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204 C - ' E. CARTAN

propriétés d’un espace E & M?_t—g—)—

riemannienne peut étreé regardée comme une variété X, a n
dimensions plongée dans cet espace et définie par les équations
qui donnent les g;; en fonctions des z. Mais d’abord la Géométrie
rielnannienne correspondante n’est pas en toute rigueur 1’étude
des propriétés de la variété X, dans ses relations avec Iespace
ambiant, et, le serait-elle, elle n’en constituerait pas plus une -
Géométrie au sens de Klem que P’étude d’une surface particu-
liére plongée dans 'espace euclidien, la surface des ondes, par
exemple, n’en constitue une.

dimensions. Toute variété

111

La Relativité généralisée jeta dans la Physique et la Philosophie
Pantagonisme qui existait entre les deux principes directeurs
de la Géomeétrie, celui de Riemann et celui de Klein. Les espaces-
temps de la mécanique classique et de la relativité restreinte sont
du type de Klein, celui de la Relativité généralisée est du type de
Riemann. Ce fait méme que presque tous les phénomenes
étudiés par la science depuis de nombreux siécles pouvaient
s’expliquer aussi bien en se plagant & 'un des points de vue qu’a
Pautre était hautement significatif et suggérait malgré tout la
possibilité d’une synthese englobant les deux principes anta-
gonistes. :

La découverte par Levi-Civita ! en 1917 du transport par
parallélisme dans un espace de Riemann orienta les esprits vers
une nouvelle direction. C’est en généralisant la notion du paral-
lélisme de Levi-Civita d’une part, en poussant d’autre part a
ses derniéres conséquences 'idée directrice de Riemann par
Paffirmation de la relativité de la longueur, que Weyl? arriva
a la conception d’espaces métriques plus généraux que ceux de
Riemann. Les géométres furent surtout frappés par la fécondité
de la notion du transport paralléle et on pensa étre arrivé ainsi
au principe constructeur de la Géométrie différentielle générale.

1T, LEVI- C1viTA, Nozione di parallelismo in una varietd qualunque ( Rend Circ. Madt.
-. Palermo, 42, 1917, p. 173-205).
2 H. WEYL, Raum, Zeit, Materie, 3t¢ Auflage (Berlm, Springer, 1922).
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Qu'une telle vue fiit incompléte, Pimpossibilité de fonder la
Géométrie projective ou la Géométrie conforme classiques sur
un tel principe le prouve avec évidence; en Géométrie projective
la notion de parallélisme n’existe pas; en Géométrie conforme, la
notion de vecteur disparaissant elle-méme, disparait ipso facto
le probléme du transport des vecteurs par parallélisme.

1Y

Mais si le transport parallele ne fournit pas par lui-méme un
principe assez général pour englober les différentes théories
géométriques connues, il fournit du moins, envisagé d’une
maniére convenable, un moyen pour y parvenir.

Reprenons dans un espace de Riemann une petite région
entourant un point donné A; la connaissance du ds? de l'espace
fait jusqu’a un certain point de cette région un petit morceau
d’espace euclidien; on peut imaginer par exemple un repeére
rectangulaire d’origine A, et rapporter a ce repere tous les
points M infiniment voisins de A en leur attribuant ainsi des
coordonnées cartésiennes rectangulaires; les formules qui expri-
ment la distance d’un point M & Porigine, Pangle de deux vecteurs
joignant le point A & deux points M, M’ infiniment voisins de A,
celles qui traduisert un changement de coordonnées rectangu-
laires, sont exactement les mémes que dans I’espace ordinaire.
La difficulté commence quand on considére deux portions voi-
sines de l'espace, I'une entourant un point A, I'autre un point
voisin A’; elles constituent deux morceaux d’espace euclidien
qui sont en quelque sorte isolés 'un de I'autre, tant qu’on n’a
pas réussi a les orienter 'un par rapport a 'autre. D’une maniére
plus précise si nous attachons aux points A et A’ deux repéres
rectangulaires, nous savons localiser, & la maniére euclidienne,
Porigine A" du second repére par rapport au premier, mais nous
ne savons pas orienter les axes du second repére par rapport a
ceux du premier. Le transport par parallélisme de Levi-Civita
nous fournit précisément un moyen de fixer cette orientation,
puisque nous savons, grace a lui, reconnaitre quand deux
vecteurs d’origine A et A’ doivent étre regardés comme paral-
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