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SUR LA COMPARAISON DE CERTAINS PROCEDES
DE SOMMATION DES SERIES DIVERGENTES

PAR

Georges BouLicanDp (Poitiers).

1. — Soit la série a termes constants

(e 2]
u
E v e
v=0

Posons comme d’habitude

) n
S, :Euv . (M
v=10

Au moyen d’un tableau d’éléments constants et positifs ¢y,
dont les lignes

[

¢ o, (m =1, 2

CmO > TUml ottt mn

forment des séries convergentes, calculons les expressions auxi-
liaires
€mo SO + Cm1 Sl + + Cmn Sn. +

By —= . N (2)
“mo + (‘ml + cce + Cmn +

et supposons que, griace au choix de la série proposée, le numeé-
rateur de g, soit lui-méme une série convergente. Avec M. E. Bo-
REL, nous appellerons somme généralisée de Xu, la limite pour m
infini de la suite { op,}, chaque fois que cette limite existe L.
Le présent article se propose, dans un but principalement
didactique, de comparer entre eux les résultats auxquels peuvent
conduire les procédés de sommation de 'espéce précédente.

1 Legons sur les Séries divergentes, premiere édition, page 93.
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2. — La question essentielle consiste naturellement & cher-
cher dans quelle mesure différents procédés de cette catégorie
sont susceptibles de concorder. Un procédé quel qu’il soit ne
sera admis comme. procédé régulier (suivant la terminologie

devenue classique) que s’il satisfait & la condition de consistance

d2 M. G. Harpv, appelée encore condition de permanence par
M. K. Kn~orp. Cette condition, qui sert de définition a la régu-
larité est que I’existence d’une limite pour les S, entraine celle
d’une limite pour les oy, avec égalité de ces deux limites.

‘M. J. ScHUur a donné un théoréme général sur les conditions
de régularité 1 pour les transformations linéaires infinies de la

forme
= 2 mn : ’ \3)

n=0

Mais ici, les apy, sont soumis, de par ce qui précéde, a des restric-

tions qui simplifient la discussion. La condition nécessaire et

suffisante de régularité est ainsi, que 'on ait, quel que soit n:

. c ’
. - \ mn
lim a, =0 oua,, 6 — PR — (%)
m=>x o =m0 mi ot

Elle est bien nécessaire: en effet, prenons une suite S, ayant
tous ses termes nuls, sauf le (n + 1)ime, qui égalera 1'unité:
elle a pour limite zéro, donc la suite g, doit posséder la méme
propriété. Mais on a alors o, = amn, ce qui justifie la condi-
tion (4). | ‘

Elle est suffisante lorsque les Sy tendent vers zéro, car ¢ étant
donné, on peut trouver m, tel que l'inégalité m > m, entraine
| om| < e: pour le voir, on séparera dans o, ’ensemble des p
premiers termes; on peut prendre p assez grand pour que la

€ .
. somme des termes restants soit en valeur absolue < g (puisque

- les Sy tendent vers zéro et que la somme des coeﬁiclents est egale'

a 1'unité); p étant ainsi choisi, on peut prendre m assez grand
pour que la'somme des p premiers termes s01t elle-méme moindre

que " (cela, en vertu de lhypothese) Le cas ou les S, tendent"

-

1 Journal de Crelle, t, 151, p. 79 et suivantes.
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vers zéro étant ainsi élucidé, on passe facilement & celai ou les
S, tendent vers une limite quelconque & la faveur du cas (im-
médiatement résolu) ou tous les S, sont égaux.

3. — Rappelons quelques applications ciassiques de ce théo-
réme. Supposons que le tableau des ¢y, soit de la forme

Y, 0 0 0 0
i Yo 0 0 0
T2 i Yo 0 0 ()
T2 T2 Y1 Yo O

pour laquelle il est entiérement déterminé par la donnée d’une
suite & un seul indice, celle qui est écrite dans la premiére colonne
du tableau (5). La condition de régularité sera alors que l’on ait,
pour chaque valeur fixe de n

YNZ—-IL

lim = 0 (5")
m = Yo + Yl + + Ym

ou plus simplement que ’on ait 'unique condition

lim L = 0. (5")
m=w Yo T Yy + -0 F Y

Cette forme du tableau des cp, est justement celle qui se
présente dans la méthode de Cesaro, lorsqu’on définit la famille
des procédés de sommation (C, k) & un parameétre .

On a alors

Tn

_</c—|—-n——1 Ik +n)
= n >“F(A)r(,z+1)

la série des y, est divergente et son terme général grandit indeé-
finiment, asymptotiquement &

on en déduwit aisément que la condition (5”) est bien vérifiée L.

1 Cette condition serait encore vcrifiée si la série des p €tait convergente.

[’Enseignement mathém., 26e année; 1927,

[
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Un autre cas ou le tableau des ¢y, se déduit d’une suite unique
est celui ou il est de la forme

Yo 0 0 0
Yo . 0 0 .. ‘ o (6)
Yo Yio Y2 O

La condition de régularité consiste alors dans la divergence de
la série Zy,. Nous distinguerons en abrégé ce cas par cette appel-
lation: sommation par les séries divergentes.

Enfin, un cas trés important ou le tableau des ¢y, se déduit
encore d’une suite unique, par une loi trés simple, est le suivant,
imaginé par M. Borel. On a un tableau tel que |

To Y1 Yo o TYa
To 26 v .. 2%,

3y, 3%, .. 3"
To T1 T2 Yu (7)
Yo my, miy, .. m'y,

On suppose, conformément a ce qui précede, que chaque ligne
du tableau forme une série convergente, ou ce qui revient au
méme, que la fonction représentée par la série

?(a) =% + 71“ + 72“2 + cee + 7na" + e

soit une fonction entiére de la variable a. Cela posé, on voit aisé-
ment qu’en pareil cas, il y aura toujours régularité (sommation
par les fonctions entiéres).

Les procédés de sommation dont il sera question ici appartien-
dront exclusivement a 1’un des types précédents.

4, — A coté de 'idée trés importante de régularité, on peut
placer la notion de procédés de sommation liés entre eux par une
relation d’ordre. Par exemple, nous avons rappelé la famille
a un paramétre des procédés (C, k) de Cesaro. Calculons les
valeurs oy, (k) et ap (k') pour deux valeurs k et k£’ du parameétre.
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[existence d’une limite pour les o, (k) entraine, chaque fois
que k' surpasse k, I'existence d’une limite égale pour les oy, (£').
La démonstration de ce théoréme, aujourd’hui classique, est
donnée au tome II du Traité d’Hobson sur les fonctions de va-
riables réelles (seconde édition). On peut 1’énoncer ainsi: si k'
surpasse k, la sommabilité (C, k') dépasse en efficacité la sommabi-
lite (C, k).

Le tableau (6) fournit d’une maniére immédiate I’exemple de
procédés de sommation entre lesquels existe une relation du
type précédent . Cela nous rameéne simplement & démontrer
un, théoreme de M. G. Hardy, dont voici I’énoncé:

Soit

m
n

D] oo \-n e

une suite non croissante a termes positifs, telle que la série Zepyn
soit divergente. Alors ’existence d’une limite pour les moyennes

7050 + 71 Sl- + .+ 7nsn

o) —
Yo T 1+ o+ 7,

entraine l’existence d’une limite égale pour les moyennes

o 7080 + 8171 Sl + + En'ynSn
" Yo+ &+ o 5,7, .

Autrement dit, la sommation au moyen de la série divergente 2y,
est dépassée en efficacité par la sommation au moyen de la série
Senyn plus lentement divergente.

En effet, au moyen de la transformation d’Abel, nous pouvons
écrire

('1 —_ 81)700'0 + (51 - 52) (70 + 71)61 + ...+ (5,1_1 - €n> (70 + ..+ 7)1—1)671—‘1 + En (70 + . + 7/1)011

(L—c)vmt (=) (Bt )+ (=) ot V) Fep(yo oo+ 7,)

Pexistence d’une limite pour les 7, (égale a celle des ¢,) s’établit
alors en séparant haut et bas les p premiers termes et faisant
croitre p et indéfiniment, mais de maniére que la somme des p

1 Dans cet ordre d’idees, il est clair qu'un procédé de sommation régulier dépasse
celui qui s’attache & la convergence, au sens ordinaire; celle-ci constitue dans I’échelle
de tous les procédés possibles, une sorte de zéro absolu.
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premiers termes du dénominateur soit négligeable par rapport
a sa valeur totale, condition réalisable en vertu de la divergence
de la série Zepyn. Dans ces conditions, au numérateur, les o;
d’indices supérieurs & p tendent vers ¢ et le résultat devient im-
médiat.

5. — Voila done, dans un cas particulier, un résultat précis
relatif & la concordance de procédés de sommation d’une certaine
famille. Sa valeur s’accroit de ce que la régularité de plusieurs mé-
thodes de sommation n’entraine nullement leur concordance,

hors du champ classique des séries convergentes Ainsi prenons _

la série d’Euler
1 —14+1—14+ ..

et-supposons que la suite des y, ait tous ses termes de rang pair
égaux a b, tous ses termes de rang impairs égaux a a(a > 0,
b > 0). Alors dans la sommation par la série divergente Zyn, la
série d’Euler aura pour somme

a

a4+ b

Nous avons ainsi une famille de procédés réguliers dont chacun
confere une somme, variable avec le procédé choisi, & la série
d’Euler.

Quelques auteurs, notamment M. E. BortL dans ses beaux tra-
vaux sur les séries divergentes et M. Paul LEvy dans un récent
mémoire ! se sont attachés & mettre en lumiére des effets de
concordance, & la faveur "d’hypothéses concernant le caractere
régulier de la croissance ou de la décroissance des termes de la
suite y,, hypothéses intéressantes a étudier dans chacun des trois
cas précédents. Mais nous n’insisterons pas ici davantage sur cet
ordre d’idées, et renverrons de préférence le lecteur aux travaux
déja cités.

6. — En matiére de comparaison des procédés de sommation,
s’ouvre une autre voie bien naturelle. Elle consiste & accorder une
place privilégiée aux méthodes qui appliquées a la série

14 w4+ .. 4" —F-'

1 Bulletin de la Société Mathémalique dé France, t. 54, .1926, pages 1 et. suivantes.

S
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hors de son cercle de convergence, lui assignent, la ou elles
réussissent, une somme égale a

{
1 — u

Notons que, par essence méme, il ne peut jamais arriver qu'un
procédé, appartenant a l'un des types précédemment définis,
réussisse en quelque point de la demi-droite (1, 4- o) de l'arc
réel: en effet, ces procédés sont tous réguliers, et alors le fait
que, dans les conditions indiquées, les sommes S, tendent vers
+ oo entrainent la méme propriété pour les sommes o, A priore,
le seul domaine qu’on peut espérer atteindre ne dépassera jamais

I’étoile, relative au point O, de la fonction

1 —u
Pourquoi avons-nous considéré la série particuliere Zu, ? Pré-
cisément, en vertu du réle de noyau générateur de 'intégrale de
Cauchy, joué par la fonction
1
]
Z

1
T — X
‘Supposons qu'un procédé sommatoire réussisse pour la série
Zu™ dans une portion (R de son étoile relative au point O. Ecrivons
par exemple qu’il en est bien ainsi pour la méthode qui consiste a
former les moyennes

cmO S0 + le Sl + cee + Cmn Sn +
Can + le + o + Cmn + ‘

w | e

et & prendre leur limite pour m infini. En vertu de U'identité

1 un-¥1
=1+ w4+ w4 ..+ "+ )

1 — u 1 — u

nous aurons, en chaque point de la région R,

lim Cimo + Cm + s + Cmn U, + 0 (8‘
= . )
=0 Cno + le + ter + Cmn +

Considérons maintenant une fonction analytique f (z), holo-
morphe autour de z = 0, et issue du développement

f) = a, + a,x + a,2® + ... + a,x" + ... .
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Déterminons I’étoile de cette fonction relativement au point O.

En appelant ¢ un contour quelconque intérieur a celle-ci, nous

aurons '
1 f(z)dz

f(x) = 2i7cc z— X
ou |
1 L f(e) x x" 1 2" T1f ()
flx) = m;f-z_[1 + 2 —|—;;]dz tam) pr g
Oli encore

1 xn—}-l f(Z)

= dz .
2im? z"+1(z—x) :

f(x) = ay + a,x + ... + a, 2" +

Il en résulte aisément qu’en appliquant la précédente méthode
de sommation a la série 3a, 2", nous trouverons bien la somme
f (x), & chaque fois que sera réalisée la condition suivante

£ f(Z) i X a2 xn
f; z— X (cmﬂ T+ Cm z + Cno 22 + ot ? + ...)dz
lim _

me> o Cmo + le + Cm2 + + Cmn +

Cela sera, pour une valeur de z et un contour ¢ donnés, chaque
fois que tous les points —;—c tomberont dans larégion (R du plan de

la variable complexe, ou encore chaque fois que le point x sera

commun aux régions z R déduites de R par les similitudes de

centre O, faisant passer du point 1 & quelque point z du contour c.
Par exemple, posons

ce qui nous conduit & la méthode de sommation exponentielle
de M. Borel. La condition (8) devient alors

mn
€

lim =0, .
" meaw el

ou encore
partie réelle de u < 1 .

La région R sera donc ici un demi-plan, délimité parla perpen-

~ diculaire & la branche unique de 1’étoile de a ’origine 1 de

1 —u’
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cette branche. En appliquant les remarques précédentes, on en
déduira done le résultat suivant:

Toute série entiére f (x) est sommable par la méthode exponen-
tielle dans la région du plan, qui relativement a Uorigine, se trouve
en deca des perpendiculaires menées aux branches de Uétoile de
f (x) par les points singuliers d’ou elles sont issues. Cette région
constitue par définition le polygone de sommabilité.

7. — Nous tirons donc de la théorie des fonctions analytiques
le moyen le plus naturel d’obtenir des procédés de sommation
concordants. Ce n’est d’ailleurs 14, a la forme pres, que la répé-
tition des idées que M. E. Borel a utilisées fréquemment, par
exemple, pour la démonstration des théoremes de Mittag-
Leffler et pour les développements qu’il a présentés au Ghapitre I1
de ses Legons sur les fonctions monogenes uniformes d’une variable
complexe.

On est alors naturellement conduit a se poser la question sui-
vante:

Comparer entre eux les divers procédés de sommation mentionnés
au début de cette note, au point de vue de leur efficacité en matiére
de prolongement analytique.

D’apres les remarques qui précédent, on pourra se borner a
chercher ce qu’ils donnent pour la série Su™. Ecrivons successi-
vement la condition (8) pour chacune des formes (5), (6), (7) du
tableau des ¢,,. Nous devrons avoir dans chacun de ces cas

Yo T Tamy 6 + oo 4= gt

lim —_

Cas (5) n=w 7/1 + 7[1—-1+ + 70
avec lim /n =0
11-»00'70_*—71 + +72L
oy o N
Cas (6) T R M Z

. n =« 70+?’] +"' +7n
(sommation par les

séries divergentes) avec  lim (y, 4+ 9, 4+ ... +9,) = + =

n—=w

g n ) .
Cas (7) lim e + 711("”() +
e gy o omt

1
(]

(sommation par les

fonctions entieres) o

ou Iim ;_(__ —
m-=>wo @(m)
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. L’étude de la condition relative au cas (7) est la plus impor-
tante: le probléme qui se pose est d’essayer de choisir la fonction
entiere ¢ (m), organe essentiel du procédé sommatoire, de maniére

que cette condition soit satisfaite dans toute ’étoile de la fonction
1

I_:—u" Ce probléme a été étudié en dé_tail par M. A. Bunr dans
le fascicule VII du Mémorial des Sciences Mathématiques. Nous
renverrons donc le lecteur a I’exposé de ce savant géométre.

8. — Mais il n’est pas sans intérét de dire quelques mots des
formes prises par la condition (8) pour les tableaux des types (5)
et (6). Le fait saillant est ici I'impossibilité de sortir pratiquement
du cercle de convergence par des processus de sommation dérivant
de tels tableaux. Et grace a ce contraste, les idées de M. Borel
prennent toute leur valeur, la méthode de sommation par les
fonctions entieres est située a sa véritable place.

Ce qu’il faut montrer, c’est que si u est supérieur en module a
I'unité, c’est qu'on ne peut avoir simultanément, ni les relations

{ . 7;1, + 7/1—1 . + ter + Yo lt"

] —

n=>w 711. + 711——1 + + 7o

lHm n

= 0
naw Py T Yo+ o+ %

ni les relations

' . Yo + 71 U +-"" + 7/1 u"
lim =0

nsw Yot Yt e+ Y ‘ (10)
lim (o +9 + ... =9,) = + =

n=» o

pour aucun domaine du plan de la variable u, prélevé sur I’étoile
de 1 —u

abréger ’écriture yo + y; + ... + yn = [n. -
~ Examinons d’abord le cas facile des relations (9). Si la seconde
a lieu, & tout nombre positif «, on peut faire correspondre-un

, hors du cercle |u| < 1. Convenons de poser, pour
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entier n tel qu’on ait la suite d’inégalités

Tn

— 8 )
Yo+ 7+ o+ 7 (B “l—l)

EEA Y 1
<Cl, d’ou pn>;

7/z+k
7o + 71 + o+ 7n+/c

. 1
L) fa e}
< o, d'ou Bn-}-k > ; (Vn+k - i’n-}-k——l) *

On en déduit treés facilement, quel que soit 'entier &

ﬁn—l
7n nt-k < ’
Vntre < g +k (1 — a)k-}—l

Il en résulte que le rayon de convergence de la série entiére
cPn('ﬁl') = Tn + '/”_*_1.%' + e “/"_*_kxk + ore
est au moins égal a 1 — «: 1l en est donc de méme de celui de la
série
0 (@) = 9 + 72 + ... + 7,7 + ...
et comme « peut étre pris arbitrairement petit, ce rayon ne peut

A . r - \ . r . 1 .
étre inférieur & 'unité. Supposons essentiellement que — ne soit

pas racine de I’équation
o (%) = 0 .

Dés lors, la premiere des conditions (9) équivaut a

m
lim l“l = 0.

m=x Yo —+ 71 + ...+ T o

Il faut montrer que cette propriété limite n’est pas conciliable
avec la seconde des conditions (9).

En effet, reprenons notre nombre positif arbitraire « et la valeur
particuliere n que nous venons de lui faire correspondre. Nous
aurons des lors, pour m = n -+ k,

Yo+ 7+ o+ Tnd-k
Yo+ N+ o+ 7

< (k+ Da .
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Or, de la relation
n4-k
lim | «] — 0,

ko Yo -+ %+ e+ "n-i-lc

résulterait, a fortiori, en vertu de I'inégalité précédente, la rela-
tion suivante
’ k
lim | ]

koo T F (A Do —

qui n’a visiblement pas lieu, la limite du premier membre étant
infinie. Donc, dans I’ensemble des valeurs de u non racines de
I’équation,

/0+7‘+ .

u?

I'incompatibilité annoncée est bien établie.

9. — II reste & montrer qu’en général, on ne peut avoir a la
fois les deux relations (10). Cette partie du probléme est plus
difficile, parce qu’on ne peut plus se rattacher a la théorie des
séries entiéres. Elle devient cependant abordable si ’on se con-
tente de prendre la question au point de vue pratique, c¢’est-
a-dire de prouver que dans des champs de séries divergentes

Yo+ 1+ o+, + -

soumises & des hypothéses trés simples la premiére des relations
(10) ne saurait avoir lieu pour |u| > 1.

Notre point de départ consistera a remarquer que si u a été
choisi, et si la premiére des relations (10) a lieu pour cette valeur
et pour une suite particuliére {yn}, elle a nécessairement lieu
(d’apreés le précédent théoreme de G. Hardy) pour toute suite
{en yn} fournie avec une suite e, décroissante (ou du moins non
croissante) et donnant naissance & une série 2 ¢, y, divergente.
Donc inversement, a supposer que la propriété limite en litige n’ait
pas lieu pour la valeur u et pour une suite {yn} donnant une
série divergente, elle n’aura pas lieu non plus pour u et pour les
suites de la forme {knyn} ou les k sont non décroissants.

Voici une application de cette remarque. En supposant les y,
égaux a 1, nous aurons pour premier membre de la relation
indiquée: :
14+u4u+... +u”

lim n-l—'l .
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expression qui est infinie. Notre relation n’aura donc jamais lieu
lorsque la suite des y, sera croissante.

Nous ferons dés lors ’hypotheése que la suite des y, est mono-
tone: c’est-1a une des restrictions dont nous avons noté 1’oppor-
tunité en commencant. Il ne nous reste alors qu’a étudier le cas
d’une suite {yn} décroissante (ou du moins, non croissante).

Cela posé, imaginons qu’on ait pu trouver un domaine fini du
plan complexe (u) ot les polynomes

P () Yo + U A+ o oy,
u) =
a Yo+ 7+ T Y

tendent vers zéro. D’aprés un théoréeme connu sur les suite:
convergentes de fonctions holomorphes (découlant tres simple-
ment de I'intégrale de Cauchy) on en déduit que leurs dérivées de
tous ordres formeront des suites tendant elles-mémes vers zéro.
On en déduit par exemple que si I'on forme les polynomes

Y% + pu+1. 2904 o+ (n—1)ny,u"

) (1) =
(1) T+ 1 2p + .+ (n—1)ny,

(liés simplement aux dérivées secondes), ces polynomes tendront
vers zéro dans la méme région. Faisons alors une nouvelle hypo-
thése complémentaire: La suite décroissante {yn} posséde une
régularité suffisante pour que la suite auxiliaire

{(n — 1) n 'y”}

soit monotone, ou tout au moins qu’il en soit ainsi & partir d’un
certain rang. Alors, en vertu de la divergence de Xy, il est
clair que notre suite auxiliaire sera crotssante. Mais alors, contrai-
rement & ce que nous venons de voir, il serait impossible (en
vertu de ce qui a établi pour les suites croissantes) que les Qy (u)
tendent vers zéro. On ne peut donc avoir, dans les conditions
mmdiquées

lim P («) = 0 .

n=o>

[impossibilité annoncée [de sortir du cercle de convergence

par le genre de sommation qui se rapporte au tableau (6)] est
donc pratiquement établie.
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