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tielle du second ordre vis-a-vis du groupe des transformations
ponctuelles les plus générales. |

Dans P’exemple précédent 'espace était un lieu d’éléments
de contact; le groupe fondamental était le groupe de transfor-
mations de contact résultant du prolongement, au sens de Lie,
du groupe projectif ponctuel. Il n’y a naturellement aucune
difficulté a partir d’un groupe de transformations de contact
irréductible quelconque, par exemple le groupe des transfor-
mations de contact qui changent les sphéres orientées en spheres
orientées: on batirait avec lui des espaces non holonomes, en
prenant comme élément générateur I'élément de contact par
exemple, ou encore la spheére orientée, etc.

Vil

Les espaces non holonomes ont été envisagées jusqu’ici in
abstracto; la connexion qui sert a les définir est une lol interne.
Vest H. Weyl qui le premier a défini le transport par parallélisme
par une propriété interne de I'espace. Levi-Civita se placait au
contraire & un point de vue tout différent qui, bien qu’inférieur
philosophiquement a celui de Weyl, a une trés grande importance
en Géométrie; il se rattache a la théorie générale des connexions
induites dont je dirai seulement quelques mots.

Avant d’indiquer la maniére de procéder de Levi-Civita, nous
pouvons la faire pressentir sur un exemple extrémement élémen-
taire. Considérons une courbe tracée dans un plan ordinaire
(euclidien); la présence de la courbe dans le plan permet de définir
sur cette courbe une abscisse curviligne. Oublions maintenant
que la courbe est dans le plan et considérons-la en elle-méme;
rien ne la distingue d’une droite euclidienne; la formule de
Chasles qui lie les abscisses de trois points d’une droite lie égale-
ment les abscisses curvilignes de trois points de la courbe. La
présence de la courbe dans le plan euclidien nous a done donné le
moyen de faire de cette courbe un espace euclidien & 1 dimension.
Nous pouvons du reste nous représenter physiquement le méca-
nisme de 'opération en déroulant ou développant la courbe sur
une de ses tangentes; nous pouvons aussi définir chaque stade
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infinitésimal de ce développement en faisant correspondre & tout
point M infiniment voisin d’un point A le point M’ de la tan-
gente en A qui est la projection orthogonale de M. .

Si nous prenons maintenant une surface plongée dans 'espace
ordinaire, nous pourrons de méme essayer de développer la surface
sur le plan tangent en un de ses points A. Sila surface est dévelop-
pable, le développement sera possible; sinon on pourra toujours
Peffectuer le long d’un arc de courbe AB, ce qui revient & déve-
lopper la surface développable circonscrite a la surface le long
de AB, mais le développement le long d’un autre arc de courbe
joignant A & B ne conduirait pas au méme résultat final: le déve-

loppement n’est pas holonome. Nous pouvons donc regarder la.

surface plongée dans ’espace euclidien comme un, plan euclidien
non holonome; I'intégration en un seul méme plan euclidien des
points infiniment voisins de A et des vecteurs issus de ces points
peut s’obtenir trés simplement par projection orthogonale de la
surface sur le plan tangent en A. La encore la présence de la
surface dans ’espace euclidien permet de doter la surface d’une
connexion euclidienne induite; si nous oublions ensuite espace

ambiant pour ne considérer que la surface en elle-méme avec la
connexion euclidienne que nous lui avons attribuée, nous obte-

nons tout simplement un espace de Riemann a deux dimensions,
dont le ds? est celui de la surface, avec le transport par parallé-
lisme de Levi-Civita: deux vecteurs tangents issus de A et de M
sont paralleles si la projection du second sur le plan tangent en A
est paralléle au premier vecteur. Nous remarquerons que l’espace
euclidien (ici plan euclidien) tangent en un point, a maintenant
une signification concréte, tandis que du premier point de vue,
il est purement fictif.

La notion de connexion induite peut étre appliquée de beau-
coup de manieres différentes et elle semble devoir jouer un role

trés important dans les théories géométriques cla331ques J’en

citerai quelques exemples simples.

Prenons, en Géométrie conforme plane, une courbe quelconque
(C); on peut développer cette courbe sur le cercle osculateur en
un de ses points, autrement dit on peut regarder la courbe comme
un, espace conforme a une dimension (cercle). Le développement
ne se fait naturellement pas au sens ordinaire, métrique du mot,
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avec conservation des longueurs d’arcs, puisque la longueur d’un
arc n’a pas de sens en Géométrie conforme. Les choses peuvent
étre présentées d’une maniére peu rigoureuse, mais assez élémen-
taire. Prenons sur la courbe trois points tres voisins A, A, A,;
ils peuvent étre regardés comme appartenant au cercle osculateur
a la courbe en Aj; soit maintenant A; un quatrieme point tres
voisin des trois premiers; la droite qui joint le centre du cercle
osculateur au point A, coupe ce cercle en un point A’; qu’on fera
correspondre & A, dans le développement de la courbe; on
pourra, du reste, remplacer la droite par un cercle passant par
deux points fixes donnés inverses 'un de ’autre par rapport
au cercle osculateur. Amenons par une transformation conforme
les trois points Ay, A,, A; a coincider avec A;, Ay, A';; la courbe
prendra une nouvelle position et on pourra recommencer pour
un cinquieme point de la courbe la construction de tout & 'heure
qui le fera correspondre & un cinquiéme point A; du cercle et
ainsi de suite. Analytiquement, il existe sur un cercle un para-
metre projectif défini & une transformation homographique prés:
c¢’est le parametre en fonctions duquel les coordonnées d’un point
de la courbe s’expriment rationnellement. On pourra donc définir
sur une courbe plane quelconque un parametre projectif, grace
auquel on connaitra le rapport anharmonique de quatre points
de la courbe. Analytiquement, ce paramétre s’obtient trés simple-
ment comme le quotient de deux solutions particulieres de
I'équation différentielle

ou s désigne I'arc de la courbe et p le rayon de courbure.

En Géométrie projective plane, on peut de méme développer
projectivement une courbe quelconque sur la conique osculatrice
et définir eégalement ainsi le rapport anharmonique de quatre
points de la courbe. Mais ici ce développement n’intéresse pas
seulement la courbe donnée, mais tout le plan qui en est un certain
sens solidaire et qui se trouve ainsi muni d’une métrique cay-
leyenne & courbure constante. En effet, par un point quelconque P
du plan menons une tangente PA a la courbe et tracons la
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conique osculatrice & la courbe en A; elle peut étre regardée
comme l’absolu d’une géométrie cayleyenne; la distance cay-
leyenne du point P & un point infiniment voisin P’ serale logarithme
du rapport anharmonique des deux points P, P’ et des deux
points ol la droite PP’ coupe la conique. Naturellement le ds?
du plan est indéfini et n’existe que dans les régions du plan d’ou
on peut mener une tangente a la courbe; la direttion PA est
isotrope, la seconde direction isotrope en P est celle de la seconde
tangente menée de P & la conique osculatrice en A. Les géodési-
ques de la métrique ne sont plus en général des droites. L’adjonc-
tion d’une courbe quelconque nous a permis ici de faire du plan
un espace cayleyen & deux dimensions; cet espace est holonome,
parce que la connexion cayleyenne du plan est commandée par le
développement de la courbe donnée sur sa conique osculatrice, et
ce développement est nécessairement holonome, puisque la
courbe n’a qu’une dimension.

On peut de méme, dans I’espace projectif a trois dimensions,
développer une surface sur la quadrique de Lie; le développement
n’est plus holonome, & moins que la surface ne soit réglée: dans
ce dernier cas, en effet, la quadrique de Lie est la méme tout le
long d’une méme génératrice; on n’a en réalité & faire qu’a une
variété (de droites) & une dimension, ce qui entraine nécessaire-
ment I’holonomie.

VIII

Revenons maintenant aux espaces non holonomes & groupe
fondamental G. Comme nous P’avons vu, & tout cycle partant
d’un point A de ’espace et y revenant est associée une transfor-
mation du groupe G, transformation qui opére dans I’espace
holonome tangent en A. A I'ensemble des cycles issus de A est
donc associé un ensemble de transformation de G, qu’on démontre
facilement former un groupe g: c’est le groupe d’holonomie de
Pespace, qui est-essentiellement le méme en tous les points A.
Le groupe g donne en quelque sorte une mesure de la non holo-

nomie de Pespace; §’il se réduit a la transformation identique,

¢’est qu’on a un espace de Klein. On a donc 14 un principe de
classification des espaces & groupe fondamental donné, de méme
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