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tielle du second ordre vis-à-vis du groupe des transformations

ponctuelles les plus générales.
Dans l'exemple précédent l'espace était un lieu d'éléments

de contact; le groupe fondamental était le groupe de transformations

de contact résultant du prolongement, au sens de Lie,
du groupe projectif ponctuel. Il n'y a naturellement aucune

difficulté à partir d'un groupe de transformations de contact
irréductible quelconque, par exemple le groupe des transformations

de contact qui changent les sphères orientées en sphères

orientées; on bâtirait avec lui des espaces non holonomes, en

prenant comme élément générateur l'élément de contact par
exemple, ou encore la sphère orientée, etc.

VII

Les espaces non holonomes ont été envisagées jusqu'ici
abstracto; la connexion qui sert à les définir est une loi interne.

C'est H. Weyl qui le premier a défini le transport par parallélisme
par une propriété interne de l'espace. Levi-Civita se plaçait au
contraire à un point de vue tout différent qui, bien qu'inférieur
philosophiquement à celui de Weyl, a une très grande importance
en Géométrie; il se rattache à la théorie générale des connexions
induites dont je dirai seulement quelques mots.

Avant d'indiquer la manière de procéder de Levi-Civita, nous
pouvons la faire pressentir sur un exemple extrêmement élémentaire.

Considérons une courbe tracée dans un plan ordinaire
(euclidien) ; la présence de la courbe dans le plan permet de définir
sur cette courbe une abscisse curviligne. Oublions maintenant
que la courbe est dans le plan et considérons-la en elle-même;
rien ne la distingue d'une droite euclidienne ; la formule de
Chasles qui lie les abscisses de trois points d'une droite lie également

les abscisses curvilignes de trois points de la courbe. La
présence de la courbe dans le plan euclidien nous a donc donné le

moyen de faire de cette courbe un espace euclidien à 1 dimension.
Nous pouvons du reste nous représenter physiquement le mécanisme

de l'opération en déroulant ou développant la courbe sur
une de ses tangentes; nous pouvons aussi définir chaque stade
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infinitésimal de ce développement en faisant correspondre à tout
point M infiniment voisin d'un point A le point M' de la
tangente en A qui est la projection orthogonale de M.

Si nous prenons maintenant une surface plongée dans l'espace
ordinaire, nous pourrons de même essayer de développer la surface
sur le plan tangent en un de ses points A. Si la surface est dévelop-
pable, le développement sera possible ; sinon on pourra toujours
l'effectuer le long d'un arc de courbe AB, ce qui revient à
développer la surface développable circonscrite à la surface le long
de AB, mais le développement le long d'un autre arc de courbe
joignant A ä B ne conduirait pas au même résultat final: le
développement n'est pas holonome. Nous pouvons donc regarder la
surface plongée dans l'espace euclidien comme un plan euclidien
non holonome; l'intégration en un seul même plan euclidien des

points infiniment voisins de A et des vecteurs issus de ces points
peut s'obtenir très simplement par projection orthogonale de la
surface sur le plan tangent en A. Là encore la présence de la
surface dans l'espace euclidien permet de doter la surface d'une
connexion euclidienne induite;si nous oublions ensuite l'espace
ambiant pour ne considérer que la surface en elle-même avec la
connexion euclidienne que nous lui avons attribuée, nous obtenons

tout simplement un espace de Riemann à deux dimensions,
dont le ds2estcelui de la surface, avec le transport par parallélisme

de Levi-Civita: deux vecteurs tangents issus de A et de M
sont parallèles si la projection du second sur le plan tangent en A
est parallèle au premier vecteur. Nous remarquerons que l'espace
euclidien (ici plan euclidien) tangent en un point, a maintenant
une signification concrète,tandis que du premier point de vue,
il est purement fictif.

La notion de connexion induite peut être appliquée de beaucoup

de manières différentes et elle semble devoir jouer un rôle
très important dans les théories géométriques classiques. J'en
citerai quelques exemples simples.

Prenons, en Géométrie conforme plane, une courbe quelconque
(G); on peut développer cette courbe sur le cercle osculateur en

un de ses points, autrement dit on peut regarder la courbe comme

un espace conforme à une dimension (cercle). Le développement
ne se fait naturellement pas au sens ordinaire, métrique du mot,
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avec conservation des longueurs d'arcs, puisque la longueur d'un
arc n'a pas de sens en Géométrie conforme. Les choses peuvent
être présentées d'une manière peu rigoureuse, mais assez élémentaire.

Prenons sur la courbe trois points très voisins A, Ax, A2 ;

ils peuvent être regardés comme appartenant au cercle osculateur
à la courbe en A; soit maintenant A3 un quatrième point très
voisin des trois premiers; la droite qui joint le centre du cercle
osculateur au point A3 coupe ce cercle en un point A'3 qu'on fera
correspondre à A3 dans le développement de la courbe; on

pourra, du reste, remplacer la droite par un cercle passant par
deux points fixes donnés inverses l'un de l'autre par rapport
au cercle osculateur. Amenons par une transformation conforme
les trois points Ax, A2, A3 à coïncider avec Ax, A2, A'3 ; la courbe
prendra une nouvelle position et on pourra recommencer pour
un cinquième point de la courbe la construction de tout à l'heure
qui le fera correspondre à un cinquième point Al du cercle et
ainsi de suite. Analytiquement, il existe sur un cercle un
paramètre projectif défini à une transformation homographique près:
c'est le paramètre en fonctions duquel les coordonnées d'un point
de la courbe s'expriment rationnellement. On pourra donc définir
sur une courbe plane quelconque un paramètre projectif, grâce
auquel on connaîtra le rapport anharmonique de quatre points
de la courbe. Analytiquement, ce paramètre s'obtient très simplement

comme le quotient de deux solutions particulières de

l'équation différentielle

où s désigne l'arc de la courbe et p le rayon de courbure.
En Géométrie projective plane, on peut de même développer

projectivement une courbe quelconque sur la conique osculatrice
et définir également ainsi le rapport anharmonique de quatre
points de la courbe. Mais ici ce développement n'intéresse pas
seulement la courbe donnée, mais tout le plan qui en est un certain
sens solidaire et qui se trouve ainsi muni d'une métrique cav-
leyenne à courbure constante. En effet, par un point quelconque P
du plan menons une tangente PA à la courbe et traçons la
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conique osculatrice à la courbe en A; elle peut être regardée
comme l'absolu d'une géométrie cayleyenne; la distance cay-
leyenne du point P à un point infiniment voisin P' sera le logarithme
du rapport anharmonique des deux points P, P' et des deux
points où la droite PP' coupe la conique. Naturellement le ds2

du plan est indéfini et n'existe que dans les régions du plan d'où
on peut mener une tangente à la courbe; la direction PA est

isotrope, la seconde direction isotrope en P est celle de la seconde

tangente menée de P à la conique osculatrice en A. Les géodési-

ques de la métrique ne sont plus en général des droites. L'adjonction

d'une courbe quelconque nous a permis ici de faire du plan
un espace cayleyen à deux dimensions; cet espace est holonome,
parce que la connexion cayleyenne du plan est commandée par le

développement de la courbe donnée sur sa conique osculatrice, et
ce développement est nécessairement holonome, puisque la
courbe n'a qu'une dimension.

On peut de même, dans l'espace projectif à trois dimensions,
développer une surface sur la quadrique de Lie ; le développement
n'est plus holonome, à moins que la surface ne soit réglée: dans

ce dernier cas, en effet, la quadrique de Lie est la même tout le

long d'une même génératrice; on n'a en réalité à faire qu'à une
variété (de droites) à une dimension, ce qui entraîne nécessairement

l'holonomie.
$

VIII

Revenons maintenant aux espaces non holonomes à groupe
fondamental G. Comme nous l'avons vu, à tout cycle partant
d'un point A de l'espace et y revenant est associée une transformation

du groupe G, transformation qui opère dans l'espace
holonome tangent en A. A l'ensemble des cycles issus de A est

donc associé un ensemble de transformation de G, qu'on démontre
facilement former un groupe g: c'est le groupe tfholonomie de

l'espace, qui est essentiellement le même en tous les points A.
Le groupe g donne en quelque sorte une mesure de la non holo-
nomie de l'espace; s'il se réduit à la transformation identique,
c'est qu'on a un espace de Klein. On a donc là un principe de

classification des espaces à groupe fondamental donné, de même
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