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NOMBRE DIMENSIONNEL ET ENSEMBLES IMPROPRES

DANS LE PROBLÊME DE DIRIGHLET

PAR

M. Georges Bouligand (Poitiers).

Introduction.

1. — Il est important [d'étudier l'allure d'un potentiel d'après
la structure de l'ensemble potentiant et les caractères de la
répartition des masses sur cet ensemble. C'est par cette affirmation

que j'entamais la rédaction d'une courte note, intitulée:
Dimension, étendue, densité,déposée en pli cacheté le 17 novembre
1924, cette note a été ouverte en séance par l'Académie des
Sciences au début de 1925 1. M. Maurice Fréchet m'a presque
aussitôt averti qu'en s'inspirant des idées de M. Carathéodory
sur le problème de la mesure 2, M. Haussdorff avait déjà publié
une étude profonde des mêmes questions 3.

J'avais appelé ensembles partitifs les ensembles sur lesquels il
est possible de définir une répartition uniforme de masses. Ces

ensembles étaient également ceux auxquels on pouvait étendre,
avec M. Haussdorff, la théorie de la mesure, adaptée à une
certaine valeur â du nombre dimensionnel. La notion d'ensemble

partitif n'avait d'ailleurs, pour les applications dont je m'occupais,
qu'une importance limitée. Elle m'avait principalement servi à

construire des exemples susceptibles de guider mes recherches:
ainsi, je mentionnais dans la note citée l'ensemble triadique de

Cantor, obtenu en enlevant d'un segment unitaire de droite un
segment de même milieu, de longueur < 1, faisant sur chaque

' '
; <#_

1 C. R., t. 180, 1925, p. 245. Le présent travail emprunte ses éléments à cette note originelle

et à une note récente (C. R., 1.184, p. 430, fév. 1927).
2 Üeber das lineare Mass von Punktmengen, Göttingen 1914.
s Dimension und äusseres Mass (Math. Ann., t. 79, 1918).
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segment restant, à une homothétie près, la même abiation, et

itérant indéfiniment cette opération. Pour un tel ensemble, la

partitivité résulte immédiatement de l'existence de sous-ensembles

semblables à l'ensemble total; si l'on fait une homothétie de

rapport —? Çui passer du segment unitaire à l'un des

segments subsistant après la première ablation, c'est-à-dire si
2

l'on divise l'étalon de longueur par — la figure qu'il est naturel

d'appeler: « Z' étalonassocié (c'est-à-dire construit sur l'unité
de longueur) d'ÉTENDUE sur l'ensemble » est divisée par 2. Le
nombre dimensionnel d doit donc être tel que l'on ait

relation qui s'écrit tout naturellement en étendant le processus
suivant lesquels, dans les cas élémentaires (longueur, aire,
volume) le nombre de dimensions réagit lors d'une similitude.
Pour cet ensemble, on obtenait donc, moyennant la définition
citée de § :

Mais M. Haussdorfï avait lui-même étudié cet exemple : bien
plus, il avait considéré un type d'ensemble linéaire d'une très
grande généralité, lui permettant de concrétiser cette idée que
j'avais simplement donnée en remarque, dans la note citée:
c'est que le clavier des nombres ordinaires pouvant devenir
insuffisant (pareillement à ce qui se produit dans la théorie de la
croissance) il y avait lieu d'introduire un ordre dimensionnel

pour certains ensembles, tout comme M. Borel a introduit pour
certaines fonctions un ordre de croissance.

Pour conclure, je me trouvais donc dispensé de publier le
travail assez important résumé dans la note citée.

— Ainsi que je l'ai annoncé, la notion de mesure généralisée
n'avait pour mes recherches qu'une importance assez minime. Il
s'agissait seulement, pour les problèmes que j'avais en vue,
d'exprimer que le nombre dimensionnel satisfaisait à certaines

L'Enseignement matliém., 20« année ; 1927. 16



242 G. B O VLI
inégalités, les ensembles étudiés pouvant de ce fait présenter une
généralité beaucoup plus grande que les ensembles tombant sous
le coup des considérations de M. Haussdorff, une moins grande
homogénéité dans la structure se trouvait requise et par là, je
me rapprochais du caractère presque complètement arbitraire
des ensembles formant la frontière d'un domaine pour lequel on
cherche à résoudre le problème de Dirichlet, par exemple.

Ces remarques permettront d'apercevoir de prime abord l'esprit

dans lequel est rédigé le présent travail. Dans un premier
chapitre, pour accoutumer le lecteur à la considération du nombre
dimensionnel, nous avons formé différents exemples, aussi

simples que possible, et qui de ce fait même, se rapportent à des

ensembles partitifs. Ces exemples, intéressants par eux-mêmes,
montrent notamment que les courbes rectifiables ne sont qu'un
cas particulier d'une famille de courbes beaucoup plus générales,
"douées d'une métrique, fournissant une représentation intrinsèque.

Dans le second chapitre, nous montrons que là considération
du nombre dimensionnel d'un ensemble permet, d'une manière
incomplète, mais suffisante dans beaucoup d'applications, dè

caractériser les ensembles impropres du problème de Dirichlet:
on étudie pour cela l'allure du potentiel produit par une répartition

de masses, placée sur l'ensemble donné, au voisinage de

ces masses; on obtient ainsi deux théorèmes (A et B), qui sont
la contrepartie l'un de l'autre (sans qu'il y ait toutefois
réciprocité). Malgré quoi, ces théorèmes sont souvent décisifs. Nous

verrons en outre, en les appliquant aux exemples précédemment
étudiés, qu'ils nous conduiront à des remarques importantes,
relatives à la convergence de certaines intégrales dont l'élément
devient infini (n° 13).

Chapitre Premier.

Ensembles,lignes et surfaces ayant des nombres

dimensionnels variés.

3. — Pour donner accès aux considérations que nous allons

exposer, il est opportun de présenter d'abord quelques exemples
à la suite desquels apparaîtra mieux l'utilité des notions que
nous aurons à introduire.
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Nous avons déjà cité au n° 1 l'ensemble triadique de Cantor
et avons montré comment une remarque de similitude permet
immédiatement de prévoir son nombre dimensionnel.

C'est encore de remarques du même genre que prendront
naissance les exemples qui vont suivre et où nous considérerons, au
lieu d'ensembles partout discontinus, des lignes et des surfaces
de Jordan. Toutefois, avant de passer à des continus, indiquons
quelques suggestions émanant de l'exemple précédent.

Envisageons un parallélipipède rectangle construit sur trois
vecteurs (deux à deux orthogonaux) OA, OB, OC. Sur OA
comme base, avec X pour rapport d'ablation rapport du
segment enlevé au segment initial), construisons un premier
ensemble triadique (a); faisons de même sur OB et sur OC comme
bases, avec des rapports d'ablation respectivement égaux à

et v. Soient (ß) et (y) les ensembles ainsi obtenus; soit E
l'ensemble des points projetés sur OA en quelque point de (a), sur
OB en quelque point de (/3), sur OC en quelque point de (y).
Lorsque X uv, l'ensemble E appartient encore à la classe
des ensembles partitifs admettant une infinité de sous-ensembles,
de diamètre arbitrairement petit, semblables à l'ensemble total."
On trouve ainsi son nombre dimensionnel

g __
3 lQg 2

O

log
1 — X

si X, [x, v sont distincts, l'ensemble E n'appartient plus à la classe

précédente, mais à une classe plus vaste obtenue en substituant
à la similitude une transformation linéaire. Il serait cependant
facile, après avoir imposé au nombre dimensionnel de E, que
nous désirons définir, quelques postulats géométriques très
simples, de trouver sa valeur qui est ici

Ä _ log 2 log 2
1

log 2

2 o Ï- «
log log

^
log T—

En utilisant un autre mode de définition, ce fait sera d'ailleurs

justifié plus loin (n° 12).

4. — Occupons-nous maintenant des lignes de Jordan. Il va
sans dire qu'une ligne rectifiable, dans la théorie qui nous occupe,
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devra jouer le rôle d'un ensemble partitif et avoir pour nombre
dimensionnel l'unité.

Nous allons montrer la possibilité de définir des lignes dont le
nombre dimensionnel surpasse l'unité. Dans ce but, nous utiliserons

justement les mêmes remarques de similitude que
précédemment. Nous définirons les courbes en question au moyen
d'une suite de lignes polygonales inscrites : soit L* la ligne
polygonale inscrite d'ordre A; nous nous conformerons aux conditions

suivantes :

1° Les sommets de L& sont aussi des sommets de L*+i, quel
que soit A.

2° La figure formée par un côté de L* et le tronçon de L^i substitué

à ce côté est définie à une similitude près.

Ar B'

Fig. 1.

Par exemple, on divise l'unité de longueur OG (choisie pour
Lx) en trois parties égales OA AB BG; sur AB on construit
un carré; soit A'B' le côté opposé à AB; d'un côté de L*, on

passe au tronçon associé de L^+i par une construction semblable
à celle qui remplace OC par OA A' B' BG: ce contour polygonal
sera justement notre ligne L2; au-dessous de lui, sur le dessin ci-
contre, nous avons représenté L3. On imagine ainsi facilement
une succession de lignes crénelées tendant vers la courbe, et
d'après le processus qui permet leur obtention, on pourra
définir sur cette courbe des arcs d'étendue égale. La définition sera
immédiate pour les~ arcs àont les extrémités ont été obtenues
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comme sommets de lignes inscrites; ces sommets formant un
ensemble partout dense sur la courbe en question, on passera
facilement de ce cas particulier au cas général.

Notre courbe possède donc une métrique propre et, par suite,

on peut y définir une répartition uniforme de masses. On voit
de plus que lorsqu'on partage en 3 parties égales l'étalon de

longueur OC, l'étalon associé d'étendue sur notre courbe (c'est-
à-dire la totalité de celle-ci) se subdivise en 5 parties égales. Nous

en déduisons comme précédemment que cette étendue se

rapporte au nombre dimensionnel

* log 5
~~

Jog 3
•

5. — Le processus que nous venons d'indiquer peut être varié
de différentes manières, en conservant les deux conditions de

liaison de L^+i à L*. Nous nous dispenserions d'insister s'il ne
nous semblait intéressant d'attirer l'attention sur des cas
particuliers qui se présentent dans cette théorie et qui en font mieux
comprendre les aspects variés.

Prenons encore pour Lx l'unité de longueur OC et partageons-la
en 3 parties égales OA — AB BC. Nous supposerons que L2
est une ligne gauche, que nous avons représentée sur le dessin
ci-contre en perspective : cette ligne a 9 côtés et la figure formée

A B

o

A" \ b"

B
a

uzA
Fig. 2.

B m

par A, B et les 6 sommets interpolés entre eux est un cube. Nous
pouvons répéter sur cet exemple tout ce que nous avons dit à

propos du précédent: le nombre dimensionnel aura ici pour
valeur

8 Î2K-? 2
log 3
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Cet exemple nous suggère l'existence de continus possédant
un même nombre dimensionnel malgré leurs structures très
différentes; tel est le cas du continu précédent d'une part, de
l'ensemble des points d'un carré, d'autre part.

A cette occasion, remarquons que l'exemple indiqué au n° 3

permettrait d'obtenir des ensembles parfaits discontinus de
nombre dimensionnel égal ou bien à 1, ou bien à 2: ces ensembles
sont réalisés, dans un espace à 3 dimensions. Dans la théorie de
la mesure de M. Lebesgue les ensembles parfaits discontinus
mesurables en volume (auxquels on devra attribuer un nombre
dimensionnel égal à 3) sont classiquement connus.

6. — Dans les exemples de courbes donnés au nos 4 et 5, on
peut disposer des indéterminées (subsistant aux conditions qui
lient Lfc-j-i à L/c) de manière à ce que les lignes obtenues soient
sans point double.

D'ailleurs, la présence de points doubles serait ici sans importance.

Il y a un exemple classique où de tels points existent et
qu'on peut rattacher à nos considérations actuelles: c'est celui

A ß

de la courbe de Peano. On obtient en effet une telle courbe par
une construction respectant les deux conditions du n° 4. Soit
ABCD un carré de côté égal à l'unité de longueur. On partage
encore l'unité en trois parties égales, si nous prenons pour Lx la
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diagonale AC du carré, la seconde ligne polygonale inscrite L2

sera formée avec des diagonales de nos carrés divisionnaires,
prises dans l'ordre de succession indiqué par la figure. Pour

passer d'une ligne inscrite à la suivante, on fera toujours sur

chaque côté, à une similitude près, la même construction.
Finalement, nous pourrons encore (quelque paradoxal que cela

puisse sembler) définir sur la courbe de Peano ainsi construite
des arcs de même étendue : on commencera par le cas, immédiatement

résolu, d'arcs ayant leurs extrémités en des noeuds du
7 ty

réseau progressif, obtenu à partir du carré par subdivision
ternaire indéfini, on passera encore de là au cas général en remarquant

que l'ensemble des nœuds précédents est partout dense

sur la courbe de Peano. Bien entendu, le nombre dimensionnel
est ici égal à 2.

6 bis. — Partant de la courbe étudiée au n° 4 ou de la courbe
de Peano étudiée au n° 6, on pourrait en déduire dans l'espace
des lignes analogues aux hélices. Soit M un point d'une de nos
courbes planes: menant en M la perpendiculaire au plan de la

courbe, on porterait sur cette perpendiculaire une longueur
proportionnelle au paramètre qui définit d'une manière intrinsèque

la position du point M sur la courbe. Il est facile de voir
que les lignes brisées inscrites dans cette hélice généralisée,
projetées sur le plan de la courbe initiale suivant les lignes L/.

respectent les conditions auxquelles nous nous sommes conformés

dans la construction de ces lignes. Il s'ensuit que l'on peut
aussi définir sur ces hélices des répartitions uniformes de masses
et que la projection d'une répartition uniforme sur l'hélice est

encore une répartition uniforme sur la courbe initiale: l'hélice
aura un nombre dimensionnel égal à celui de la courbe initiale h

7. — Les mêmes considérations permettent d'obtenir des
surfaces de Jordan qui sont des ensembles partitifs dont les nombres

i Les résultats obtenus ici apportent, dans des cas particuliers., une contribution à ce
problème :

Trouver une représentation paramétrique intrinsèque (c'est-à-dire invariante par le
groupe des déplacements) d'une courbe de Jordan.

Ce problème a été résolu dans un tout autre sens, mais avec une entière et remarquable
généralité par M. Maurice Fréchet (Journ. de Math., t. 4, 1925, p. 281-297).
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dimensionnels pourront prendre des valeurs variées. Nous
définirons ces surfaces comme limites de suites de surfaces polyé-
drales, qui pour fixer les idées, respecteront les conditions
suivantes:

1° Chaque surface polyédrale 2* de notre suite a des facettes
rectangulaires semblables, dont chaque arête est parallèle à l'un
des trois axes de coordonnées (choisis orthogonaux);

2° Les sommets de 2* sont encore sommets de 2jt+t ;

3° La figure formée par une facette de 2 et la figure polyédrale

qui lui est substituée dans 2*+i est définie à une similitude
près.

Par exemple, partant d'un carré (qui sera 2X) nous subdiviserons

son arête en 3 parties égales, puis le carré se trouvant ainsi
partagé en 9 autres, noiis laisserons subsister ceux qui sont situés
aux 4 coins et le carré central, les 4 autres se trouvant remplacés

par des assemblages de facettes tels que chaque assemblage
forme un cube avec la facette qu'il remplace : nous avons représenté

ci-contre la forme de la surface 22 ainsi obtenue. Cela

posé, en itérant indéfiniment cette opération, nous pourrons
obtenir une portion de surface, image topologique d'un carré:
sur cette surface, on pourra définir des étendues égales, délimitées

par des lignes fermées simples de Jordan: cela sera immédiat
lorsque ces lignes seront des lignes brisées empruntant leurs arêtes

aux facettes des surfaces polyédrales 2*. Comme toute ligne de

notre surface finale est d'ailleurs la limite de telles lignes brisées,
on généralise aisément la notion de l'étendue délimitée par une
courbe simple de la surface, en spécifiant par exemple qu'il
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s'agit soit du domaine ouvert, soit du domaine fermé qu'elle
délimite. Cette étendue sera comparée à celle de la surface

totale, prise pour unité (par exemple). Lorsqu'on subdivise

l'unité de longueur en 3 parties égales, l'étalon de l'étendue

actuellement considérée se subdivise en 25 parties égales. Le

nombre dimensionnel est donc ici

Indiquons sans insister qu'on pourrait beaucoup varier les

considérations précédentes, et à l'exemple de ce que nous avons

vu au n° 4, tirer parti de transformations linéaires qui
supplanteraient les similitudes intervenues ici.

Uallured'un potentiel au voisinage de Vensemble potentiant.
Application au problème de Dirichlet.

8. —- Au cours des travaux récents sur le problème de Dirichlet,
on a pris l'habitude de raisonner avec le maximum de généralité;

on formule l'énoncé de la manière suivante:
Soit un domaine ouvert Q (c'est-à-dire exclusivement composé

de points intérieurs) tout entier à distance finie ; soit la frontière

de ce domaine, dont on sait seulement:
1° Qu'elle constitue un ensemble fermé;
2° Qu'elle comprend nécessairement un continu externe.
On donne une fonction continue /(Q) sur l'ensemble fermé 2.

et on cherche à trouver une fonction F (P), harmonique dans Q,
et possédant en général, en chaque point de 2, une valeur limite
unique égale à / (Q), l'ensemble des points exceptionnels étant
aussi raréfié que possible.

J'ai présenté une étude détaillée de ce problème, envisagé
avec ce degré de généralité dans mon mémoire des Annales de la
Société Polonaise de Mathématique (t. IV, année 1925, p. 59-
112), qui est en même temps la rédaction des leçons que j'ai
faites sur cette question, pendant le dernier trimestre de 1925,
à l'Université de Cracovie.

log 3 log 3

Chapitre II.
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Je ne rappellerai donc ici que quelques points, pour permettre

une lecture autonome du présent travail. On peut, pour tout
domaine ouvert £ï, définir la fonction de Green G (A, P) : c'est
la limite des fonctions de Green des domaines intérieurs à Q,

pour lesquels le problème de Dirichlet est résoluble au sens
classique (c'est-à-dire avec continuité de la solution dans Q + 2).
Cette limite existe et est harmonique, d'après le théorème de

Harnack, et surpasse les fonctions de Green des domaines
intérieurs, qui en sont des valeurs approchées. Cela posé, si / (Q) est

l'empreinte sur 2 d'un polynome $*(P), la solution du problème
de Dirichlet est donnée, quel que soit le domaine Q, par la
formule

F(P)=y(P)+
1 fAffi(M)G(M, P) rfco (1)

[n —i)£De là, on passe aisément au cas général, grâce à ce théorème
de M. H. Lebesgue d'après lequel toute fonction continue sur
un ensemble fermé est l'empreinte d'une fonction continue dans

tout l'espace et grâce au théorème de Weierstrass sur l'approximation

des fonctions continues par polynômes.

9. — Cela posé, il y a lieu étant donné un domaine quelconque
Q de considérer les points de la frontière 2 où l'on a

lim G (A, P) 0

PQ-+0

Ces points constituent la partie impropre de la frontière y,: on

peut les supprimer de manière à ce que la partie subsistante de

la frontière soit encore la frontière d'un nouveau domaine et de

manière à ce que la solution du problème de Dirichlet reste

inchangée par cette ablation, les valeurs périphériques restant
les mêmes.

Notre attention est donc attirée sur les ensembles impropres,
c'est-à-dire ceux qui ne peuvent porter, d'une manière efficace,
des données de Dirichlet bornées. C'est précisément pour
discriminer ces ensembles que j'ai songé à introduire le nombre
dimensionnel.

Nous établirons d'abord le théorème suivant:
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Pour qu'un ensemble fermé E, tout entier distance

et dépourvu de points intérieurs1,il suffit (cond. I)
qu'enrépartissant des masses positives sur E, de manière que chaque

sphère centrée en un point de cet ensemble contienne à son intérieur
une masse totale non nulle,la limite du potentiel en tout point de

E soit+ oo. Il faut cond. II) que sa supérieure soit + go

Montrons d'abord que la condition II est nécessaire. En effet,
soit E un ensemble impropre. Répartissons sur cet ensemble des

masses positives, de manière qu'une sphère, centrée en quelque
point Q de E contienne à son intérieur une masse non nulle.
Supposons un instant que la limite supérieure en Q du potentiel
de cette répartition soit finie. Alors, nous pourrons trouver une
sphère de centre Q telle que la même propriété soit satisfaite en
tout point non extérieur à cette sphère: isolons cette partie Ex
de l'ensemble E, nous ne pouvons que diminuer le potentiel,
qui restera donc borné; soit L la limite supérieure de ce nouveau
potentiel. Considérons le problème de Dirichlet extérieur, pour
le domaine qui s'étend à l'infini et dont la frontière est consti ¬

tuée par l'ensemble Ex; envisageons la solution attachée à la
valeur L sur Ex et évanescente à l'infini (solution qu'on peut
encore définir au moyen du théorème de Harnack, en imitant
ce que nous avons fait pour la fonction de Green). Cette solution
devrait dépasser le potentiel précédent. Or puisque E est

impropre, il en est de même a fortiori de Ex : elle est donc identiquement

nulle. De cette contradiction, résulte bien que la condition

lim V (P) m -j- oo

PQ - O

est nécessaire.
La condition I est suffisante: en effet, si elle est remplie,

les surfaces équipotentielles V (P) À délimitent des domaines
extérieurs s'étendant jusqu'à l'infini et définis par

V(P) <x
La fonction est la solution du problème de Dirichlet

m

extérieur, relatif à l'un de ces domaines, solution attachée à la

1 Si un ensemble E contenait des points intérieurs, l'ensemble (i) de ces points serait une
somme de domaines ouverts. On raisonnerait sur E — au lieu de raisonner directement
sur E. Mon énoncé primitif du Mémoire cité des Annales de la Soc. Pol. était incorrect

: je l'ai rectifié à la suite d'un échange de vues avec M. Vasilesco.
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valeur 1 sur la frontière V X, et évanescente à l'infini. Lorsque
les domaines vont en se dilatant de manière que leurs complé-

V(P)mentaires tendent vers E, la suite des fonctions —— tend vers

la solution du problème de Dirichlet pour la région extérieure à

E, avec la valeur 1 sur E, et la valeur 0 à l'infini. Lorsque X croit

indéfiniment, tend vers zéro: la solution en question est

donc nulle et par suite, l'ensemble E est bien un ensemble

impropre. (Le fait que les surfaces V X n'ont pas de point
commun avec E joue un rôle essentiel.)

10. — Il est maintenant facile de montrer comment l'idée du
nombre dimensionnel, qui joue ici le rôle principal, va nous
permettre d'énoncer une condition suffisante pour qu'un ensemble
fermé soit impropre. D'ailleurs un ensemble fermé est la somme
d'un ensemble dénombrable, lequel est impropre et d'un ensemble

parfait: nous pourrons donc raisonner sur un ensemble parfait.
Nous énoncerons d'abord la condition en question (et cela

intentionnellement) sans faire intervenir explicitement le nombre
dimensionnel :

Théorème A. — Un ensemble parfait E est toujours
quand on peut y répartir des masses,de manière que chaque sphère
de rayon pinfiniment petit,ayant son centre en un point Q de E,
contienne à son intérieur une masse p. (p) dont le quotient par pn~2 ne
tende pas vers zéro.

S'il y avait des masses finies en certains points de E, il est
facile de voir qu'on pourrait les supprimer, sans que la répartition

subsistante cesse de satisfaire à la condition de l'énoncé.
Nous pourrons donc supposer que p(p) tende vers zéro avec p.

Cela posé, du point Q comme centre, traçons une suite de

sphères de rayons
Po ^ Pl X* ?k "*

*

qui tendent vers zéro. Par hypothèse, nous pouvons choisir cette
suite de manière que l'expression

S* (Pt)
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reste supérieure à un nombre fixe a. A une distance pkj2
de Q, le potentiel surpassera la somme des k premiers termes

dans une série de terme général proportionnel à

Mpg-i) — H-(Pk)

«—2
Pfr-1

dont le reste s'écrit

P-(Pi-i) — P-(Pi) lA(Pk) — H- (Pa+i) H- (pit+i) PdP^+a)
— ~2 Trt—2* h

an-2 +
?k-l ?k P*+l

et surpasse la somme obtenue en remplaçant chaque dénominateur

par p'IZi, c'est-à-dire dépasse

H-(PÀ--I)

;i-2 '
9 k-1

Ainsi le reste de la série qui fournirait la limite en Q du potentiel
ne tend pas vers zéro. Cette série est donc divergente. (C.Q.F.D.)

11. — Dans le même esprit, nous allons établir une proposition
qui constitue une contre partie (mais non d'ailleurs une
réciproque) de la précédente.

Théorème B. — Considérons une répartition de masses positives

sur un ensemble parfait E. Supposons qu'une ayant
pour centre un point Q deE et pour rayon une longueur p infiniment

petite,contienne à son intérieur une masse u(p) telle
h étantun exposant positif (d'ailleurs arbitrairement petit) le

rapport
p* ^ ?n~2+h

tende vers zéro.Alors le potentiel est fini au point Q1.
En effet, soit R le maximum de distance d'un point de E au

point Q précédent. Il faut montrer que l'intégrale

r d±Ç)
/ ,»-2t/ o

i Ceci entraîne qu'il rest partout borné, car P étant pris hors de E, on peut
toujours lui faire correspondre un point Q de E tel que |MQ < 2MP, pour tout point
M de E.
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a un sens, intégrons de s à R, en appelant e une longueur
infiniment petite. Nous aurons

P P

R RR
n-d^\ p.(p)

J -h — 2) j -
p'

R

rE(r) _ ûiîll _l /w _ o\ r_Ü(PL JLL
L R«"2 £*~2 J ^ 1 ]Jon~'2+h ol~h

sous cette forme, en vertu de l'hypothèse, le résultat annoncé
est immédiat. (C.Q.F.D.)

D'une manière plus générale, on démontre par le même
raisonnement ce théorème:

Théorème B'. — Si le rapport reste borné et si
V intégrale

R
/»p-(p) <h

J p""2 P

a un sens,même conclusion.
Il est clair que B n'est qu'un cas particulier de B', adapté à la

pratique. Si, en chaque point de E, les conditions de B' sont
vérifiées, on est assuré qu'aucune portion de E n'est impropre.
Soit Q le domaine des points intérieurs à une sphère qui contient
E, on peut affirmer que l'on a, en appelant G (A, P) la fonction
de Green de Q—- E

lim G (A, P) 0

PQ=0

Grâce à B ou à B', on pourra formuler sur la frontière 2 d'un
domaine pour lequel on cherche à résoudre le problème de Di-
richlet une légère restriction de généralité, telle qu'a
on soit assuré que cette frontière soit d'ores et déjà réduite,
c'est-à-dire, débarrassé d'ensembles impropres.

12. — Avant de traduire au moyen du nombre dimensionnel
les hypothèses des théorèmes précédents, nous allons voir ce

qu'on peut tirer dans les cas particuliers signalés au chapitre I.
Supposons donc, simplement pour fixer les idées1 que l'on

i Faisons rémarquer à cette occasion que les théorèmes des Nog 9, 10, 11 ont été" établis
en supposant n ^ 3, mais il serait facile de les étendre au cas de n 2.
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ait n3 et occupons-nous d'abord de l'exemple du n° 3. Sur

cet ensemble on peut, ainsi que nous l'avons dit, répartir
uniformément l'unité de masse. Pour cela, prenons sur chacune des

arêtes OA, OB, OC un segment de même milieu et partageons le

parallélipipède initial en 27 autres, en ne laissant subsister de

ceux-ci que les 8 ayant un sommet commun avec le parallélipipède

initial. Répétons sur chacun d'eux, à une transformai ion

linéaire près (toujours la même, de directions principales OA,

OB, OC) la même opération et ainsi de suite. A chaque opération,

partageons la masse attribuée, lors d'un parallélipipède comp]et,
en 8 parties égales que nous attribuerons respectivement aux 8 pa-
rallélipipèdes remplaçant le premier. Un point Q de l'ensemble

peut toujours s'obtenir comme limite d'une suite de parallélipi-
pèdes emboîtés: disons qu'un parallélipipède est de rang k s'il

est obtenu après la keopération; il contient alors la masse

et a pour arêtes

I — X\& /] — u.\ (l — v\*
a 2

De Q comme centre décrivons une sphère de rayon : la masse

contenue dans cette sphère est comprise entre celles que contiendraient

deux cubes de centre Q d'arêtes parallèles à OA, OB, OC

et respectivement égales à p et 2p. Nous allons chercher l'ordre
de grandeur de ces dernières masses. A cet effet, remarquons que,
si l'on affecte chaque portion de l'ensemble (a) (projection de

l'ensemble étudié sur OA) d'une masse égale à la somme des

masses situées sur l'ensemble étudié et projetées sur cette portion

de (a), on obtient une répartition uniforme sur (a). Donc, sur
une portion de (a) de même ordre de grandeur que (par exemple,
comprise entre p et2p)seprojette une masse qui est de l'ordre
de 1

log 2

10 o*aö i i aA-A — p

i En eilet, le sous-ensemble maximum de («)semblable à Qui soit situé tout entier
dans le segment de milieu q et de longueur (ou aussi bien a un diamètre qui de l'ordre
de o, au sens précis donné à cette locution dans le texte. Alors, la masse portée par le segment
en question est du même ordre que la masse portée par le sous-ensemble. Or un raisonnement
de similitude montre immédiatement que cette dernière s'obtient en élevant 1a. mesure du

1 o o* 2
diamètre de ce sous-ensemble à la puissance </. — 2__—#

lo<r —-—
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ce qui signifie qu'elle est comprise entre deux limites de la forme

Gpa et F pa

G et F désignant deux limites fixes. Par suite, dans cette acception,

nous pouvons dire que la masse intérieure à la sphère en

question est de l'ordre de

pH-ß+r avec a — log
—

log "

P

1 — \
log 2

log
2

T

1 — p.

log 2

2
log

1 — V

Supposons que l'on ait a + ß-f- ^ 1. Le théorème A montre
alors que l'ensemble construit sur OA, OB, OC à partir de (a),
(/3), (y)est impropre.

Au contraire, si l'on aa + (3 + / )> 1, le théorème B nous
montre que cet ensemble a partout un potentiel newtonien
borné: notamment, si l'on pose le problème de Dirichlet extérieur

avec cet ensemble pris comme frontière, aucune partie de

cette frontière ne sera impropre ; autrement dit, ipso cette
frontière sera réduite.

13. — Prenons maintenant les exemples des nos 4, 5 et 6, qui
sont des courbes de Jordan, douées d'une métrique, attachée à

un nombre dimensionnel dsurpassantl'unité. Considérons les

répartitions uniformes de masses qu'on peut définir sur ces

courbes. Par des raisonnements du même genre que les précédents,
on pourra voir que la somme de ces masses intérieures à une sphère

ayant pour centre un point Q d'une de ces courbes et pour rayon
p sera de l'ordre de p* en appelant p le nombre dimensionnel.
Du théorème B, il résulte donc encore que le potentiel newtonien
de l'une de ces courbes demeure borné. On pourra par conséquent
poser pour ces courbes (dont l'une est d'ailleurs identique à

l'aire d'un carré) le problème de l'équilibre électrique.
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De ces résultats, découlent des conséquences sur lesquelles il
importe d'attirer l'attention. Supposons que l'on ait exprimé les

coordonnées d'un point d'une des courbes précédentes sous la

forme
x x[l)y—

le paramètre tétant choisi de manière qu'à des intervalles égaux
de variation de tsur la courbe, correspondent des étendues

égales. Alors, d'après ce qui précède, chaque intégrale

t0-yh
Ç dt

Jh +7r(b - r(/0)j^ + |7(ï)

sera convergente : voilà une circonstance à laquelle nous n'étions

pas habitués dans le champ des fonctions possédant une dérivée.
Si nous prenons plus spécialement la courbe citée au n° 4, ou

la courbe de Peano, étudiée au n° 6, nous obtiendrons pour valeur
du potentiel newtonien en un point d'une de ces courbes, en

supposant que l'intervalle total de variation de t soit l'intervalle

0,1 :

i
I_ — f jl (0 9J V[.r(0 -x(t0)y+ [,.(<) -.r('o)J3X,y

L'intérêt de ce résultat s'accroît lorsqu'on le rapproche du
suivant, essentiellement différent, obtenu par M. Paul Lévy1:

U intégraleau premier abord analogue:

.=/iî "
(') — x Co) I

U

est infinie pour toutes les valeurs de t0 de 0,1 exception
faite au plus sur un ensemble de mesure nulle.

Il est d'ailleurs facile de comprendre les raisons de ce contraste.
Ainsi que le remarque M. Paul Lévy, l'intégrale lx ne dépend que
de la fonction sommatoire de x (t) ; on peut de ce fait se ramener

1 Bulletin des Sciences mathématiques, 2me série, t. 48, 1924, p. 359.

L'KnseigTiement mathém., 2G« année, 1927. 17
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toujours au cas où x(t)estnon" décroissante. Dès lors, soit p un
entier quelconque ; lé rapport incrémental

x{t) — x{tQ)

\ <

# t

sera inférieur à psauf sur un ensemble formé d'intervalles et doht
' - ; ' ' '

la mesure totale sera moindre que le quotient par de l'oscillation

de x (t). Le résultat annoncé en résulte.
Si nous passons maintenant à l'intégrale I le même principe

de raisonnement ne s'applique plus: il ne serait plus exact de
dire que-i^ y-déponde-seulementr ^ins-fonctions âommatoires de

x (£), y (t).Onne peut donc plus procéder dans la sommation à

un groupement de termes analogue au précédent. Nos exemples
nous ont bien montré d'ailleurs que les résultats alors obtenus
sont essentiellement différents.

14.— Il est maintenant facile de systématiser ce qui précède.
Considérons un ensemble parfait quelconque et supposons qu'on
connaisse sur cet ensemble une répartition de masses conduisant
à la propriété suivante: si d'un point Q des E comme centre,
avec un rayon p infiniment petit, nous décrivons une sphère, la
masse totale p (p) intérieure à cette sphère soit d'un ordre qui
demeuré, sur tout l'ensemble E, intermédiaire entre celui de

p? et celui de p"+p, en appelant a et des constantes positives.
Nous dirons alors que l'ensemble a un nombre dimensioimel
compris entre a et a + ß. Lorsque, d'une manière phis précise,
la fonction p.(p)estde l'ordre de nous dirons que l'ensemble
a pour nombre dimensionne!

Enparticulier si une ligne admet une tangente en chaque
point, laquelle varie d'une manière continue, on peut montrer
qu'en prenant une répartition uniforme de masses sur cette
courbe, on obtient une fonction p(dupremier ordre. De même
si une surface admet un champ continu de normales, on obtient
une fonction p(p) du second ordre, en prenant .une répartition
uniforme de masses sur' la surface. Les variétés qui viennent
d'être indiquées admettent donc bien les nombres dimensionnels
1 et 2. Toutefois, il importe de remarquer que si l'on prend une

/ "" ;
;

• |
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ligne rectifiable (ou une surface quarrable) quelconque, il peut

exister sur cette ligne (ou sur cette surface) des points exceptionnels

pour lesquels la fonction ^ (p )a un ordre infinitésimal
inférieur à 1 (ou à 2), tout au moins lorsqu'on part de masses

réparties avec une densité constante x.

Il n'est nullement impossible que la valeur du nombre dimen-

sionnel dépende du procédé de définition adopté.
Bornons-nous ici à noter la concordance dans un champ étendu

et à faire remarquer que la définition précédente, basée sur l'ordre
de la fonction p(p), s'accorde avec les résultats concernant les

exemples particuliers précédemment examinés et où des

considérations de similitude permettent une autre définition du nombre

dimensionnel.
A la faveur de cette concordance, au moins dans un champ

étendu, les théorèmes A et B peuvent s'énoncer de la manière

suivante :

1° Un ensemble parfait dont le nombre dimensionnel est

partout n —2 est impropre.
2° Un ensemble parfait dont le nombre dimensionnel surpasse

partout n — 2 + A, où hest un nombre positif fixe, d'ailleurs
arbitrairement petit, engendre pour les répartitions normales de

masses sur cet ensemble (c'est-à-dire celles pour lesquelles p{p)
est partout d'un ordre infinitésimal compris entre des limites
aussi resserrées que possible) un potentiel borné. Un tel ensemble

constitue, au point de vue de la résolution du problème de Diri-
chlet, une frontière réduite2.

Donc, au point de vue pratique, et compte tenu des difficultés
que nous avons signalées concernant le mode de définition du
nombre dimensionnel, difficultés qu'on évitera en cherchant à se

ramener explicitement aux théorèmes A et B, le problème de la
discrimination des ensembles impropres peut être regardé comme
résolu.

Rappelons pour terminer que les ensembles impropres, dont

1 II serait intéressant d'examiner alors si, par des répartitions appropriées (c'est-à-dire
convenablement atténuées autour des points exceptionnels précédents) on ne pourrait
ramener partout l'ordre infinitésimal de p. (o) à la valeur 1 (ou à la valeur 2).

2 Dans un article à l'impression au Bulletin des Sciences mathématiques, j'ai pu
préciser les modalités relatives aux répartitions de masses et justifier complètement
les deux énoncés ci-dessus.
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nous nous sommes occupés ici et qui sont aussi les ensembles de

capacité électro-statique nulle sont également ceux qui ne
sauraient être ensembles de singularités pour une fonction harmonique

bornée/ensembles au sujet desquels M. H. Lebesgue
avait fait connaître des résultats importantsK

FORMULES ELLIPTIQUES
POUR LA RÉSOLUTION DE CERTAINES ÉQUATIONS

DE FERMAT

PAR

Emile Turrière (Montpellier).

Observations préliminaires sur les équations de Fermât
DANS LE CAS OU LE POLYNOME DU QUATRIÈME DEGRÉ

A AU MOINS UN ZÉRO RATIONNEL.

1. — L'étude d'une équation indéterminée du quatrième
degré de Fermât

ol0z4-f4'o^Ä,r'+ Ö a^js2'+• -f- a4 - assf. y%,
dont t solution particulière est connue a se ramène
tout d'abord, par une transformation homographique sur la
variable z, à celle d'une équation du même type, mais avec

a0 — 1 :

xA+ kax + 6 a2x2-}-ka3x + X Q ;

la solution connue z0estdevenue la valeur infinie de la nouvelle
variable

1 O. R. Ac. Sc., t. 176, p. 1097, avril 1923.
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