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SUR LA COMPARAISON DE CERTAINS PROCÉDÉS

DE SOMMATION DES SÉRIES DIVERGENTES

PAR

Georges Bouligand (Poitiers).

1. — Soit la série à termes constants

oo

2«..
v 0

Posons comme d'habitude

S. =2«,. <>

v 0

Au moyen d'un tableau d'éléments constants et positifs cmni

dont les lignes

CmO ' cml'' Cnm ' (m lf 2, 3,

forment des séries convergentes, calculons les expressions
auxiliaires

__
Cm0S0 + C,«1S1 + ••* + Cmn^n + **•

,É).~ cmO + 'ml + - + 'mit + -
et supposons que, grâce au choix de la série proposée, le numérateur

de <7m soit lui-même une série convergente. Avec M. E.
Bokel, nous appellerons somme généralisée de la limite pour m
infini de la suite chaque fois que cette limite existe h

Le présent article se propose, dans un but principalement
didactique, de comparer entre eux les résultats auxquels peuvent
conduire les procédés de sommation de l'espèce précédente.

i Leçons sur les Séries divergentes, première édition, page 93.
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2. — La question essentielle consiste naturellement à chercher

dans quelle mesure différents procédés de cette catégorie
sont susceptibles de concorder. Un procédé quel qu'il soit ne
sera admis comme procédé régulier (suivant la terminologie
devenue classique) que s'il satisfait à la condition de consistance
da M. G. Hardy, appelée encore condition de permanence par
M. K. Knopp. Cette condition, qui sert de définition à la
régularité est que l'existence d'une limite pour les Sn entraîne celle
d'une limite pour les <7m, avec égalité de ces deux limites.

M. J. Schur a donné un théorème général sur les conditions
de régularité 1 pour les transformations linéaires infinies de la
forme

oo

77 0

Mais ici, les amn sont soumis, de par ce qui précède, à des restrictions

qui simplifient la discussion. La condition nécessaire et
suffisante de régularité est ainsi, que l'on ait, quel que soit n:

lim 0 (où (4)
»'-OC y c„iO t ' •••/

Elle est bien nécessaire: en effet, prenons une suite Sn ayant
tous ses termes nuls, sauf le (n + l)ième^ q^j égalera l'unité:
elle a pour limite zéro, donc la suite am doit posséder la même

propriété. Mais on a alors <jm amni ce qui justifie la condition

(4).
Elle est suffisante lorsque les Sn tendent vers zéro, car s étant

donné, on peut trouver m± tel que l'inégalité > m1 entraîne
| flTm | pour le voir, on séparera dans cw l'ensemble des

premiers termes; on peut prendre p assez grand pour que la

somme des termes restants soit en valeur absolue < ^ (puisque
' *

les Sn tendent vers zéro et que la somme des coefficients est égale

à l'unité); p étant ainsi choisi, on peut prendre m assez grand

pour que la somme des p premiers termes soit elle-même moindre

que I* (cela, en vertu de l'hypothèse). Le cas où les Sn tendent

i Journal de Crelle, t., 151, p. 79 et suivantes.
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vers zéro étant ainsi élucidé, on passe facilement à celui où les

Sn tendent vers une limite quelconque à la faveur du cas

(immédiatement résolu) où tous les Sn sont égaux.

3. — Rappelons quelques applications classiques de ce

théorème. Supposons que le tableau des cmn soit de la forme

y0 0 0 0 0

I Ti To •

0 0 0 •••

\ Ï2 Ti To 0 0 ••• ^
/ Ts Ï2 Ti To 0 •••

pour laquelle il est entièrement déterminé par la donnée d'une
suite à un seul indice, celle qui est écrite dans la première colonne
du tableau (5). La condition de régularité sera alors que l'on ait,
pour chaque valeur fixe de n

l* T ni-nA /K/li m — 0 (5
mh- oo To + Ti + ••• 4- T/«

ou plus simplement que l'on ait l'unique condition

lim - — 0 (5")
m 00 To + Ti + • • • H" T/m

Cette forme du tableau des cmn est justement celle qui se

présente dans la méthode de Cesàro, lorsqu'on définit la famille
des procédés de sommation (C, à un paramètre k.
On a alors

fk + n— 1\
__

T + n)
Tn n ] r(*)r(/i + i

la série des yn est divergente et son terme général grandit
indéfiniment, asymptotiquement à

nk~l

V(k) '

on en déduit aisément que la condition (5") est bien vérifiée

1 Cette condition, serait encore vérifiée si la série des était convergente.

L'Enseignement mathém., 20* année; 1927.
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Un autre cas où le tableau des cmn se déduit d'une suite unique
nst celui où il est de la forme

/ Y0 0 0 0

ïo Ï! 0 0
Y (6)
1 To ïi Ta 0 •••

y ••••#••
La condition de régularité consiste alors la divergence de

la série 2yn.Nous distinguerons en abrégé ce cas par cette
appellation: sommation par les séries

Enfin, un cas très important où le tableau des cmn se déduit
encore d'une suite unique, par une loi très simple, est le suivant,
imaginé par M. Borel. On a un tableau tel que

I ÏO Tl Ï2 ••• T

To 2T, 2*ï2 2"T/i

To 3Ti 32T2 3"t„ •••

To mTi m2T2 • • m'lrn ••

On suppose, conformément à ce qui précède, que chaque ligne
du tableau forme une série convergente, ou ce qui revient au
même, que la fonction représentée par la série

y (a) 70 + y, a + 72 a+ ••• + 7+ •••

soit une fonction entière de la variable a. Gela posé, on voit
aisément qu'en pareil cas, il y aura toujours régularité (sommation

par les fonctions entières).
Les procédés de sommation dont il sera question ici appartiendront

exclusivement à l'un des types précédents.

4. — À côté de l'idée très importante de régularité, on peut
placer la notion de procédés de sommation liés entre eux par une
relation d'ordre. Par exemple, nous avons rappelé la famille
à un paramètre des procédés (G, k) de Cesàro/ Calculons les

valeurs am (k) et am k')pour deux valeurs k et k' du paramètre.
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L'existence d'une limite pour les <jm entraîne, chaque fois

que k'surpasse A, l'existence d'une limite égale pour les <jm ').
La démonstration de ce théorème, aujourd'hui classique, est

donnée au tome II du Traité d'Hobson sur les fonctions de

variables réelles (seconde édition). On peut l'énoncer ainsi: si k'
surpasse &, la sommabilité (C, k') dépasse en efficacité la
lité (C, k).

Le tableau (6) fournit d'une manière immédiate l'exemple de

procédés de sommation entre lesquels existe une relation du

type précédent1. Cela nous ramène simplement à démontrer
un théorème de M. G. Hardy, dont voici l'énoncé:

Soit
1 c c c

1 2» ••• il • • •

une suite non croissante à termes positifs, telle que la série

soit divergente. Alors l'existence d'une limite pour les moyennes

—
7°S° + + VnSn

~~
7o T 7i + + 7/i

entraîne l'existence d'une limite égale pour les moyennes

7o ér£i7i "T ••• T"
1,1~~

7o H" £i7i + + e„7,i

Autrement dit, la sommation au moyen de la série divergente
est dépassée en efficacité par la sommation au moyen de la série

2znyn plus lentement divergente.
En effet, au moyen de la transformation d'Abel, nous pouvons

é crire

(t — ei)7oao + (£1 — h) <7o + 7i)ai + • • • + (£„_1 - £J (7o + • • • + 7/1-1 )a«-i + £,/(7o + • •• + 7n)an

C1 - £i )7o + (£1 - £2> (7o + 7i + • • + (£„_i - (7o + • • • 7/,-i) + £/i(7o + + yj
*

l'existence d'une limite pour les rn (égale à celle des crn) s'établit
alors en séparant haut et bas les p premiers termes et faisant
croître p et indéfiniment, mais de manière que la somme des p

i Dans cet ordre d'idées, il est clair qu'un procédé de sommation régulier dépasse
celui qui s'attache à la convergence, au sens ordinaire; celle-ci constitue dans l'échelle
de tous les procédés possibles, une sorte de zéro absolu.
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premiers termes du dénominateur soit négligeable par rapport
à sa valeur totale, condition réalisable en vertu de la divergence
de la série 2enyn* Dans ces conditions, au numérateur, les

d'indices supérieurs à p tendent vers a et le résultat devient
immédiat.

5. — Voilà donc, dans un cas particulier, un résultat précis
relatif à la concordance de procédés de sommation d'une certaine
famille. Sa valeur s'accroît de ce que la régularité de plusieurs
méthodes de sommation n'entraîne nullement leur concordance,
hors du champ classique des séries convergentes. Ainsi prenons
la série d'Euler

1—1 + 1 — 1 +
et supposons que la suite des yn ait tous ses termes de rang pair
égaux à à, tous ses termes de rang impairs égaux à a {a > 0,
b > 0). Alors dans la sommation par la série divergente la
série d'Euler aura pour somme

« + b '

i

I

Nous avons ainsi une famille de procédés réguliers dont chacun
confère une somme, variable avec le procédé choisi, à la série

d'Euler. [

Quelques auteurs, notamment M. E. Bokel dans ses beaux tra- |

vaux sur les séries divergentes et M. Paul Lévy dans un récent j

mémoire 1 se sont attachés à mettre en lumière des effets de |

concordance, à la faveur d'hypothèses concernant le caractère j
y

régulier de la croissance ou de la, décroissance des termes de la
suite yn, hypothèses intéressantes à étudier dans chacun des trois j

cas précédents. Mais nous n'insisterons pas ici davantage sur cet î

ordre d'idées, et renverrons de préférence le lecteur aux travaux j

déjà cités.

6. — En matière de comparaison des procédés de sommation,
s'ouvre une autre voie bien naturelle. Elle consiste à accorder une
place privilégiée aux méthodes qui appliquées à la série

1 -+- il -+- il2-+- -+• -+-

i Bulletin de la Société Mathématique de France, t. 54, 1926, pages Let-suivantes.
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hors de son cercle de convergence, lui assignent, là où elles

réussissent, une somme égale à

u

Notons que, par essence même, il ne peut jamais arriver qu'un
procédé, appartenant à l'un des types précédemment définis,
réussisse en quelque point de la demi-droite (1, + oo) de l'arc
réel: en effet, ces procédés sont tous réguliers, et alors le fait
que, dans les conditions indiquées, les sommes Sn tendent vers

+ co entraînent la même propriété pour les sommes crm. A
le seul domaine qu'on peut espérer atteindre ne dépassera jamais

ll'étoile, relative au point 0, de la fonction

Pourquoi avons-nous considéré la série particulière 2 wn?
Précisément, en vertu du rôle de noyau générateur de l'intégrale de

Cauchy, joué par la fonction
1 îr

x i_ *
z

Supposons qu'un procédé sommatoire réussisse pour la série
2 un dans une portion ût de son étoile relative au point 0. Ecrivons
par exemple qu'il en est bien ainsi pour la méthode qui consiste à

former les moyennes

CmOSo + cmlSi + «•• + + •••

CmOC/ni *t~ ••• ~f" "h "*

et à prendre leur limite pour m infini. En vertu de l'identité

1 H
- — 1 + u + u2+ + un H-i — u 1 u

nous aurons, en chaque point de la région tfi,
cmO + cm\ 11+ ••• + cmnun + •••1 • rri L • 1 nui ri 1

_il m — — 0 (8
M-+CG cni(\ "P cmi+ + Cmn +

Considérons maintenant une fonction analytique
holomorphe autour de x0, et issue du développement

t"o H- G^X-|- G^X"-|— ...» -J- G
rl X -f-
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Déterminons l'étoile de cette fonction relativement au point 0.
En appelant c un contour quelconque intérieur à celle-ci, nous
aurons

f(x)==j.rm±'llTzJ X

OU

f(x) — fCM [l + - + + —1 dz + -i- f dzIikJ z L 2 ZnJ 2lît£ zn+l(z — x)

ou encore

f(x) a0+ atx + + axn + -f * ^ dz
zn-rl(z — x)

Il en résulte aisément qu'en appliquant la précédente méthode
de sommation à la série 2anxn,nous trouverons bien la somme
/ (x), à chaque fois que sera réalisée la condition suivante

X f (z) f x x2 xn
Z z — x7 + V + " + c"»' 7" + "7 dz

lim — — — — — — 0
m -* oo CmO ' Cml ' Cm2 ~T~ • • • *T" ~T~

Gela sera, pour une valeur de x et un contour c donnés, chaque

fois que tous les points ~ tomberont dans la région du plan de

la variable complexe, ou encore chaque fois que le point x sera

commun aux régions z Ûidéduites de par les similitudes de

centre 0, faisant passer du point 1 à quelque point z du contour c.

Par exemple, posons
c —mn — —r

n

ce qui nous conduit à la méthode de sommation exponentielle
de M. Borel. La condition (8) devient alors

pmn
lim — — 0

?u
m - oo e

ou encore
partie réelle de 1

La région (fi sera donc ici un demi-plan, délimité par la perpen-

diculaire à la branche unique de l'étoile de 1—, à l'origine 1 de
X U
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cette branche. En appliquant les remarques précédentes, on en

déduira donc le résultat suivant:
Toute série entière f (x) est sommable par la méthode exponentielle

dans la région du plan,qui relativement à Vorigine, se trouve

en deçà des perpendiculaires menées aux branches de Vétoile de

f (x) parles points singuliers Toil elles sont issues. Cette région
constitue par définition le polygone de sommabilité.

7. — Nous tirons donc de la théorie des fonctions analytiques
le moyen le plus naturel d'obtenir des procédés de sommation
concordants. Ce n'est d'ailleurs là, à la forme près, que la
répétition des idées que M. E. Borel a utilisées fréquemment, par
exemple, pour la démonstration des théorèmes de Mittag-
Leffler et pour les développements qu'il a présentés au Chapitre II
de ses Leçons sur les jonctions monogènes uniformes d'une variable
complexe.

On est alors naturellement conduit à se poser la question
suivante :

Comparer entre eux les divers procédés de sommation mentionnés
au début de cette note,au point de vue de leur efficacité en matière
de prolongement analytique.

D'après les remarques qui précèdent, on pourra se borner à

chercher ce qu'ils donnent pour la série Ecrivons successivement

la condition (8) pour chacune des formes (5), (6), (7) du
tableau des cmn. Nous devrons avoir dans chacun de ces cas

la+ 7,1-1 + q- 7o Un
11 m — _ — 0

n->CO yn + 7/i-i + ••• + 7o

lim h. - o
" * « 7n + 7i + • • • + 7»

7o + 7i " + ••+ y,,lim — — 0
n-+cc 7o 7i + + yn

avec lim (?0 + y, + + +
71 œ

7o + 7i 4- + y„ (mu)'1 +lim o
„ yo _|_ 7i,U _|_ _ _|_ _

1* 9 (mu)
on lim ±-± L — omoo© (m

Cas (5) /

I avec

Cas (6)

(sommation par les
séries divergentes)

Cas (7)

(sommation par les
fonctions entières)
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L'étude de la condition relative au cas (7) est la plus importante:

le problème qui se pose est d'essayer de choisir la fonction
entière <p (m), organe essentiel du procédé sommàtoirej de manière
que cette condition soit satisfaite dans toute l'étoile de la fonction

l Ce problème a été étudié en détail par M. A. Buhl dans
X 1 \Ât -- *

le fascicule VII du Mémorial des Sciences Nous
renverrons donc le lecteur à l'exposé de ce savant géomètre.

8. — Mais il n'est pas sans intérêt de dire quelques mots des

formes prises par la condition (8) pour les tableaux des types (5)
et (6). Le fait saillant est ici l'impossibilité de sortir pratiquement
du cercle de convergence par des processus de sommation dérivant
de tels tableaux. Et grâce à ce contraste, les idées de M. Borel
prennent toute leur valeur, la méthode de sommation par les

fonctions entières est située à sa véritable place.
Ce qu'il faut montrer, c'est que si est supérieur en module à

l'unité, c'est qu'on ne peut avoir simultanément, ni les relations

ni les relations

7n"H 7n-lu+ '•• + 7ou"
]im

|
: — 0

«-oo V« "h 7/i—î "h ••• ~t~ 7o

T filim j : 0
ri-*oo 7 n+ 7,1-1 + ••• + 7o

(*>

7o + 7i 11+ 7 nu
lim ; 1

0
«-» 7o + 7l "r ••• + In (10)

lim (70 + 7j + yn) + oo

n-* ex)

pour aucun domaine du plan de la variable prélevé sur l'étoile
ide

A
hors du cercle |w|^l. Convenons de poser, pour

abréger récriture y0 + y1+ + yn — ßn-
Examinons d'abord le cas facile des relations (9). Si la seconde

a lieu, à tout nombre positif, a, on peut faire correspondre • un
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entier n tel qu'on ait la suite d'inégalités

/" < « d'où I?n > ~ (ß« — ßn-l) ;

7o + 7i + + 1,i a

7o + 7.
++-k- + 7a+*

< " ' d'°Ù ß"+i > a (ß"+* ß"+i-l) '

On en déduit, très facilement, quel que soit l'entier k

V/j-j-A: Ph-J-Ä: ^ ^ ^£+1

Il en résulte que le rayon de convergence de la série entière

<?/>') 7 n+ V/,+1 x + - + 7n+kxk +

est au moins égal à 1 — a : il en est donc de même de celui de la
série

?oW 7o + 7i* + — + 7 + —

et comme a peut être pris arbitrairement petit, ce rayon ne peut
1

être inférieur à l'unité. Supposons essentiellement que — ne soit

pas racine de l'équation
%(*) —— ^ •

Dès lors, la première des conditions (9) équivaut à

urJim '— — 0
m go 7o '+ 7i + ••• + 7m

Il faut montrer que cette propriété limite n'est pas conciliable
avec la seconde des conditions (9).

En effet, reprenons notre nombre positif arbitraire « et la valeur
particulière n que nous venons de lui faire correspondre. Nous
aurons dès lors, pour m — n k,

7o + 7i ••• + lii+k
— — + < (k + l)a

7o + 7. + ••• + 1„—
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Or, de la relation

k->cc Vo + 7i + + Hn+k

1- I uI ^Il m '—! 0

résulterait, a fortiori,en vertu de l'inégalité précédente, la relation

suivante
i k

0lim 1 uk-*oo1 (Ä -J- 1) a

qui n'a visiblement pas lieu, la limite du premier membre étant
infinie. Donc, dans l'ensemble des valeurs de u non racines de

l'équation

7. + - + -4 + - 0
u u ir

l'incompatibilité annoncée est bien établie.

9. — Il reste à montrer qu'en général, on ne peut avoir à la
fois les deux relations (10). Cette partie du problème est plus
difficile, parce qu'on ne peut plus se rattacher à la théorie des
séries entières. Elle devient cependant abordable si l'on se
contente de prendre la question au point de vue pratique, c'est-
à-dire de prouver que dans des champs de séries divergentes

7o + 7l + ••• + +
soumises à des hypothèses très simples la première des relations
(10) ne saurait avoir lieu pour |u|> 1.

Notre point de départ consistera à remarquer que si a été

choisi, et si la première des relations (10) a lieu pour cette valeur
et pour une suite particulière {yn}, elle a nécessairement lieu
(d'après le précédent théorème de G. Hardy) pour toute suite

{snyn} fournie avec une suite sn décroissante (ou du moins non
croissante) et donnant naissance à une série 2 en yn divergente.
Donc inversement, à supposer que la propriété limite en litige n'ait
pas lieu pour la valeur u et pour une suite -{yn} donnant une
série divergente, elle n'aura pas lieu non plus pour u et pour les

suites de la forme {A:nyn} où les kn sont non décroissants.
Voici une application de cette remarque. En supposant les yn

égaux à 1, nous' aurons pour premier membre de la relation
indiquée: '

1.
1 —|— u *4" u^—j—

lim —
n-j-1 '
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expression qui est infinie. Notre relation n'aura donc jamais lieu

lorsque la suite des ynsera croissante.
Nous ferons dès lors l'hypothèse que la suite des yn est mono-

tone: c'est-là une des restrictions dont nous avons noté l'opportunité

en commençant. Il ne nous reste alors qu à étudier le cas

d'une suite {yn} décroissante (ou du moins, non croissante).
Gela posé, imaginons qu'on ait pu trouver un domaine fini du

plan complexe (u)où les polynômes

P Où —
7o + - l-+ ' ' '

— ——
11~ 7o + + ••• + la

tendent vers zéro. D'après un théorème connu sur les suite::

convergentes de fonctions holomorphes (découlant très simplement

de l'intégrale de Cauchv) on en déduit que leurs dérivées de

tous ordres formeront des suites tendant elles-mêmes vers zéro.
On en déduit par exemple que si l'on forme les polynômes

7o + Il» + 1 • 2 72 M2 + ••• + 0 — 1) nyn u11

' ~~
7o + 7i + 1 • 2 7a + ••• + (n — 1) nia

(liés simplement aux dérivées secondes), ces polynômes tendront
vers zéro dans la même région. Faisons alors une nouvelle hypothèse

complémentaire: La suite décroissante {yn} possède une

régularité suffisante pour que la suite auxiliaire

{(n — 1) yn }

soit monotone,ou tout au moins qu'il en soit ainsi à partir d'un
certain rang. Alors, en vertu de la divergence de yn, il est-

clair que notre suite auxiliaire sera Mais alors, contrairement

à ce que nous venons de voir, il serait impossible (en
vertu de ce qui a établi pour les suites croissantes) que les Qn
tendent vers zéro. On ne peut donc avoir, dans les conditions
indiquées

Mm P„(0 — 0
fl oo

L'impossibilité annoncée [de sortir du cercle de convergence
par le genre de sommation qui se rapporte au tableau (6)] est
donc pratiquement établie.
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