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214 E. CARTAN

conique osculatrice à la courbe en A; elle peut être regardée
comme l'absolu d'une géométrie cayleyenne; la distance cay-
leyenne du point P à un point infiniment voisin P' sera le logarithme
du rapport anharmonique des deux points P, P' et des deux
points où la droite PP' coupe la conique. Naturellement le ds2

du plan est indéfini et n'existe que dans les régions du plan d'où
on peut mener une tangente à la courbe; la direction PA est

isotrope, la seconde direction isotrope en P est celle de la seconde

tangente menée de P à la conique osculatrice en A. Les géodési-

ques de la métrique ne sont plus en général des droites. L'adjonction

d'une courbe quelconque nous a permis ici de faire du plan
un espace cayleyen à deux dimensions; cet espace est holonome,
parce que la connexion cayleyenne du plan est commandée par le

développement de la courbe donnée sur sa conique osculatrice, et
ce développement est nécessairement holonome, puisque la
courbe n'a qu'une dimension.

On peut de même, dans l'espace projectif à trois dimensions,
développer une surface sur la quadrique de Lie ; le développement
n'est plus holonome, à moins que la surface ne soit réglée: dans

ce dernier cas, en effet, la quadrique de Lie est la même tout le

long d'une même génératrice; on n'a en réalité à faire qu'à une
variété (de droites) à une dimension, ce qui entraîne nécessairement

l'holonomie.
$

VIII

Revenons maintenant aux espaces non holonomes à groupe
fondamental G. Comme nous l'avons vu, à tout cycle partant
d'un point A de l'espace et y revenant est associée une transformation

du groupe G, transformation qui opère dans l'espace
holonome tangent en A. A l'ensemble des cycles issus de A est

donc associé un ensemble de transformation de G, qu'on démontre
facilement former un groupe g: c'est le groupe tfholonomie de

l'espace, qui est essentiellement le même en tous les points A.
Le groupe g donne en quelque sorte une mesure de la non holo-
nomie de l'espace; s'il se réduit à la transformation identique,
c'est qu'on a un espace de Klein. On a donc là un principe de

classification des espaces à groupe fondamental donné, de même
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que le groupe de Galois d'une équation algébrique permet en

gros une classification suivant le degré d'irrationalité des racines.

Les transformations infinitésimales de G associées aux cycles

infinitésimaux appartiennent au groupe d'holonomie, mais elles

ne fournissent pas toujours toutes les transformations infinitésimales

génératrices de ce groupe. Néanmoins, si elles sont toutes
nulles, c'est-à-dire si la courbure riemannienne de l'espace est

partout nulle, le groupe d'holonomie se réduit à la transformation
identique et l'espace est holonome. Cette conclusion peut se

démontrer facilement par le calcul ou par un raisonnement
géométrique approché. Mais ici interviennent des considérations

d'Analysis situs; la conclusion n'est rigoureuse que si l'espace
est simplement connexe, c'est-à-dire si tous les cycles peuvent,
par déformation continue, être réduits à zéro. Dans le cas

contraire, l'espace peut avoir partout sa courbure riemannienne
nulle sans être vraiment holonome. Un exemple classique est
fourni par un cylindre de révolution plongé dans l'espace
ordinaire; son développement le long d'un cycle sur un de ses plans
tangents est holonome si le cycle est réductible à zéro, mais le

développement le long d'une section droite a pour effet de faire
subir au point de départ A une translation finie; le groupe d'holonomie

est formé des puissances de cette translation. Les mêmes
considérations s'appliqueraient à ce qu'on est convenu d'appeler
les formes de Clifford de l'espace euclidien. On pourrait aussi
imaginer, in abstracto,sur un cylindre une connexion (non induite)
de Weyl, dont la courbure riemannienne soit partout nulle sans

que cependant l'espace à deux dimensions constitué par le cylindre

doué de cette connexion soit intégralement euclidien, ni
même riemannien; seulement, ce n'est qu'en faisant le tour du
monde qu'un habitant de cet espace pourrait s'apercevoir que
son univers n'est ni euclidien, ni riemannien.

Le principe de classification des espaces d'après leur groupe
d'holonomie peut être rattaché au principe d'adjonction ou de
subordination de Klein. Une Géométrie de Klein est subordonnée
à une autre si le groupe fondamental de la première est un sous-
groupe de celui de la seconde. Par exemple, la Géométrie affine est
subordonnée à la Géométrie projective, c'est si l'on veut, un
chapitre particulier de la Géométrie projective dans lequel on étudie
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les propriétés des figures contenant le plan de l'infini; on pourrait,
du reste, imaginer une infinité de Géométries affines dans un
même espace projectif, suivant le plan auquel on voudrait faire
jouer le rôle du plan de l'infini. Si l'on est maintenant dans un
espace projectif non holonome, les choses ne se passent plus de la
même manière; pour qu'on puisse dans cet espace imaginer une
Géométrie affine, il faut qu'on puisse y choisir des repères
projectifs liés entre eux suivant une loi affine; pour cela, il est nécessaire

et suffisant que le groupe d'holonomie de l'espace soit un
groupe affine, ce qui n'arrive pas toujours. D'une manière générale,

tout espace non holonome à groupe fondamental G, admettant

pour groupe d'holonomie un sous groupe de G, pourra être
regardé comme un espace non holonome admettant pour groupe
fondamental tout sous groupe de G contenant lui-même g comme
sous-groupe. C'est ainsi qu'un espace de Weyl peut être regardé
comme riemannien, si son groupe d'holonomie ne contient que
des déplacements, sans homothétie.

IX

Comme on le voit, l'importance de la notion de groupe n'a pas
été réduite par les développements récents de la Géométrie
différentielle; il semble bien qu'elle seule au contraire soit capable
de les embrasser dans une même synthèse. Je voudrais maintenant

aussi brièvement que possible, donner un aperçu des services

que peuvent rendre à la théorie des groupes elle-même les notions
nouvelles de la Géométrie différentielle.

Considérons un groupe de transformations continu G à

paramètres et représentons chaque transformation
du groupe par un point (ax, ar) d'un espace à dimensions,

que nous appellerons l'espace du groupe. Dans un article récentx,
nous avons, M. Schouten et moi, indiqué comment on pouvait
doter cet espace de trois connexions affines remarquables
intrinsèquement liées aux propriétés du groupe; j'ai développé plus
longuement cette étude dans un mémoire qui vient de paraître 2.

1 E. Cartan and J. A. Schouten, On.thGeometryof the Group-manifold of simple
and semi-simple groups (Proc. Akad. Amsterdam, 29, 1926; p. 803-815).

2 E. Cartan, La Géométrie des groupes de transformations (Journal Math., 6, 192T,
p. 1-119).
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