ était nul lui aussi, tous les points de cette courbe seraient des points singuliers: on peut évidemment écarter ce cas exceptionnel. La courbe (24) se réduit donc à une droite perpendiculaire au plan xy, c'est-à-dire que dans les équations (25) x et y sont des constantes; ces équations représentent donc une multiplicité m_1 dont le support ponctuel se réduit à un point.

En résumé, pour que les équations (24) définissent une multiplicité, c'est-à-dire, encore, pour que les équations différentielles (24) aient une intégrale commune, il faut et il suffit qu'elles aient pour conséquence algébrique

$$[X, Y]_1 = 0$$
.

Il est clair que cette conclusion à une portée générale, et l'on voit aisément comment doivent être modifiés dans ce sens les énoncés des théorèmes généraux établis précédemment. Par exemple, pour que les équations

$$X_1(x, y, p_1, ..., p_n) = 0, ..., X_q(x, y, p_1, ..., p_n) = 0$$

 $(q < n + 1)$

supposées compatibles et distinctes, définissent une famille de multiplicités m_n à n-q+1 paramètres, il faut et il suffit que ces équations aient pour conséquence algébrique

$$[X_i, X_k]_n = 0$$

quels que soient les indices i et k.

10. — Nous pouvons déduire de ce qui précède une méthode générale d'intégration des systèmes d'équations différentielles à une fonction inconnue. Soit

$$X_1(x, y, p_1, ..., p_n) = 0, ..., X_q(x, y, p_1, ..., p_n) = 0$$

$$(q \le n + 1)$$
(29)

un tel système, p_n désignant la dérivée d'ordre le plus élevé qui figure dans les fonctions $X_1, ..., X_q$, dont certaines peuvent d'ailleurs être indépendantes de p_n ; nous supposons bien entendu que ces équations sont algébriquement compatibles.

Si toutes les équations

$$[X_i, X_k]_n = 0$$

sont des conséquences algébriques du système (29), ce système admet une famille à n-q+1 paramètres de multiplicités intégrales. L'élimination de p_n , p_{n-1} , ..., p_{n-q+2} entre les équations (29) conduit alors à une équation différentielle d'ordre n-q+1 qui est équivalente au système (29).

Si quelques-unes des équations

$$[X_i, X_k]_n = 0$$

ne sont pas des conséquences algébriques du système (29), elles fourniront un certain nombre d'équations nouvelles

$$X_{q+1} = 0$$
, ..., $X_{q+r} = 0$

qui devront être vérifiées par les multiplicités intégrales du système (29). En les adjoignant aux équations de ce système, on obtiendra un nouveau système sur lequel on pourra raisonner de la même façon. On arrivera donc ainsi, par des éliminations seulement, soit à une équation différentielle unique, dont l'intégration sera équivalente à celle du système (29), soit à des équations algébriquement incompatibles, soit enfin à un système de n+1 équations définissant des éléments isolés.

11. — Nous avons appelé précédemment intégrales singulières de l'équation

 $F(x, y, p_1, ..., p_n) = 0$ (30)

les multiplicités, s'il en existe, qui satisfont aux équations

$$F = 0 , \qquad \frac{\partial F}{\partial p_n} = 0 , \qquad \left(\frac{dF}{dx}\right) = 0 , \qquad (31)$$

En appliquant au système (31) la méthode indiquée au nº 10, on voit qu'on pourra toujours, par des éliminations seulement, reconnaître s'il existe des intégrales singulières.

Considérons d'abord le cas où le système (31) se réduit à deux équations compatibles et distinctes; comme on peut toujours supposer que l'équation (30) a été mise sous une forme telle qu'elle n'entraîne pas $\frac{\delta F}{\delta p_n} = 0$, notre hypothèse sera donc que la troisième équation (31) est une conséquence des deux premières. On a alors

$$\left[F, \frac{\delta F}{\delta p_n}\right]_n \equiv \frac{\delta F}{\delta p_n} \left(\frac{d}{dx} \frac{\delta F}{\delta p_n}\right) - \frac{\delta^2 F}{\delta p_n^2} \left(\frac{dF}{dx}\right),$$

et le crochet est nul en vertu des équations (31): donc ces équations définissent ∞^{n-1} intégrales singulières, ce qui généralise un résultat classique dans la théorie des équations du premier ordre.

Parmi les équations de ce type, on peut citer ¹ les équations de Clairaut généralisées, pour lesquelles on a

$$\left(\frac{d\mathbf{F}}{dx}\right)\equiv 0$$
 .

¹ Bounitzky. Bulletin des Sciences mathématiques, t. 31, p. 250.

M. Appell a démontré 1 que pour qu'une équation

$$F(x, y, p_1, ..., p_n) = 0$$
,

algébrique, entière et irréductible par rapport à y, p_1 , ..., p_n , admette une intégrale générale de la forme

$$y = C_1 y_1 + C_2 y_2 + ... + C_{n+1} y_{n+1}$$
,

où les y_i sont des fonctions de x linéairement indépendantes et les C_i des constantes liées par une relation algébrique entière, il faut et il suffit qu'il existe une fonction $\lambda(x)$ telle que l'expression

$$\left(\frac{d\mathbf{F}}{dx}\right) + p_{n+1} \frac{\partial \mathbf{F}}{\partial p_n} - \lambda \mathbf{F}$$

se décompose en deux facteurs dont l'un soit linéaire et homogène en $y, p_1, ..., p_{n+1}$. Soit P ce facteur; on aura alors une identité de la forme

$$\left(\frac{d\mathbf{F}}{dx}\right) + p_{n+1} \frac{\partial \mathbf{F}}{\partial p_n} - \lambda \mathbf{F} \equiv \mathbf{P} \cdot \mathbf{Q} ;$$

M. Appell ajoute que l'équation

$$Q = 0$$

pourra donner des intégrales singulières.

Or remarquons que l'on peut toujours supposer le coefficient de p_{n+1} dans P égal à 1: on aura donc

$$Q \equiv \frac{\delta F}{\delta p_n} ;$$

d'ailleurs l'équation

$$\left(\frac{d\mathbf{F}}{dx}\right) = 0$$

est dans ce cas une conséquence des équations

$$F = 0 \qquad \frac{\partial F}{\partial p_n} = 0 .$$

Par suite, sous la seule condition que ces deux équations soient algébriquement compatibles, l'équation proposée aura effectivement ∞^{n-1} intégrales singulières.

¹ Comptes rendus de l'Académie des Sciences. 12 novembre 1888.

Supposons en second lieu que les équations (31) soient algébriquement distinctes. Elles ont pour conséquence

$$\left[F, \frac{\partial F}{\partial p_n}\right]_n = 0 \qquad \left[F, \left(\frac{dF}{dx}\right)\right]_n = 0 ;$$

si donc elles entraînent en outre

$$\left[\frac{\partial F}{\partial p_n}, \left(\frac{dF}{dx}\right)\right]_n = 0 \quad , \tag{32}$$

l'équation (30) aura ∞^{n-2} intégrales singulières. Sinon on adjoindra l'équation (32) au système (31), et on continuera suivant la méthode indiquée au n° 10.

Soit, par exemple, l'équation

$$F \equiv 3p_2^2 - 4y = 0 .$$

dont l'intégrale générale peut s'écrire

$$x - \int_{a}^{y} \left(b - \frac{8}{3\sqrt{3}} y^{\frac{3}{2}} \right)^{-\frac{1}{2}} dy = 0.$$

On a ici

$$\frac{\partial F}{\partial p_2} = 6 p_2 , \qquad \left(\frac{dF}{dx}\right) = -4 p_1 , \qquad \left[\frac{\partial F}{\partial p_n}, \left(\frac{dF}{dx}\right)\right]_2 = -24 p_2 ;$$

les équations

$$3p_2^2 - 4y = 0$$
 , $p_2 = 0$, $p_1 = 0$

définissent une intégrale singulière qui est la courbe y=0. Soit encore l'équation du premier ordre

$$F \equiv p_1(4x^2 - 3xy - y - 4) + y(3y - 4x) = 0 ;$$

les trois équations

$$F = 0$$
, $\frac{\delta F}{\delta p_1} = 0$, $\left(\frac{dF}{dx}\right) = 0$

sont ici distinctes, et elles déterminent six éléments du premier ordre à distance finie

$$(1, 0, 1)$$
, $(-1, 0, 2)$; $(1, 0, 0)$. $(-1, 0, 0)$; $(-3, -4, 1)$, $(-3, -4, 2)$.

L'intégrale générale

$$2x^2 - 3xy + \lambda y^2 - y - 2 = 0$$

se compose de coniques qui admettent toutes les deux éléments (1, 0, 1) et (-1, 0, 2), à l'exception de l'intégrale y = 0 (λ infini); les deux éléments (1, 0, 0) et (-1, 0, 0) appartiennent à cette intégrale; enfin les deux éléments (-3, -4, 1) et (-3, -4, 2) correspondent au point commun aux deux droites en lesquelles dégénère la conique pour $\lambda = 1$.

SUR UNE NOUVELLE ET IMPORTANTE GÉNÉRALISATION DE L'ÉQUATION DE LAPLACE

PAR

André Bloch (Paris).

1. — Dans une Note remarquable 1, qui resta malheureusement sans continuation, M. G. GIRAUD a établi qu'une certaine fonction, déduite d'un système de fonctions hyperfuchsiennes, et qui constitue un invariant différentiel de ce système par par rapport à l'hypersphère fondamentale, satisfait à l'équation aux dérivées partielles:

$$\left(\frac{\eth^2 u}{\eth x^2} + \frac{\eth^2 u}{\eth y^2}\right)\left(\frac{\eth^2 u}{\eth z^2} + \frac{\eth^2 u}{\eth t^2}\right) - \left(\frac{\eth^2 u}{\eth x \eth z} + \frac{\eth^2 u}{\eth y \eth t}\right)^2 - \left(\frac{\eth^2 u}{\eth x \eth t} - \frac{\eth^2 u}{\eth y \eth z}\right)^2 = e^u.$$

Cette équation présente une analogie parfaite avec l'équation bien connue $\Delta u = e^u$ de la théorie des fonctions fuchsiennes.

L'expression qui figure au premier membre est extrêmement intéressante; nous l'appellerons double la fonction u

¹ Sur une équation aux dérivées partielles, non linéaire, du second ordre, se rattachant à la théorie des fonctions hyperfuchsiennes (Comptes Rendus de l'Ac. des Sc., t. 166, 1918, p. 893).