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SUR LA REPRESENTATION DES GROUPES CONTINUS *
| PAR |

H: WEYL (Zurich).

La notion générale de groupe est sortie par abstraction de
celle de groupe de transformations: on en vint & envisager
les transformations comme des éléments de nature absolument
quelconque, et 1’on ne retint que la loi selon laquelle deux
transformations engendrent par leur succession, par leur compo-
sition, une nouvelle transformation. D’autre part on doit aussi,
a partir d’un schéma de structure abstrait, pouvoir retomber sur
les groupes concrets de transformations. La réalisation ou
‘représentation d’un groupe abstrait consiste en ceci qu’a chacun
de ses éléments s, on fait correspondre, dans ’espace des variables
x = (%, &y, ... Tp), une transformation E = E (s)

x' = xE

et cela de telle facon qu’a la composition de deux éléments du
groupe corresponde la succession des deux transformations

qu’on leur associe
E(s) . E() = E(s, ?) (1)

et qu’a I’élément unité o du groupe corresponde la transforma-
tion identique. (J’écris le symbole E de la transformation apres

les variables, afin que la composition des transformations puisse

étre lue de la facon la plus naturelle, c’est-a-dire de gauche &
droite. On ne supposera pas que la réalisation soit fidele, c’est-
a-dire qu’a des éléments différents correspondent nécessai-

1 Rédaction abrégée d’une conférence faite & la session du printemps de la Société
mathématique suisse, le 7 mai 1927, & Berne. Traduite de I’allemand par F. GONSETH

.

(Berne). ‘ ‘ ' . « ~
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rement des transformations différentes aussi.) Le cas le plus
simple est celui ou les transformations en question sont linéaires
et homogeénes. E peut alors étre aussi envisagée comme la
matrice des coefficients de la transformation. C’est ordinairement
dans ce cas seulement que s’emploie I’expression de représenta-
tion. On peut dire que les recherches sur la représentation des
groupes finis telles qu’on les doit & CARTAN et & FROBENIUS
forment le novau de la théorie des groupes finis: consistant dans
ses parties préparatoires en une série de résultats isolés et dispa-
rates, cette discipline ne prend la forme d’une théorie cohérente
et profonde que grace a la doctrine des représentations par les
transformations linéaires. Dans cet exposé, je ne m’occuperal
pas des groupes finis, mais des représentations des groupes
conttnus. 11 se présentera que, pour les groupes continus dont
les éléments forment une variété close, on peut formuler une
théorie analogue a celle des groupes finis. Les groupes les plus
familiers et aussi, du moins pour la géométrie, les plus importants
sont continus. Pensez, par exemple, au groupe des rotations de
Iespace & 3 ou n dimensions | Ce groupe est en méme temps I'un
~des plus importants exemples de groupe clos. Un autre exemple
est celui des transformations unitaires, des transformations
linéaires et homogeénes qui laissent invariante la forme-unité
d’Hermite définie positive

0, + x5 + .0 + 2,2,

(ottla barre signifie le passage a la quantité imaginaire conjuguée).

Veuillez dés maintenant je vous prie, porter un intérét spécial
aux groupes clos; a la fin de mon exposé j’ajouterai quelques
remarques concernant les groupes ouverts.

Si, dans I'espace N, de la représentation, on passe (par une
transformation linéaire A) & un autre systéme de coordonnées,
E(s) se transforme en A~! E(s) A; nous ne regarderons pas comme
véritablement différente de la primitive une représentation qui
lui est ainsi équivalente. Si toutes les transformations E (s) du
groupe transforment en lui-méme un sous-espace R,, de R,
(0 < m < n) Ja représentation est dite réductible. Elle dégéneére
(zerfallt 1) ou est complétement réductible en une représentation
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4 m, et une & n — m dimensions si ’on peut engendrer R, additi-
vement & I’aide de deux espaces complémentaires R,, et Ry dons
~chacun soit transformé en lui-méme par toutes les transformations
du groupe. (Cette addition consiste en ceci que tout vecteur de
NRn soit d’une seule facon la somme d’un vecteur de R, et d’un
vecteur de Ry_m.)

Tout groupe fini est complétement réductible, s’il est szmplement
-réductible. Ceci veut-done dire qu’a tout sous-espace R, invariant
on peut adjoindre un second espace invariant R, qui, avec le
premier, engendre ’espace entier de la représentation R,.

Je m’en vais vous rappeler quelques traits de la démonstration
de ce théoréme, qui fait voir que toute représentation peut étre
d>une seule facon décomposée en représentations irréductibles.

Dans le cas d’un groupe fini de transformations réelles ortho-
gonales, en d’autres termes d’un groupe fini de rotations dans
lespace & n dimensions, la construction de I’espace complémen-
taire Rp-m est évidente: il est défini par la-variété linéaire de tous
les vecteurs perpendiculaires & R,,.

Les transformations orthogonales sont celles qui laissent
invariante la forme quadratique unité. Mais toute forme quadra-
‘tique définie positive peut étre ramenée a cette forme unité, par
un choix convenable du systéme de coordonnées. La propriété
en discussion est donc vraie s’il existe une forme quadratique
définie qui reste invariante pour toutes les transformations
du groupe. |

Si les coefficients de la transformation sont complexes, la
forme quadratique est & remplacer par une forme d’Hermite
définie. Mais comment obtient-on une forme pareille ? Choisissons
dans ce but une forme d’Hermite définie quelconque et soumet-
tons-la & toutes les transformations E (s) qui correspondent aux
éléments s de notre groupe fini. Additionnons enfin toutes les
formes obtenues de cette facon: la somme est évidemment
définie et invariante pour toutes les transformations E (s).

Si I'on veut appliquer cette fagon de raisonner aux groupes
continus on aura naturellement, au lieu de la sommation finie,
une intégration a effectuer. A cet effet, nous avons besoin d’un
élément de volume sur la variété du groupe qui jouisse de certaines
propriétés d’invariance. Car aussi pour les groupes finis, la mé-
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thode ne conduit & un résultat que si ’on accorde lors de la som-
mation un certain poids & chacune des formes transformées: Je
poids 1.

A chaque élément a du groupe correspond une transformation
bien déterminée de la variété du groupe en elle-méme, s -~ s,
et ceci par la formule s’ = s. a. Je les nommes les translations
(& droite); dans son exposé M. Cartan vous a d’ailleurs déja
entretenu de ces translations . On peut considérer en outre les
translations & gauche s -~ s = a . s et inversion s - ' = s7L.

Nous admettrons que la notion des éléments infinitésimaux,
infiniment peu différents de 1’élément unité o est applicable &
notre groupe (différentiation du premier ordre, dans la théorie
de Lik); si le groupe est & r parametres, ces éléments infinité-
simaux forment une variété linéaire a r dimensions; si 'on se
sert de r d’entre eux comme base, nous entendrons, conformément
a l'usage, par volume d’un parallélipipede déterminé par r
éléments infinitésimaux la valeur absolue du déterminant de
leurs composantes. Nous obtenons alors une mesure du volume
invariante pour les translations a droite si nous exigeons qu’un
tel parallélipipede en O conserve son volume si on le transporte
en a par translation & droite. D’autre part, pour convenir a sa
destination, cet élément de volume doit étre invariant aussi pour
les translations a gauche et pour I'inversion. Par bonheur ces
deux dernieres propriétés d’invariance sont, sur les variétés de
groupes closes, une conséquence de la premiére dont nous nous
sommes assurés par définition. Par suite du choix arbitraire de
la base du groupe infinitésimal, notre mesure du volume n’est
déterminée qu’a Punité de mesure prés. Supposons qu’on 1’aif
normée de telle facon que le volume total du groupe soit égal
al.

Pour les représentations des groupes finis clos, le théoréme de
la réductibilité compléte est valable. La supposition que le groupe
est clos, permet avant tout d’intégrer sur la variété du groupe
entiere. Pour obtenir une forme hermitienne invariante pour la
représentation donnée E (s), on part d’une forme définie quel-
conque, on la soumet & toutes les transformations E (s) et on

1 Ces translations a droite forment d’ailleurs une représentation fidéle du groupe.
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integre la forme obtenue et dépendante de s, & Paide de notre
mesure invariante du volume ds, sur le groupe entier. Si I'on
prend soin d’introduire dans l'espace de la représentation un
systéme de coordonnées convenable, la forme définie hermitienne
invariante peut .étre ramenée & la forme unité, et toutes les
E(s) sont unitaires. Le systéme de coordonnées est par la déter-
miné & une transformafion unitaire prés. | |

La trace de la matrice E (s), ¢’est-a-dire la somme de ses compo-
santes situées dans-la diagonale principale se nomme le caractére
de la représentation. L'importance du caractére provient du fait
qu’il est indépendant du choix du systéme de coordonnées dans
I'espace de la représentation; il ne change pas si.I’on passe & une
représentation équivalente. Le caractére est une fonction de classe
(Klassenfunktion); on obtient la classe des éléments « conjugués »
& s par D'expression t'st lorsqu’on fait parcourir & ¢ tous les,
éléments du groupe; et par fonction de classe on entend une fonc-
tion qui prend la méme valeur pour des éléments conjugués.

Prenons comme exemple de ce que nous venons d’exposer le
groupe continu fermé le plus simple, celui des rotations d’un
cercle sur lui-méme

(s est le paramétre réel du groupe, qui n’est d’ailleurs déterminé
que mod. 1).

Ce groupe des transformations unitaires de l’espace a 1 di-
mension étant commutatif, il ne posséde que des représentations
a 1 dimension. Elles ont la forme:

! é?ﬁins )

. - al = x

ou n est un entier quelconque. Le caractére correspondant est
x(s) = e¥m. On sait que ces fonctions forment un systéme
orthogonal (et normal) dont s’occupe la théorie des séries de
Fourier. Le théoréme le plus important de cette théorie est celui
qui dit que ce systéme est complet, lorsque -n prend toutes les
valeurs entiéres. Les fonctions ¢, (s), 9, (), ... sont (normées et)
orthogonales entre elles si l’on a: , |

Se(s) () ds =
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Dans Pespace de la fonction arbitraire z (s), dans lequel chaque
endroit du domaine de variabilité de s représente en quelque
sorte une dimension, et ou /x (s) x (s) ds peut étre envisagée
comme le carré de la «longueur, du «vecteur» z (s), un tel
systeme de fonctions est I’analogue d’un systeme de vecteurs
orthogonaux dans un espace a une infinité de dimensions. Les
composantes de x (s) par rapport & ce systéme orthogonal sont
les coefficients de Fourler
o0 = oy fa] = /q"’" (s) 5 (s) ds .

Comme, dans un triangle rectangle une cathéte n’est jamais
plus longue que ’hypoténuse, on a l'inégalité de Bessel:

N, < [a(s) 7 (s)ds .

Un systéme orthogonal (infini) cst complet (c’est 'analogue
d’un systeme de coordonnées cartésiennes) si dans cette expression
le signe de 1’égalité est a prendre pour toutes les fonctions
continues.

Et{ maintenant je prétends que les propriétés d’étre orthogonal
el d’étre complet que nous venons de rencontrer pour le systeme
des représentations du groupe des rotations du cercle sont encore
valables — une fois convenablement élargies — pour ur groupe
clos quelconque. Mais pour les groupes non commutatifs il
nous faudra faire la différence entre les composantes des repré-
sentations et leurs caracteéres.

Théoréme général d’orthogonalité. Les composantes d’'une ou de
plusteurs représentations iwrréductibles forment un systéme ortho-
gonal. Plus précisément: Pour une représentation irréductible a

n dimensions E (s) = || e (s) || on a les relations
V- k=
- — = t, o= %
[epls)e, (s)ds = {n _ 2)
é 0 (dans tout autre cas)

Pour deux représentations irréductibles et inéquivalentes E (s)
et 17 (s) on a sans exception:

.[‘3i/f(5)giz('*)ds =0. | (3)
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Théoréme général de fermeture : Les composantes de toutes les
représentations irréductibles inéquivalentes forment un systéme
orthogonal complet.

En introduisant le «coefficient de Fourier » appartenant aux
représentations E (s)

A=AL] = [a()E()ds = [|ayll (4)

on a donce:

3

n > e+ o= [la@Pds . ()
i, k=1

Théoréme spécial d’orthogonalité et de fermeture: Les caractéres
primitifs forment un systéme orthogonal qui est complet dans le
domaine des fonctions de classes. Les caractéres y(s), y'(s) d’une,
resp. de deux representatlons inéquivalentes vérifient les rela-

tions:
Jr@reds =1 767 (s)ds =0

et, si z (s) est une fonction de classe continue, avec
a = af[x] = Trace A[x] = fr (s) % (s) ds

comme coefficient de Fourier, alors on a la scmme suivante,
étendue a toutes les représentations inéquivalentes

@t + o = [lais) Pds .

Quelle est la signification de la condition de fermeture pour un
groupe fini ? Si ce groupe comprend £ classes, il n’y a que k
fonctions de classes linéairement indépendantes et par conséquent
k caractéres primitifs au plus; le théoréme spécial certifie que
dans ce cas il y a exactement k caracteres primitifs, ou bien encore
qu’il y a autant de représentations irréductibles que de classes
dans le groupe. Le théoréme général de fermeture fait voir par
contre que la somme X n2 des carrés des dimensions des représen-
tations irréductibles inéquivalentes, est égale & ’ordre du groupe.
Pour démontrer ces théorémes de fermeture, il faut avoir recours
4 une méthode de construction des représentations irréductibles;
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car il n’est aucunement évident a priori qu’il existe méme une
seule représentation. Contrairement & ce qui se fait pour les
aroupes finis, cette construction doit partir, dansle continu, d’une
fonction arbitraire z (s), sans laquelle la condition de fermeture
ne pourrait étre formulée. Le chemin que nous avons suivi,
un de mes éléves, M. F. PETER et moi, met le probleme de la
représentation en relation avec la théorie des équations intégrales.
Par suite de la condition (1) on a:

[a@E @t s)dt = [ E@ ™ de. Es) .

E (') est égale a E™' (1) et cette derniére expression, parce
que E () est unitaire, est & son tour égale a E* (1) (astérisque
doit indiquer le passage & la matrice transposée). L’intégrale
mdépendante de s au membre de droite de I’équation précédente
est donc la matrice transposée A* du coefficient de Fourier de la
formule (4). Quant au membre de gauche, remplacons-y ¢ par
st™': si s reste fixe, st™t décrit le groupe entier, en méme temps
que t, tandis que le volume d¢ reste inchangé. Nous obtenons:

Jq (st (1) dt = A™E(s) . (6)

Un nombre o 5= 0 est dit caleur fondamentale et une fonction
o (s) fonction fondamentale correspondante du noyau k (s, 1),
sil’on a:

(Je nomme ici valeur fondamentale ce qui serait, selon la termi-
nologie de Hilbert, I'inverse d’une valeur fondamentale). La
signification de I’équation (6) peut donc étre énoncée comme suit :
E (s) est une fonction fondamentale du noyau

ks, ) = a(st™h | (7)

correspondant a la valeur fondamentale A*. La valeur fonda-
mentale aussi bien que la fonction fondamentale ne sont, il est
vral, pas des grandeurs scalaires, mais des matrices. On montre
e facon semblable que

[ s) B (1) dt = B (s) A" . (6')
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Nous avons par conséquent & appliquer la théorie des équations
intégrales pour des noyaux (7), qui sont fonction de la seule
variable st™. Nos formules montrent que les fonctions fondamen-
tales de noyaux de ce genre sont (contrairement & ce qui se passe
pour les valeurs fondamentales) au fond indépendantes de la loi
fonctionnelle z (s). A vrai dire, nous n’aurons véritablement le
droit de le prétendre que lorsque nous aurons pu faire voir que
ces noyaux ne possedent pas d’autres fonctions fondamentales
que celles que nous venons d’indiquer, et qui nous ont été fournies
par les représentations irréductibles du groupe. -

Remarquons tout d’abord que par composition nous ne quit-
tons pas le domaine des noyaux de la forme spéciale (7). On

définit la composition de deux noyaux comme celle de deux
matrices:

Ioky (s, 1) = f/cl(s, P ky (), 1) dr

et 'on a en effet

en posant

Sx(s ™)y () dr = 2y (s) - (8)

La théorie des valeurs fondamentales des équaticns intégrales
n’est de facile abord que dans le cas ot le noyau k satisfait a la
condition de symétrie d’Hermite:

k(t,s) = Z(s., t) .
Il est alors identique 4 son conjugué hermitien:
k(s, ) = &(t,s) -

Le conjugué hermitien de (7) est z(st™), avec z(s) = z(s7).
Par la composition k% on obtient toujours un noyau hermitien K.
Les valeurs fondamentales sont positives. La trace de K

fK(s, s)ds = ffl'k(s, ) |2 ds dt

est égale a la somme des valeurs fondamentales de K. Ce théoréme
fondamental de la théorie des équations intégrales s’obtient par
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construction des valeurs et des fonctions fondamentales, de la
facon la meilleure par la méthode de E. Scumint (Dissertation.
Gottingue, 1905).

Pour toute fonction x, y, on a pour le coefficient de Fourier A
correspondant a une représentation:

Afer] = Alx] A[] A[r] = A*[] .

Par conséquent la matrice A (z) est hermitienne, si z(8) = 2 (s);
elle peut alors, par un choix convenable du systeme de coordon-
nées orthogonal et normal dans ’espace de la représentation, étre
mise sous la forme d’une matrice diagonale (de composantes .,
%y .. %,). L’équation (6) dit alors que les fonctions

e (s) v en(s) ey (s) (9)

appartiennent comme fonctions fondamentales a la valeur
fondamentale «;, au sens scalaire et habituel. Ceci doit étre
appliqué non au novau (7), mais & K = kk. Le fait que ses fonc-
tions orthogonales forment un systéme orthogonal, comme celles
de tout noyau hermitien, est le fondement des théoremes d’ortho-
conalité de la théorie des représentations. A la vérité, pour justi-
tier complétement les équations (2) et (3) il faut encore avolr
recours a lirréductibilité. Et le théoréme fondamental de la
théorie des équations intégrales, gui en général n’a rien de commun
avec les conditions de fermeture fournit maintenant l'équation (5), ou
la somme indiquée par les points ... ne doit étre étendue tout
d’abord qu’aux représentations fournies par les fonctions
fondamentales du noyau IX 1. Mais a cause de I'inégalité de Bessel
le résultat ne change pas, si 'on tient compte par la suite des
représentations irréductibles inéquivalentes restantes. Ce sont,
comme on peut le voir en méme temps, toutes celles pour les-
quelles le coefficient de Fourier A [x] s’annule, et celles-1a seu-
lement.

Mais tout cela n’est juste qu’a la condition que toutes les fone-
tions fondamentales apparaissent comme composantes de I'une

1 Car les n composantes de la matrice diagonale I' = A [x:t% = A.A* sont des valeurs
fondamentales n-tuples, avec les fonctions fondamentales (9): ce qu’elles fournissent & la
somme des valeurs fondamentales est donc n. Trace I' = n. Trace (AA¥),
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ou ’autre des représentations irréductibles. G’est ici qu’intervient
la seconde idée de la démonstration, aprés que lés relations avec
une équation intégrale aient été établies par (6). Si @ (s) est une
fonction fondamentale appartenant & la valeur fondamentale 1,
1l en est de méme, a cause de la forme spéciale de notre noyau

K (s, t) = z(st™h)

pour la fonction ¢ (sa) — a etani, un élément quelconque du
groupe. Si
2(s) s () - @, ()

sont toutes les fonctions fondamentales linéairement indépen-
dantes appartenant a vy, les fonctions g; (st) doivent donc pour
un ¢ constant étre des combinaisons linéaires des % (s), avec
des coefficients constants, c’est-a-dire fonctions de ¢ seulement.

) B 4
= D el e(d (10)
R=1 ‘

ou bien, avec la fagcon d’écrire du calcul des matrices

= |les 0 eeer @, | E = el

?(st) = () E(1) -

En termes explicites: Si ’on compose par mulbiplication a
droite I’argument s et 1’élément du groupe fixe ¢, le systéme des
fonctions ¢ (s) subif la transformation linéaire E (¢). Il en résulte

immeédiatement : '
E (/) E(¢) = E (i) E(@©) =1

et nous avons ainsi obtenu une représentation. D’ailleurs les fonc-
tions ¢(s) peuvent étre normées de fagon a former un systeme
orthogonal et normal. Comme cette propriété ne se perd pas, si
Pon multiplie & droite l’argument s par I'élément du groupe
fixe ¢, E (t) est alors pour tout ¢ une matrice normale_ (unitaire).
Enfin, il se vérifie aussi que les fonctions ¢ (s) sont elles-mémes
comprlses dang les composantes de la matrice E (s) ou du moins




REPRESENTATION DES GROUPES CONTINUS 237

— ce qui seul importe — en sont une combinaison linéaire. Gar
si nous faisons s = O dans (10), nous trouvons:

e, () = E 2, {O) ey (1) -
R

Qu’il me soit encore permis de comparer la méthode que je viens
d’esquisser brievement avec celle qu’ont employée FROBENIUS
et d’autres auteurs dans le cas des groupes finis. Pour un groupe
fini, on peut disposer de la fonction 1 (s), qui s’annule partout
sur la variété du groupe excepté au point-unité s = o, ou elle
prend comme valeur ’ordre du groupe. Cette fonction, si on la
compose d’apres (8), avec une fonction quelconque z (s), a les
propriétés de l'unité: 1.2 = x.1 = z. Par spécialisation,
¢’est-a-dire s1 'on applique la méthode exposée ici a la fonction
I (s) et non & toutes les fonctions x (s) possibles, on retrouve
Pancienne méthode. Cela suffit en effet pour engendrer toutes les
représentations irréductibles. Souvenons-nous qu’une fonction
particuliére z (s) fournit toutes les représentations, pour lesquelles
le coefficient de Fourier correspondant A [z] ne s’annule pas !
Mais le coeflicient de Fourier A [1] de la fonction 1(s) est la
matrice-unité, et par conséquent 2= 0. Sur une variété de groupe
continue, la fonction unité 1(s) si commode manque malheureu-
sement ; nous ne pouvons que nous en rapprocher par un processus
infini. Qu’on établisse en effet une suite infinie de fonctions 1, (s),
(v =1, 2, ...) qui aient 1 comme valeur moyenne sur la variété
du groupe, mais qui ne soit différentes de zéro que dans un petit
entourage du centre o, entourage qui se réduise progressivement
a O lui-méme lorsque v augmente indéfiniment. Le coefficient
de Fourier A[1,] correspondant a une représentation quelconque
converge vers la maftrice unité, et est par conséquent, pour v
suffisamment grand, différent de zéro. (est pourquoi mnotre
méthode, appliquée aux fonctions x (s) de la suite 1, (s) doit finir
par fournir toutes les représentations irréductibles.

La méthode de construction que nous avons suivie est une
meéthode transcendante basée sur une intégration étendue au
groupe entier. Des intégrations de ce genre furent employées tout
d’abord par A. Hurwirz pour engendrer des invariants de
groupes; en s’en servant, I. Scuur démontra les conditions
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d’orthogonalité pour les représentations du groupe des rotations.
Le probléme de la constitution des groupes aussi bien que celui
de leur représentation par des matrices se transforme en un pro-
bléme purement algébrique, si I’on se base sur les seuls éléments
infinitésimaux du groupe, qui d’aprés S. Lie engendrent celui-ci
(il est vrai que la topologie du groupe dans son ensemble y doit
jouer alors un réle décisif).- C’est par des procédés algébriques de
ce genre que Cartan, dans des travaux d’une pénétration extra-
ordinaire et dignes d’admiration, mais aussi fort laborieux, a
obtenu tous les groupes semi-simples de structures différentes, et a
calculé spécialement pour chacun des types obtenus les représen-
tations irréductibles. S’il est-vrai que cette facon de faire fournit
quelques traits de détail qu’on ne peut déduire sans autre de la
-méthode transcendante, cette derniére n’en a pas moins de
grands avantages: elle fournit les résultats essentiels avec une
grande généralité sans qu’il soit besoin de connaitre les types de
-structure, et sans les calculs pénibles qu’il faut recommencer
pour chaque cas particulier. Et sur certains points essentiels,
elle va plus loin que la méthode algébrique ; par les moyens
algébriques on n’est en effet pas encore parvenu a démontrer le
théoréme central de la réductibilité compléte. En outre, & aide
des conditions d’orthogonalité et de fermeture, on pourrait
explicitement calculer les caractéres primitifs de tous les groupes
semi-simples, comme nous 1’avons montré, I. ScHUR et  moi,
- dans plusieurs travaux. Nos théorémes généraux ont donc une
valeur véritable; ils vont si bien au fond des choses qu’ils per-
mettent, dans les cas particuliers les plus importants, de détermi-
ner explicitement les grandeurs dont ils traitent. Il n’y a guére
d’espoir de jamais obtenir par les méthodes algébriques les for-
mules qui précédent pour les caractéres, formules tout a fait
remarquables,. élégantes et pleines de conséquences.

Aux groupes semi-simples appartient d’abord le groupe des
rotations, mais aussi le groupe de toutes les transformations
linéaires homogénes & n dimensions de déterminant 1. Le pre-
mier est fermé; le second ne I’est pas. Pour les buts de la théorie
“de la représentation, un groupe semi-simple peut étre toujours
remplacé par un groupe fermé, 4 'aide de la restriction unitaire
(unitire Beschrinkung). Ce. fait important qui se déduit de la
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structure des groupes a permis de se rendre maitre des groupes
semi-simples par la méthode d’intégration.

Si on les applique au groupe commutatif fermé & un parametre
des rotations d™un cercle, nos idées contiennent une démonstra-
tion de la formule de Parseval, ¢’est-a-dire de la condition de fer-
meture pour le systéme orthogonal de Fourier

e?.—jus‘ (n=0, =1, +2, ..)

Et méme dans ce cas particulier, notre méthode est supérieure
aux méthodes anciennes et classiques de la théorie des séries de
Fourier, car elle permet, comme je le crois, de se rendre compte
pour la premiére fois des véritables raisons de la validité de la
formule de Parseval. J’en vois une confirmation dans le fait
qu’elle put étre appliquée aussi sans modification au cas traité
derniérement par H. Bour des fonctions presque périodiques.
‘Dans le langage de la physique, il s’agit de décomposer un phé-
nomene, caractérisé par une fonction de la variable réelle s,
en oscillations simples, de fonctions €™ (ou 'on n’exige plus
comme dans ’analyse harmonique, que les A soient des multiples
entiers d’une fréquence fondamentale). Du point de vue de la
théorie des groupes, 1l s’agit ic1 du groupe des translations d’une
droite sur soi-méme.: les éléments du groupe sont les nombres
réels s, la loi de composition est I’addition. Toutes les oscillations
simples sont des caractéres, méme si la fréquence A est non
seulement réelle, mais complexe. Mais ¢’est seulement dans le cas
ou 'on limite la notion de fonction a celle de fonction presque
périodique que la loi de fermeture reste en valeur; et justement
c’est par cette restriction que les fréquences non réelles sont
ecartees. La théorte de Bohr des fonctions presque périodiques est
par conséquent le premier exemple relatif a la théorie des caractéres
d’un groupe véritablement ouvert. Nous obtenons ici tout un
ensemble continu de caractéres. Cet exemple nous montre
évidemment que, pour les groupes ouverts, le probléme fondamen-
tal ne consiste pas a établir les circonstances compliquées qui,
faisant échec au théoréme de la réductibilité compléte, viennent
remplacer les lois simples et claires valables pour les groupes clos,
mais bien de chercher a sauver ces lois par des restrictions appro-
priées apportées & la notion de fonction.
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