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SUR LA REPRÉSENTATION DES GROUPES CONTINUS 1
-

PAR

H. Weyl (Zurich).

La notion générale de groupe est sortie par abstraction de
celle de groupe de transformations: on en vint à envisager
les transformations comme des éléments de nature absolument
quelconque, et l'on ne retint que la loi selon laquelle deux
transformations engendrent par leur succession, par leur composition,

une nouvelle transformation. D'autre part on doit aussi,
à partir d'un schéma de structure abstrait, pouvoir retomber sur
les groupes concrets de transformations. La réalisation ou
représentation d'un groupe abstrait consiste en ceci qu'à chacun
de ses éléments s, on fait correspondre, dans l'espace des variables
x — (rrj, x2, #n), une transformation E E (s)

x' —

et cela de telle façon qu'à la composition de deux éléments du

groupe corresponde la succession des deux transformations
qu'on leur associe

E(s) .E(t) t)(1)

et qu'à l'élément unité o du groupe corresponde la transformation

identique. (J'écris le symbole E de la transformation après
les variables, afin que la composition des transformations puisse
être lue de la façon la plus naturelle, c'est-à-dire de gauche à

droite. On ne supposera pas que la réalisation soit fidèle, c'est-
à-dire qu'à des éléments différents correspondent nécessai-

1 Rédaction abrégée d'une conférence faite à la session du printemps de la Société
mathématique suisse, le 7 mai 1927, à Berne. Traduite de l'allemand par F. Gonseth
(Berne). -
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rement des transformations différentes aussi.) Le cas le plus

simple est celui où les transformations en question sont linéaires

et homogènes. E peut alors être aussi envisagée comme la

matrice des coefficients de la transformation. C'est ordinairement
dans ce cas seulement que s'emploie l'expression de représentation.

On peut dire que les recherches sur la représentation des

groupes finis telles qu'on les doit à Cartan et à Frobenius
forment le noyau de la théorie des groupes finis : consistant dans

ses parties préparatoires en une série de résultats isolés et disparates,

cette discipline ne prend la forme d'une théorie cohérente

et profonde que grâce à la doctrine des représentations par les

transformations linéaires. Dans cet exposé, je ne m'occuperai
pas des groupes finis, mais des représentations des groupes
continus. Il se présentera que, pour les groupes continus dont
les éléments forment une variété close, on peut formuler uhe
théorie analogue à celle des groupes finis. Les groupes les plus
familiers et aussi, du moins pour la géométrie, les plus importants
sont continus. Pensez, par exemple, au groupe des rotations de

l'espace à 3 ou n dimensions Ce groupe est en même temps l'un
des plus importants exemples de groupe clos. Un autre exemple
est celui des transformations unitaires, des transformations
linéaires et homogènes qui laissent invariante la forme-unité
d'H ermite définie positive

«ri-ri + X2X2"h
(où la barre signifie le passage à la quantité imaginaire conjuguée).

Veuillez dès maintenant je vous prie, porter un intérêt spécial
aux groupes clos; à la fin de mon exposé j'ajouterai quelques
remarques concernant les groupes ouverts.

Si, dans l'espace 9în de la représentation, on passe (par une
transformation linéaire A) à un autre système de coordonnées,
E(s) se transforme en A-1 E(s)A; nous ne regarderons pas comme

véritablement différente de la primitive une représentation qui
lui est ainsi équivalente. Si toutes les transformations E (s) du
groupe transforment en lui-même un sous-espace 9îw de 9în
(0 < m < n) la représentation est dite réductible. Elle dégénère
(zerfällt ou est complètement réductible en une représentation
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à m, et une à n— m dimensions si l'on peut engendrer 9în additi-
vement à l'aide de deux.espaces complémentaires 9et 9în-mdont
chacun soit transformé en lui-même par toutes les transformations
du groupe. (Cette addition consiste en ceci que tout vecteur de
3în soit d'une seule façon la somme d'un vecteur de 9îm et d'un
vecteur de 3tn-m.)

Tout groupe fini est complètement est simplement
réductible. Ceci veut donc dire qu'à tout sous-espace 9îm invariant
on peut adjoindre un second espace invariant 3ln-m qui, avec le
premier, engendre l'espace entier de la représentation 3tn-#

Je m'en vais vous rappeler quelques traits de la démonstration
de ce théorème, qui fait voir que toute représentation peut être
d'une seule façon décomposée en représentations irréductibles.

Dans le cas d'un groupe fini de transformations réelles
orthogonales, en d'autres termes d'un groupe fini de rotations dans
l'espace à n dimensions, la construction de l'espace complémentaire

3în-m est évidente: il est défini parlavariété linéaire de tous
les vecteurs perpendiculaires à 9tm.

Les transformations orthogonales sont celles qui laissent
invariante la forme quadratique unité. Mais toute forme quadratique

définie positive peut être ramenée à cette forme unité, par
un choix convenable du système de coordonnées. La propriété
en discussion est donc vraie s'il existe une forme quadratique
définie qui reste invariante pour toutes les transformations
du groupe.

Si les coefficients de la transformation sont complexes, la
forme quadratique est à remplacer par une forme d'Hermite
définie. Mais comment obtient-on une forme pareille Choisissons
dans ce but une forme d'Hermite définie quelconque et soumettons-la

à toutes les transformations E (5) qui correspondent aux
éléments s de notre groupe fini. Additionnons enfin toutes les

formes obtenues de cette façon: la somme est évidemment
définie et invariante pour toutes les transformations E (5).

Si l'on veut appliquer cette façon de raisonner aux groupes
continus on aura naturellement, au lieu de la sommation finie,
une intégration à effectuer. A cet effet, nous avons besoin d'un
élément de volume sur la variété du groupe qui jouisse de certaines

propriétés d'invariance. Car aussi pour les groupes finis, la mé-
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fchode ne conduit à un résultat que si l'on accorde lors de la
sommation un certain poids à chacune des formes transformées: le

poids 1.

A chaque élément a du groupe correspond une transformation
bien déterminée de la variété du groupe en elle-même, 5 ->- s',
et ceci par la formule s's.a. Je les nommes les translations

(à droite); dans son exposé M. Gartan vous a d'ailleurs déjà
entretenu de ces translations1. On peut considérer en outre les

translations à gauche s ->- 5' a set s s' — s~[.

Nous admettrons que la notion des éléments infinitésimaux,
infiniment peu différents de l'élément unité o est applicable à

notre groupe (différentiation du premier ordre, dans la théorie
de Lie); si le groupe est à r paramètres, ces éléments infinitésimaux

forment une variété linéaire à r dimensions; si l'on se

sert de r d'entre eux comme base, nous entendrons, conformément
à l'usage, par volume d'un parallélépipède déterminé par r
éléments infinitésimaux la valeur absolue du déterminant de

leurs composantes. Nous obtenons alors une mesure du volume
invariante pour les translations à droite si nous exigeons qu'un
tel parallélipipède en o conserve son volume si on le transporte
en a par translation à droite. D'autre part, pour convenir à sa

destination, cet élément de volume doit être invariant aussi pour
les translations à gauche et pour l'inversion. Par bonheur ces
deux dernières propriétés d'invariance sont, sur les variétés de

groupes closes, une conséquence de la première dont nous nous
sommes assurés par définition. Par suite du choix arbitraire de
la base du groupe infinitésimal, notre mesure du volume n'est
déterminée qu'à l'unité de mesure près. Supposons qu'on l'ait
normée de telle façon que le volume total du groupe soit égal
à 1.

Pour les représentations des groupes finis le théorème de
la réductibilité complète est valable. La supposition que le groupe
est clos, permet avant tout d'intégrer sur la variété du groupe
entière. Pour obtenir une forme hermitienne invariante pour la
représentation donnée E (s), on part d'une forme définie
quelconque, on la soumet à toutes les transformations E («s) et l'on

1 Ces translations à droite forment d'ailleurs une représentation fidèle du groupe.
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intègre la forme obtenue et dépendante de s, à l'aide de notre
mesure invariante du volume ds,sur le groupe entier. Si l'on
prend soin d'introduire dans l'espace de la représentation un
système de coordonnées convenable, la forme définie hermitienne
invariante peut être ramenée à la forme unité, et toutes les

E(s) sont unitaires.Le système de coordonnées est par là déterminé

à une transformation unitaire près.
La tracede la matrice E (5), c'est-à-dire la somme de ses composantes

situées dans la diagonale principale se nomme le caractère
de la représentation.L'importance du caractère provient du fait
qu'il est indépendant du choix du système de coordonnées dans
l'espace de la représentation; il ne change pas si l'on passe à une
représentation équivalente. Le caractère est une fonction de classe

(Klassenfunktion) ; on obtient la classe des éléments « conjugués »

à s par l'expression t^st lorsqu'on fait parcourir à t tous les

éléments du groupe; et par fonction de classe on entend une fonction

qui prend la même valeur pour des éléments conjugués.
Prenons comme exemple de ce que nous venons d'exposer le

groupe continu fermé le plus simple, celui des rotations d'un
cercle sur lui-même

s' e.z

(s est le paramètre réel du groupe, qui n'est d'ailleurs déterminé

que mod. 1).
Ce groupe des transformations unitaires de l'espace à 1

dimension étant commutatif, il ne possède que des représentations
à 1 dimension. Elles ont la forme:

où n est un entier quelconque. Le caractère correspondant est

^(s) gi-ins^ Qn qUe ces fonctions forment un système
orthogonal (et normal) dont s'occupe la théorie des séries de

Fourier. Le théorème le plus important de cette théorie est celui

qui dit que ce système est complet,lorsque prend toutes les

valeurs entières. Les fonctions <jq (s), y2 (s), sont (normées et)

orthogonales entre elles si l'on a:

1 (i
0 p' =£. k)
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Dans l'espace de la fonction arbitraire x(s), dans lequel chaque

endroit du domaine de variabilité _de 5 représente en quelque
sorte une dimension, et où fx(speutêtre envisagée

comme le carré de la «longueur) du «vecteur» x un tel
système de fonctions est l'analogue d'un système de vecteurs

orthogonaux dans un espace à une infinité de dimensions. Les

composantes de x (s)par rapport à ce système orthogonal sont
les coefficients de Fourier

a. - a- [or]
tJ

Comme, dans un triangle rectangle une cathète n'est jamais
plus longue que l'hypoténuse, on a l'inégafité de Besse! :

â j\x.Un système orthogonal (infini) est complet (c'est l'analogue
d'un système de coordonnées cartésiennes) si dans cette expression
le signe de l'égalité est à prendre pour toutes les fonctions
continues.

Et maintenant je prétends que les propriétés d'être orthogonal
et d'être complet que nous venons de rencontrer pour le système
des représentations du groupe des rotations du cercle sont encore
valables — une fois convenablement élargies — pour un groupe
clos quelconque. Mais pour les groupes non commutatifs il
nous faudra faire la différence entre les composantes des
représentations et leurs caractères.

Théorème général d'orthogonalité.Lescomposantes d'une ou de

plusieurs représentations irréductibles forment un système
orthogonal. Plus précisément: Pour une représentation irréductible à

n dimensions E (s) || (s) || on a les relations

i
a - \ — — k y\j eik(s)«,-» ds \ " (2)

0 (dans tout autre cas)

Pour deux représentations irréductibles et inéquivalent es E (s)
et E' (s) on a sans exception:

f eik(s)e'rAs)ds 0 • A)
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Théorème général de fermeture: Les composantes de toutes les

représentations irréductibles inéquivalentes forment un système
orthogonal complet.

En introduisant le « coefficient de Fourier » appartenant aux
représentations E (s)

A AO] fx(s)E(s)ds H || (4)

on a donc:
n

" 2 lai*|S-+ J\x(s)\2ds.(5)

i, k=1

Théorème spécial d'orthogonalité et de fermeture: Les caractères

primitifs forment un système orthogonal qui est complet dans le

domaine des fonctions de classes. Les caractères d'une,
resp. de deux représentations inéquivalentes vérifient les
relations :

jm (s) x (*) ds1 fx (s) x is) o

et, si x (s)estune fonction de classe continue, avec

a aO] Trace AO] — fx(s)x(s)ds

comme coefficient de Fourier, alors on a la somme suivante,
étendue à toutes les représentations inéquivalentes

| oc |2 -f- f|2

%

Quelle est la signification de la condition de fermeture pour un
groupe fini Si ce groupe comprend k classes, il n'y a que k
fonctions de classes linéairement indépendantes et par conséquent
k caractères primitifs au plus; le théorème spécial certifie que
dans ce cas n y a exactement k caractères primitifs, ou bien encore

qu'il y a autant de représentations irréductibles que de classes

dans le groupe. Le théorème général de fermeture fait voir par
contre que la somme S n2 des carrés des dimensions des représentations

irréductibles inéquivalentes, est égale à l'ordre du groupe.
Pour démontrer ces théorèmes de fermeture, il faut avoir recours
à une méthode de construction des représentations irréductibles;
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car il n'est aucunement évident a priori qu'il existe même une
seule représentation. Contrairement à ce qui se fait pour les

groupes finis, cette construction doit partir, dans Je continu, d'une
fonction arbitraire x (s), sans laquelle la condition de fermeture
ne pourrait être formulée. Le chemin que nous avons suivi,
un de mes élèves, M. F. Peter et moi, met le problème de la
représentation en relation avec la théorie des équations intégrales.

Par suite de la condition (1) on a :

fx (t)E (r1 s) dtfx E (r1) dt. E (s)
«y «y

E (r1) est égale à E-1 (t)et cette dernière expression, parce
que E (t)est unitaire, est à son tour égale à E* (t) (l'astérisque
doit indiquer le passage à la matrice transposée). L'intégrale
indépendante de 5' au membre de droite de l'équation précédente
est donc la matrice transposée A* du coefficient de Fourier delà
formule (4). Quant au membre de gauche, remplaçons-y par
st~{: si s reste fixe, st~ldécrit le groupe entier, en même temps
que t,tandis que le volume dtreste inchangé. Nous obtenons:

fx(sf1)E (t) dtA*E(.s) (6)

Un nombre oc ^ 0 est dit valeur fondamentale et une fonction
o {s) fonction fondamentale correspondante du noyau k (s, Z),

si l'on a:
/ /• (st)©(/) dtCL o (s)

(je nomme ici valeur fondamentale ce qui serait, selon la
terminologie de Hilbert, l'inverse d'une valeur fondamentale). La
signification de l'équation (6) peut donc être énoncée comme suit :

E (s) est une fonction fondamentale du noyau

k(s, t) x{sr1) (7)

correspondant à la valeur fondamentale A*. La valeur
fondamentale aussi bien que la fonction fondamentale ne sont, il est
vrai, pas des grandeurs scalaires, mais des matrices. On montre
de façon semblable que

fX(rls) E (t) dl E (s) A* (6')
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Nous avons par conséquent à appliquer la théorie des équations
intégrales pour des noyaux (7), qui Sont fonction de la seule
variable st~l.Nos formules montrent que les fonctions fondamentales

de noyaux de ce genre sont (contrairement à ce qui se passe

pour les valeurs fondamentales) au fond indépendantes de la loi
fonctionnelle x(s).Avrai dire, nous n'aurons véritablement le
droit de le prétendre que lorsque nous aurons pu faire voir que»

ces noyaux ne possèdent pas d'autres fonctions fondamentales

que celles que nou»venons d'indiquer, et qui nous ont été fournies

par les représentations irréductibles du groupe.
Remarquons tout d'abord que par composition nous ne quittons

pas le domaine des noyaux de la forme spéciale (7). On
définit la composition de deux noyaux comme celle de deux
matrices :

his»0 fki (s > (r » 0 dr

et l'on a en effet J*x (sr~l) y (rt~^) dr —*)

en posant

J*x(sr~\)y(r)dr xy(s) (8)

La théorie des valeurs fondamentales des équations intégrales
n'est de facile abord que dans le cas où le noyau satisfait à la
condition de symétrie d'Hermite:

k(t, s) k(s i)

Il est alors identique à son conjugué hermitien:

k (.s- t)~k,s)

Le conjugué hermitien de (7) est avec x{s) x(s~1)-

Par la composition kkonobtient toujours un noyau hermitien K.
Les valeurs fondamentales sont positives. La trace de K

(s s) ds — j*j \ k (s i) \2 ds dt

est égale à la somme des valeurs fondamentales de K. Ce théorème
fondamental de la théorie des équations intégrales s'obtient par
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construction, des valeurs et des fonctions fondamentales, de la

façon la meilleure par la méthode de E. Schmidt (Dissertation.

Göttingue, 1905).
Pour toute fonction x, y,ona pour le coefficient de Fourier A

correspondant à une représentation :

A [.it] A [.r] A [r] A [I] Ä* [x]

Par conséquent la matrice A(x)esthermitienne, si x(s) x (s) ;

elle peut alors, par un choix convenable du système de coordonnées

orthogonal et normal dans l'espace de la représentation, être

mise sous la forme d'une matrice diagonale (de composantes

öl2 ••• xj. L'équation (6) dit alors que les fonctions

ei±(s) <?.a (s) (9)

appartiennent comme fonctions fondamentales à la valeur
fondamentale ol1i au sens scalaire et habituel. Ceci doit être

appliqué non au noyau (7), mais à K Le fait que ses

fonctions orthogonales forment un système orthogonal, comme celles

de tout noyau hermitien, est le fondement des théorèmes d'ortho-
gonalité de la théorie des représentations. A la vérité, pour justifier

complètement les équations (2) et (3) il faut encore avoir
recours à l'irréductibilité. Etthéorème fondamental de

théorie des équations intégrales, quen général nia rien de commun
avec les conditions de fermeture fournit maintenant Véquation (5), où
]a somme indiquée par les points ne doit être étendue tout
d'abord qu'aux représentations fournies par les fonctions
fondamentales du noyau K 1. Mais à cause de l'inégalité de Bessel
le résultat ne change pas, si l'on tient compte par la suite des

représentations irréductibles inéquivalentes restantes. Ce sont,
comme on peut le voir en même temps, toutes celles pour
lesquelles le coefficient de Fourier A [x] s'annule, et celles-là
seulement.

Mais tout cela n'est juste qu'à la condition que toutes les fonctions

fondamentales apparaissent comme composantes de l'une

i Car les n composantes de la matrice diagonale r A [xx\ A. A* sont des valeurs
fondamentales n-tuples, avec les fonctions fondamentales (9) ; ce qu'elles fournissent à la
somme des valeurs fondamentales est donc, n Trace r n. Trace (AA*).
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ou l'autre des représentations irréductibles. C'est ici qu'intervient
la seconde idée de la démonstration, après que lés relations avec
une équation intégrale aient été établies par (6). Si <p (s) est une
fonction fondamentale appartenant à la valeur fondamentale y,
i] en est de même, à cause de la forme spéciale de notre noyau

K (s, t)z («r1)

pour la fonction <p(sa)— a étant un élément quelconque du

groupe. Si
?i W • 92 (s)

sont toutes les fonctions fondamentales linéairement indépendantes

appartenant à y, les fonctions doivent donc, pour
un tconstant être des combinaisons linéaires des çj(s), avec
des coefficients constants, c'est-à-dire fonctions de seulement.

n

9i(st) ^ <fk(A)(0 • (10>

fc=l

ou bien, avec la façon d'écrire du calcul des matrices

9 11^, 92 9,J| E ||% Il

9 (st)=-9(«)E'(0

En termes explicites: Si l'on compose par multiplication à

droite l'argument s et l'élément du groupe fixe £, le système des

fonctions ç (s) subit la transformation linéaire E Il en résulte
immédiatement

E (/) E (t) E (W)E (o) =1

et nous avons ainsi obtenu une rep.D'ailleurs les
fonctions <p{s) peuvent être normées de façon à former un système
orthogonal et normal. Comme cette propriété ne se perd pas, si

l'on multiplie à droite l'argument s par l'élément du groupe
fixe £, E (2) est alors pour tout t une matrice normale (unitaire).
Enfin, il se vérifie aussi que les fonctions <p(s) sont elles-mêrnes

comprises dans les composantes de la matrice E ou du moins
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— ce qui seul importe — en sont une combinaison linéaire. Car

si nous faisons s o dans (10), nous trouvons:

fi(') ^?tlQ)eiiC) •

k

Qu'il me soit encore permis de comparer la méthode que je viens

d'esquisser brièvement avec celle qu'ont employée I robenius
et d'autres auteurs dans le cas des groupes finis. Pour un groupe
fini, on peut disposer de la fonction 1 (s), qui s'annule partout
sur la variété du groupe excepté au point-unité s o, où elle

prend comme valeur l'ordre du groupe. Cette fonction, si on la

compose d'après (8), avec une fonction quelconque («9), a les

propriétés de l'unité: 1 00 — OC
m — 00 » Par spécialisation,

c'est-à-dire si l'on applique la méthode exposée ici à la fonction
1 (s) et non à toutes les fonctions x (5) possibles, on retrouve
l'ancienne méthode. Cela suffit en effet pour engendrer toutes les

représentations irréductibles. Souvenons-nous qu'une fonction
particulière x (s) fournit toutes les représentations, pour lesquelles
le coefficient de Fourier correspondant A [F] ne s'annule pas!
Mais le coefficient de Fourier A [1] de la fonction l(s) est la
matrice-unité, et par conséquent ^ 0. Sur une variété de groupe
continue, la fonction unité 1 (s)sicommode manque malheureusement;

nous ne pouvons que nous en rapprocher par un processus
infini. Qu'on établisse en effet une suite infinie de fonctions lv («9),

(v 1, 2, qui aient 1 comme valeur moyenne sur la variété
du groupe, mais qui ne soit différentes de zéro que dans un petit
entourage du centre o, entourage qui se réduise progressivement
à o lui-même lorsque v augmente indéfiniment. Le coefficient
de Fourier A [1J correspondant à une représentation quelconque
converge vers la matrice unité, et est par conséquent, pour v
suffisamment grand, différent de zéro. C'est pourquoi notre
méthode, appliquée aux fonctions x (s) de la suite 1, (s) doit finir
par fournir toutes les représentations irréductibles.

La méthode de construction que nous avons suivie est une
méthode transcendante basée sur une intégration étendue au
groupe entier. Des intégrations de ce genre furent employées tout
d'abord par A. Hurwitz pour engendrer des invariants de

groupes; en s'en servant, I. Schur démontra les conditions
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d'orthogonalité pour les représentations du groupe des rotations.
Le problème de la constitution des groupes aussi bien que celui
de leur représentation par des matrices se transforme en un
problème purement algébrique, si l'on se base sur les seuls éléments

infinitésimaux du groupe, qui d'après S. Lie engendrent celui-ci
(il est vrai que la topologie du groupe dans son ensemble y doit
jouer alors un rôle décisif). C'est par des procédés algébriques de

ce genre que Cartan,dans des travaux d'üne pénétration
extraordinaire et dignes d'admiration, mais aussi fort laborieux, a
obtenu tous les groupes semi-simples de structures différentes, et a

calculé spécialement pour chacun des types obtenus les représentations

irréductibles. S'il est vrai que cette façon de faire fournit
quelques traits de détail qu'on ne peut déduire sans autre de la
méthode transcendante, cette dernière n'en a pas moins de

grands avantages: elle fournit les résultats essentiels avec une
grande généralité sans qu'il soit besoin de connaître les types de

structure, et sans les calculs pénibles qu'il faut recommencer
pour chaque cas particulier. Et sur certains points essentiels,
elle va plus loin que la méthode algébrique ; par les moyens
algébriques on n'est en effet pas encore parvenu à démontrer le
théorème central de la réductibilité complète. En outre, à l'aide
des conditions d'orthogonalité et de fermeture, on pourrait
explicitement calculer les caractères primitifs de tous les groupes
semi-simples, comme nous l'avons montré, I. Schur et moi,
dans plusieurs travaux. Nos théorèmes généraux ont donc une
valeur véritable; ils vont si bien au fond des choses qu'ils
permettent, dans les cas particuliers leo plus importants, de déterminer

explicitement les grandeurs dont ils traitent. Il n'y a guère

d'espoir de jamais obtenir par les méthodes algébriques les

formules qui précèdent pour les caractères, formules tout à fait
remarquables, élégantes et pleines de conséquences.

Aux groupes semi-simples appartient d'abord le groupe des

rotations, mais aussi le groupe de toutes les transformations
linéaires homogènes à n dimensions de déterminant 1. Le
premier est fermé; le second ne l'est pas. Pour les buts de la théorie
de la représentation, un groupe semi-simple peut être toujours
remplacé par un groupe fermé, à l'aide de la restriction unitaire

(unitäre Beschränkung).Ce fait important qui se déduit de la
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structure des groupes a permis de se rendre maître des groupes
semi-simples par la méthode d'intégration.

Si on les applique au groupe commutatif fermé à un paramètre
des rotations d'un cercle, nos idées contiennent une démonstration

de la formule de Parseval,c'est-à-dire de la condition de

fermeture pour le système orthogonal de Fourier

e%rdnso .± 1 ±2
Et même dans ce cas particulier, notre méthode est supérieure
aux méthodes anciennes et classiques de la théorie des séries de

Fourier, car elle permet, comme je le crois, de se rendre compte

pour la première fois des véritables raisons de la validité de la
formule de Parseval. J'en vois une confirmation dans le fait
qu'elle put être appliquée aussi sans modification au cas traité
dernièrement par H. Bohr des fonctions presque périodiques.
Dans le langage de la physique, il s'agit de décomposer un
phénomène, caractérisé par une fonction de la variable réelle s,

en oscillations simples, de fonctions (où l'on n'exige plus
comme dans l'analyse harmonique, que les "k soient des multiples
entiers d'une fréquence fondamentale). Du point de vue de la
théorie des groupes, il s'agit ici du groupe des translations
droite sur soi-même: les éléments du groupe sont les nombres
réels 5, la loi de composition est l'addition. Toutes les oscillations
simples sont des caractères, même si la fréquence \ est non
seulement réelle, mais complexe. Mais c'est seulement dans le cas
où l'on limite la notion de fonction à celle de fonction presque
périodique que la loi de fermeture reste en valeur; et justement
c'est par cette restriction que les fréquences non réelles sont
écartées. La théorie de Bohr des fonctions presque périodiques est

par conséquent le premier exemple relatif à la théorie des caractères
d'un groupe véritablement ouvert. Nous obtenons ici tout un
ensemble continu de caractères. Cet exemple nous montre
évidemment que, pour les groupes ouverts, le problème fondamental

ne consiste pas à établir les circonstances compliquées qui,
faisant échec au théorème de la réductibilité complète, viennent
remplacer les lois simples et claires valables pour les groupes clos,
mais bien de chercher à sauver ces lois par des restrictions appropriées

apportées àla notion de fonction.
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