Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 26 (1927)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: LA THEORIE DES GROUPES ET LA GEOMETRIE
Autor: Cartan, E.

DOl: https://doi.org/10.5169/seals-21253

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-21253
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

LA THEORIE DES GROUPES ET LA GEOMETRIE!

PAR

E. Carranx (Paris).

Ce serait une tdche bien ambitieuse que d’essayer de faire
tenir dans une seule conférence le probléme général des rapports
entre la Théorie des groupes et la Géométrie. Bien que la mise en
évidence de ces rapports ne remonte pas 3 beaucoup plus d’un
demi-siécle, il n’est aucun mathématicien qui ne sache 'influence
profonde exercée sur le développement de la Géométrie par les
1dées systématiquement développées en 1872 dans le célebre.
« Programme d’Erlangen » de Félix Klein 2. Aussi bien n’ai-je
pas l'intention de revenir sur ces idées, qui font maintenant
partie du patrimoine commun de tous les mathématiciens. Je
voudrais essayer d’indiquer briévement comment, malgré le
contrecoup formidable produit en Géométrie par la Relativité
généralisée, le principe directeur de Klein, convenablement
généralisé, permet une nouvelle synthése des plus importantes
des théories géométriques récentes, sans parler de celles qui
n’existent encore qu’en germe et attendent de Pavenir leur com-
plet développement 3. Je resterai strictement sur le terrain’
géométrique sans incursion dans le probléme philosophique de
Pespace, si brillamment traité par M. Weyl 4. Je tacherai égale-
ment, a la lumiére de recherches toutes récentes, de montrer
comment la Géométrie permet d’aborder certains problémes
- nouveaux de la théorie des groupes et éclaire par contrecoup
d’un jour inattendu les Géométries de Klein les plus importantes.

1 Conférence faite & la session de printemps de la Société mathématique suisse,
tenue & Berne le 7 mai 1927.

2 Math. Ann., t. 43, 1893, p. 63-109; Gesamm. Math. Abh. de F. Klein, t. I, 1921.

3 Cf. E. CARTAN, La théorie des groupes et les recherches récentes de géométrie différen-
tielle (Enseign. math., 1924-5, p. 18; traductlon espagnole dans la Revista matem.
Hispano-Americana, 1927)

4 V. par exemple: H. WEYL, Die Emztgartzgkezt der Pythagorischen Massbesttmmung,

Math. Zeitschr., 12, 1922, p. 114- 146), et Mathematzsche Analyse des Raumproblems
Berlin, Sprmger, 1923).
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L’idée fondamentale de Klein peut étre rattachée, comme on
sait, aux notions les plus anciennes de la science. La Géométrie
¢lémentaire est I’étude des propriétés des figures qui sont inde-
pendantes de leur position particuliere dans l'espace. 1l a fallu
un grand nombre de siecles pour traduire cette phrase un peu
vague en un langage précis: les propriétés qu’étudie la Géométrie
élémentaire sont celles qui sont invariantes par un certain
ensemble de transformations formant un groupe, a savoir les
déplacements. L’axiome d’apres lequel deux figures égales a
une troisieme sont égales entre elles exprime précisément, sous
une forme en quelque sorte métaphysique, la propriété des
déplacements de former un groupe. La Géométrie projective,
qui constituait d’abord un simple chapitre de la Géométrie ordi-
naire et qui était arrivée, par son évolution méme, a se constituer
en. doctrine autonome, est aussi pour Klein 1’étude des pro-
priétés des figures invariantes par un certain ensemble de trans-
formations (les transformations homographiques) formant un
groupe.

D’une maniere générale tout groupe de transformations continu
G définit une Géométrie autonome. Sil’on regarde les variables
transformées par le groupe comme constituant un point d’un
espace a un nombre suffisant de dimensions, cette Géométrie
étudie les propriétés des figures invariantes par les transforma-
tions du groupe G, qui jouent ainsi le role des déplacements en
Géomeétrie euclidienne, des homographies en Géométrie projective.
Le groupe G est dit le groupe fondamental de la Géométrie. On est
arrivé ainsi a constituer la Géométrie affine, la Géométrie con-
forme ou anallagmatique, la Géométrie de Laguerre, la Géométrie
hermitienne, ete.

On a été conduit, pour la commodité du langage, & accoler au
mot espace une épithéte rappelant le groupe fondamental de
la Géométrie étudiée; c’est ainsi qu’on parle de espace euclidien,
de Pespace projectif, etc. Tous les espaces de Klein, comme on
les appelle, sent homogénes, en ce sens que leurs propriétés sont
invariantes par les transformations du groupe fondamental
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correspondant: c’est du reste ce groupe qui donne en quelque
sorte la mesure de son homogénéité. L’espace parfaitement
homogeéne est celui dont le groupe fondamental est le groupe
infini de toutes les transformations continues: c’est ’espace
de I’Analysis situs; les propriétés géométriques des figures y
sont du reste relativement peu variées; elles deviennent déja plus
considérables si on prend pour groupe fondamental le groupe
infini de toutes les transformations continues et dérivables. Dans
un espace qui n’aurait aucune espéce d’homogénéité, c’est-a-
dire dont le groupe fondamental se réduirait a la transformation
identique, il n’y aurait en revanche, au sens du programme
d’Erlangen, aucune science du général; toute la Géométrie se
réduirait & des faits particuliers, sans lien les uns avec les autres.

IT

En marge de la riche moisson de travaux géométriques suscitée
par les idées de Klein, s’est développée entre 1867 et 1914 une
théorie géométrique toute différente, issue de la célébre Disser-
tation inaugurale de Riemann: « Sur les hypothéses qui servent
de fondement & la Géométrie » 1. Les points de départ des deux
grands géometres sont bien différents. Pour Klein la notion
- géométrique fondamentale est contenue dans l’axiome de
I’égalité, interprété & la lumiére de la notion de groupe. Pour
Riemann, & une époque du reste ou la théorie des groupes
continus n’était pas fondée, la notion géométrique fondamentale
est celle de longueur; mais, obéissant & la tendance générale
de la Physique moderne et répugnant a 'idée de soumettre cette
notion a des lois a priori faisant intervenir, dans chaque région
de l'espace, 1’espace tout entier, il suppose la longueur définie
de proche en proche au moyen d’une forme différentielle, que,
pour plus de simplicité, on peut supposer quadratique, mais
a priori arbitraire. L’espace ordinaire se retrouve comme un
cas tout & fait particulier des espaces plus généraux introduits
‘par Riemann. |

1 La theése inaugurale de Riemann fut soutenue sous ce titre le 10 juin 1854 devant la
Faculté de Philosophie-de Gottingen; elle est reproduite dans les Gesamm. math. Werke
de Riemann (Leipzig, 1872, p. 254-269).
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Il est clair que la Géométrie riemanienne, développée surtout
en Allemagne et en Italie, ne rentre pas du tout dans le cadre
du programme d’Erlangen, car une variété riemannienne n’admet
en général aucune espece d’homogénéité. On pourrait néanmoins
essayer 1 de subordonner la Géométrie riemannienne a l'idée
directrice de Klein en se servant d’un principe qui joue un role
fondamental dans le programme d’Erlangen, a savoir le principe
d’adjonction. La Géométrie de Riemann est en effet I'étude des
invariants du groupe infini de toutes les transformations ponc-
tuelles & n variables, auquel on a adjoint une forme différentielle
quadratique déterminée. Mais raisonner ainsi serait détourner le
principe d’adjonction de Klein de sa vraie signification. On sait
en quoi il consiste. On peut déduire, par exemple, la Géométrie
affine de la Géomeétrie projective en adjoignant a l'espace pro-
jectif un plan privilégié (le plan de I'infini). Cela veut dire deux
choses: 19 que le groupe fondamental de la Géométrie affine est
un sous-groupe du groupe projectif; 20 que ce sous-groupe est
formé de toutes les transformations projectives qui laissent
mvariant le plan de l'infini. Rien de pareil dans la Géométrie
riemannienne; les propriétés qu’elle étudie ne sont pas celles
quil sont invariantes par les transformations qui conservent la
forme différentielle quadratique adjointe, car en général il n’y a
aucune transformation de cette nature. En poussant jusqu’au
bout I'extension abusive faite du principe d’adjonction, on
pourrait dire que tout probleme mathématique rentre dans le
cadre du programme d’Erlangen; il suffit d’adjoindre au groupe
de toutes les transformations possibles les données du probléme
a résoudre.

A la vérité on pourrait se rapprocher des idées de Klein par

C 1 . . . . .o.on(n 4+ 3
les considérations suivantes. Soit G le groupe infini & J_Tl_

variables x;, g;;, obtenu en adjoignant aux équations d’une
transformation arbitraire portant sur les variables z,, x,, ..., x,,
celles qui indiquent comment cette transformation transforme
les composantes g;; du tenseur fondamental. Le groupe G est le
groupe fondamental d’'une Géométrie de Klein, étudiant les

L Cl. J. A. ScHouTEN, Erlanger Programm und, Uebertragungslehre (Rend. Circ. ma t.
Palermo, t. 50, 1926, p. 1-28).
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propriétés d’un espace E & M?_t—g—)—

riemannienne peut étreé regardée comme une variété X, a n
dimensions plongée dans cet espace et définie par les équations
qui donnent les g;; en fonctions des z. Mais d’abord la Géométrie
rielnannienne correspondante n’est pas en toute rigueur 1’étude
des propriétés de la variété X, dans ses relations avec Iespace
ambiant, et, le serait-elle, elle n’en constituerait pas plus une -
Géométrie au sens de Klem que P’étude d’une surface particu-
liére plongée dans 'espace euclidien, la surface des ondes, par
exemple, n’en constitue une.

dimensions. Toute variété

111

La Relativité généralisée jeta dans la Physique et la Philosophie
Pantagonisme qui existait entre les deux principes directeurs
de la Géomeétrie, celui de Riemann et celui de Klein. Les espaces-
temps de la mécanique classique et de la relativité restreinte sont
du type de Klein, celui de la Relativité généralisée est du type de
Riemann. Ce fait méme que presque tous les phénomenes
étudiés par la science depuis de nombreux siécles pouvaient
s’expliquer aussi bien en se plagant & 'un des points de vue qu’a
Pautre était hautement significatif et suggérait malgré tout la
possibilité d’une synthese englobant les deux principes anta-
gonistes. :

La découverte par Levi-Civita ! en 1917 du transport par
parallélisme dans un espace de Riemann orienta les esprits vers
une nouvelle direction. C’est en généralisant la notion du paral-
lélisme de Levi-Civita d’une part, en poussant d’autre part a
ses derniéres conséquences 'idée directrice de Riemann par
Paffirmation de la relativité de la longueur, que Weyl? arriva
a la conception d’espaces métriques plus généraux que ceux de
Riemann. Les géométres furent surtout frappés par la fécondité
de la notion du transport paralléle et on pensa étre arrivé ainsi
au principe constructeur de la Géométrie différentielle générale.

1T, LEVI- C1viTA, Nozione di parallelismo in una varietd qualunque ( Rend Circ. Madt.
-. Palermo, 42, 1917, p. 173-205).
2 H. WEYL, Raum, Zeit, Materie, 3t¢ Auflage (Berlm, Springer, 1922).
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Qu'une telle vue fiit incompléte, Pimpossibilité de fonder la
Géométrie projective ou la Géométrie conforme classiques sur
un tel principe le prouve avec évidence; en Géométrie projective
la notion de parallélisme n’existe pas; en Géométrie conforme, la
notion de vecteur disparaissant elle-méme, disparait ipso facto
le probléme du transport des vecteurs par parallélisme.

1Y

Mais si le transport parallele ne fournit pas par lui-méme un
principe assez général pour englober les différentes théories
géométriques connues, il fournit du moins, envisagé d’une
maniére convenable, un moyen pour y parvenir.

Reprenons dans un espace de Riemann une petite région
entourant un point donné A; la connaissance du ds? de l'espace
fait jusqu’a un certain point de cette région un petit morceau
d’espace euclidien; on peut imaginer par exemple un repeére
rectangulaire d’origine A, et rapporter a ce repere tous les
points M infiniment voisins de A en leur attribuant ainsi des
coordonnées cartésiennes rectangulaires; les formules qui expri-
ment la distance d’un point M & Porigine, Pangle de deux vecteurs
joignant le point A & deux points M, M’ infiniment voisins de A,
celles qui traduisert un changement de coordonnées rectangu-
laires, sont exactement les mémes que dans I’espace ordinaire.
La difficulté commence quand on considére deux portions voi-
sines de l'espace, I'une entourant un point A, I'autre un point
voisin A’; elles constituent deux morceaux d’espace euclidien
qui sont en quelque sorte isolés 'un de I'autre, tant qu’on n’a
pas réussi a les orienter 'un par rapport a 'autre. D’une maniére
plus précise si nous attachons aux points A et A’ deux repéres
rectangulaires, nous savons localiser, & la maniére euclidienne,
Porigine A" du second repére par rapport au premier, mais nous
ne savons pas orienter les axes du second repére par rapport a
ceux du premier. Le transport par parallélisme de Levi-Civita
nous fournit précisément un moyen de fixer cette orientation,
puisque nous savons, grace a lui, reconnaitre quand deux
vecteurs d’origine A et A’ doivent étre regardés comme paral-
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~1eles. Le parallélisme de Levi-Civita ne nous fournit done pas
seulement une relation entre les vecteurs attachés a deux points
mfiniment voisins de I'espace, mais, et cela a une portée beau-
coup plus grande, il nous permet d’intégrer dans un seul et méme
espace euclidien deux petits morceaux contigus de 'espace de
Riemann. , o

Du point de vue précédent, I’espace de Riemann est donc
regardé comme une collection de petits morceaux d’espaces
euclidiens raccordés de proche en proche les uns avec les autres.
Ce qui est essentiel & remarquer, c’est que le raccord se fait
nécessairement en série linéaire. Etant donnés deux points A et
B de I’espace reliés entre eux par un arc de courbe continu (C),
on peut regarder la ligne (C) et toute la région de I’espace qui
I’avoisine immeédiatement comme faisant partie d’un seul et
méme espace euclidien; ou, si on veut, pour employer une
expression suggestive, on peut développer cette région de 'espace
sur un espace euclidien fictif, 'espace euclidien tangent en A a
Pespace riemannien. Le fait que ’espace donné n’est pas euclidien
se traduit par le fait que le développement d’un autre arc de
courbe (C’) joignant A a B ne donnera pas, pour le point B et la
petite région environnante, la méme position qu’auparavant dans
Pespace euclidien tangent en A.

La possibilité de raccorder dans un méme espace euclidien
deux morceaux contigus de I’espace de Riemann peut s’exprimer
en disant que c’est un espace & connexion euclidienne. Le fait
que le raccord de deux morceaux non contigus entourant deux
points A et B se fait de proche en proche et dépend du chemin
suivi pour aller de A en B peut s’exprimer en disant que I’espace
de Riemann est un espace euclidien non holonome.

Revenons maintenant au point de vue de Klein. L’espace
euclidien ordinaire est un espace de Klein dont le groupe fonda-
mental G est le groupe des déplacements. C’est ce groupe qui
contient ’essence de la géométrie ordinaire. Les équations fonda-
mentales .qui régissent le déplacement & plusieurs parametres
d’un triédre mobile ne sont autres que les équations de struc-
ture du groupe G, au sens que j’ai donné & ce mot dans ma
théorie de la structure des groupes continus, et la théorie des
courbes, des surfaces, des congruences et des complexes de
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droites, ete., n’est au fond qu’une simple conséquence analytique
de ces équations fondamentales. Dans un espace de Riemann
4 chaque point duquel on a attaché un repére rectangulaire, le
passage d’un repére 4 un repére infiniment voisin se fait aussi
par une transformation du groupe G, transformation qu’on peut
décomposer en une translation et une rotation; la translation est
donnée immeédiatement par le ds* de Pespace, la rotation est
donnée par le transport parallele de Levi-Civita. On peut donc
dire que ’espace de Riemann admet le méme groupe fondamental
G que Pespace euclidien, mais la transformation de G qui fait
passer d’un repére & un autre n’est définie que de proche en
proche et n’a de sens que si on se donne le chemin joignant les
origines des deux reperes. L’espace de Riemann est un espace
non holonome a groupe fondamental G.

v

Il n’y a maintenant aucune difficulté & imaginer des espaces
non holonomes a groupe fondamental quelconque . Un espace
projectif non holonome, par exemple, s’obtiendra en attachant
in abstracto & chaque point d’une variété numérique un espace
projectif (espace tangent) et en se donnant une loi permettant
d’intégrer dans un seul et méme espace projectif les deux espaces
projectifs attachés a deux points infiniment voisins. Si par
exemple on attache & chacun d’eux un repere projectif (tétraédre
de référence), la lo1 de raccord se traduira analytiquement par
une transformation (infiniment petite) du groupe projectif, qui
joue ainsi le role du groupe fondamental. Il est clair que la
notion ainsi obtenue d’espace & connexion projective dépasse
la notion de transport paralléle, bien qu’on puisse utiliser, comme
I'a fait M. Schouten, la propriété du groupe projectif d’étre mis
sous forme linéaire pour appliquer la théorie analytique générale
des transports paralléles & exposition de la théorie des espaces
a connexion projective.

Les espaces de Weyl rentrent dans la théorie générale précé-

1 Cf. E. CArTAN, Les espaces a connexion conforme (Ann. Soc. polon. de math., 1923,
D. 171-221) 1 Sur les variélés a connexion projective (Bull. Soc. Math., 52,1924, p. 205-241).
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dente; il suffit de prendre comme groupe fondamental, non' pas
le groupe des déplacements, mais le groupe des deplacements et
des similitudes de I’espace ordinaire. ‘

Une propriété commune a tous les_espaees non holonomes &
groupe fondamental est la suivante. Si.I’on considére un arc de
courbe AB, la région de lespace environnant immédiatement
cet arc de courbe peut étre regardée comme faisant partie d’un,
seul et méme espace de Klein. Par suite, la théorie des courbes
est identiquement la méme dans -un espace non holonome que
dans un espace holonome au méme groupe fondamental. Les
classes remarquables de courbes dans l’espace holonome ont
leurs analogues dans I’espace non holonome. C’est ainsi que les
droites, qui existent en Géométrie euclidienne, en Géométrie
affine, en Géométrie projective, ont leurs analogues dans les
espaces a connexion euclidienne, affine, projective: ce sont les
géodésiques de ces espaces, qu'on peut définir comme les lignes
se développant suivant des droites. Dans un espace de Riemann &
trols dimensions, les notions de courbure et de torsion d’une ligne
s’étendent elles-mémes; dans un espace de Weyl celles qui les
remplacent sont les deux invariants fondamentaux d’une courbe
euclidienne par rapport au groupe des similitudes. A un autre
point de vue, on pourrait imaginer des espaces a groupe fonda-
mental & une dimension; ces espaces sont nécessairement holo-
nomes. ' |

La non holonomie d’un espace ne se révele que si on le déve-
loppe suivant deux arcs de courbe distincts joignant les deux
" mémes points, ou encore, ce qui revient au méme, si on le déve-
loppe suivant un contour fetmé ou cycle. A un tel cycle, issu d’un
point A par exemple et y revenant, est associée, dans l'espace
holonome tangent en A, une transformation du groupe fonda-
mental qui révele la non holonomie de T'espace le long du cycle.
Si ce cycle est infinitésimal, la transformation associée est aussi
infinitésimale et définit la courbure riemannienne de 'espace le
long du cycle. Un cas particulier important est celui ou cette
transformation infinitésimale laisse fixe le point A; j’al proposé
de dire que ’espace non holonome est alors sans torsion. C’est ce
qui se passe pour les espaces de Riemann, dont la connexion
euchdlenne est définie au moyen du.parallélisme de Levi-Civita;
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¢’est également ce qui se passe pour les espaces de Weyl. Dans le
cas des espaces a connexion affine, qui comprennent en particulier
les espaces précédents, la transformation associée & un cycle
infinitésimal peut se décomposer en une translation (appliquée
au point A) et une rotation affine. La translation définit la
torsion de lespace, la rotation sa courbure. Un espace a conne-
xion affine sans courbure est un espace dans lequel le parallélisme
de deux vecteurs a une signification absolue, indépendante du
chemin par lequel on relie leurs deux origines. Nous verrons tout
a Pheure que ces espaces sans courbure ont des applications
importantes.

V1

Nous avons implicitement parlé jusqu’a présent des espaces
non holonomes ponctuels. On s’est habitué depuis longtemps,
en Géométrie projective, par exemple, & attribuer a l'espace
d’autres éléments générateurs que le point, par exemple le plan,
ou la droite. La nature de 1’élément générateur ne joue du reste
quun role accessoire et n’atteint pas 'essence de la Géométrie;
le groupe fondamental change de forme analytique avec le
changement de I’élément générateur de I’espace, mais sa structure
reste la méme et c’est en elle que résident les propriétés intimes
de la Géométrie correspondante.

Dans le cas des espaces non holonomes, le choix de I’élément
générateur joue au contraire un role essentiel. Un espace de
Riemann est un espace euclidien ponctuel non holonome. On peut
imaginer un espace euclidien tangentiel (c’est-a-dire engendré
par des plans) non holonome; sa géométrie differe profondément
de la géomeétrie riemannienne. Un espace & courbure constante de
Cayley-Klein, dans lequel le point est pris comme élément
générateur, est un espace euclidien non holonome; mais si on
prend au contraire le plan comme élément générateur, il n’en
est plus de méme, car la figure formée des plans infiniment
voising d’un plan donné ne jouit pas dutout des mémes propriétés
infinitésimales que la figure analogue dans I’espace -euclidien.
Dans un espace de Cayley a courbure positive, deux plans
infiniment voising ont un invariant qui est une forme différen-

L’Enseignement mathém., 26¢ année; 1927. 1%
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tielle quadratique ternaire définie positive (c’est par exemple le
-carré de la distance de leurs poles par rapport a I’absolu); dans
Pespace euclidien, I'invariant de deux plans est I’angle infiniment
petit de leurs normales, qui ne fait intervenir que deux différen-
tielles. indépendantes au lieu de trois; en un certain sens ’espace
euclldlen, en tant qu’engendré par les plans, est moms rigide
que ’espace a courbure constante.

On congcoit d’apres cela la tres grande variété des geometrles
non holonomes possibles; un tres petit nombre d’entre elles ont
été envisagées jusqu’a présent.

Ce qui précede s’éclaircira peut-étre par un exemple particulier.
Partons du groupe projectif du plan. Nous aurons une premiére
classes d’espaces non holonomes & deux dimensions en prenant
‘le point pour élément générateur; les espaces obtenus admettent
des géodésiques, qui, lorsqu’on rapporte I'espace & un systéme
queleonque de coordonnées ponctuelles = et y, sont les courbes
intégrales d’une équation différentielle de la forme

d2 duy\3 | dy \2 d
YAy (;,—f;) + B(x, y) (g%) +C gy + Dy =0

- Inversement, étant donnée une équation différentielle de cette
forme, on peut trouver une infinité de connexions projectives
faisant des courbes intégrales de cette équation les géodésiques
de I'espace correspondant; parmi toutes ces connexions il en est
du reste une privilégiée, pour laquelle le déplacement projectif
associé & un cycle infinitésimal d’origine A laisse invariant le
point A, ainsi que toutes les droites issues de A. -

Prenons maintenant, avec le méme groupe fondamental, non
pas le point, mais 1’élément de contact de Lie (ensemble d’un
point et d’une droite passant par ce point) comme élément géné-
rateur. Nous arriverons alors & des espaces d’éléments (& trois
dimensions) & connexion projective. Cette fois nous pourrons nous
arranger pour que les géodésiques (correspondant aux droites du
plan projectif envisagées comme lieux d’éléments de contact)
soient les courbes intégrales d’une équation différentielle du
second ordre absolument quelconque, de sorte que nous pourrons
géométriser la théorie des invariants d’une équation différen-
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tielle du second ordre vis-a-vis du groupe des transformations
ponctuelles les plus générales. |

Dans P’exemple précédent 'espace était un lieu d’éléments
de contact; le groupe fondamental était le groupe de transfor-
mations de contact résultant du prolongement, au sens de Lie,
du groupe projectif ponctuel. Il n’y a naturellement aucune
difficulté a partir d’un groupe de transformations de contact
irréductible quelconque, par exemple le groupe des transfor-
mations de contact qui changent les sphéres orientées en spheres
orientées: on batirait avec lui des espaces non holonomes, en
prenant comme élément générateur I'élément de contact par
exemple, ou encore la spheére orientée, etc.

Vil

Les espaces non holonomes ont été envisagées jusqu’ici in
abstracto; la connexion qui sert a les définir est une lol interne.
Vest H. Weyl qui le premier a défini le transport par parallélisme
par une propriété interne de I'espace. Levi-Civita se placait au
contraire & un point de vue tout différent qui, bien qu’inférieur
philosophiquement a celui de Weyl, a une trés grande importance
en Géométrie; il se rattache a la théorie générale des connexions
induites dont je dirai seulement quelques mots.

Avant d’indiquer la maniére de procéder de Levi-Civita, nous
pouvons la faire pressentir sur un exemple extrémement élémen-
taire. Considérons une courbe tracée dans un plan ordinaire
(euclidien); la présence de la courbe dans le plan permet de définir
sur cette courbe une abscisse curviligne. Oublions maintenant
que la courbe est dans le plan et considérons-la en elle-méme;
rien ne la distingue d’une droite euclidienne; la formule de
Chasles qui lie les abscisses de trois points d’une droite lie égale-
ment les abscisses curvilignes de trois points de la courbe. La
présence de la courbe dans le plan euclidien nous a done donné le
moyen de faire de cette courbe un espace euclidien & 1 dimension.
Nous pouvons du reste nous représenter physiquement le méca-
nisme de 'opération en déroulant ou développant la courbe sur
une de ses tangentes; nous pouvons aussi définir chaque stade
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infinitésimal de ce développement en faisant correspondre & tout
point M infiniment voisin d’un point A le point M’ de la tan-
gente en A qui est la projection orthogonale de M. .

Si nous prenons maintenant une surface plongée dans 'espace
ordinaire, nous pourrons de méme essayer de développer la surface
sur le plan tangent en un de ses points A. Sila surface est dévelop-
pable, le développement sera possible; sinon on pourra toujours
Peffectuer le long d’un arc de courbe AB, ce qui revient & déve-
lopper la surface développable circonscrite a la surface le long
de AB, mais le développement le long d’un autre arc de courbe
joignant A & B ne conduirait pas au méme résultat final: le déve-

loppement n’est pas holonome. Nous pouvons donc regarder la.

surface plongée dans ’espace euclidien comme un, plan euclidien
non holonome; I'intégration en un seul méme plan euclidien des
points infiniment voisins de A et des vecteurs issus de ces points
peut s’obtenir trés simplement par projection orthogonale de la
surface sur le plan tangent en A. La encore la présence de la
surface dans ’espace euclidien permet de doter la surface d’une
connexion euclidienne induite; si nous oublions ensuite espace

ambiant pour ne considérer que la surface en elle-méme avec la
connexion euclidienne que nous lui avons attribuée, nous obte-

nons tout simplement un espace de Riemann a deux dimensions,
dont le ds? est celui de la surface, avec le transport par parallé-
lisme de Levi-Civita: deux vecteurs tangents issus de A et de M
sont paralleles si la projection du second sur le plan tangent en A
est paralléle au premier vecteur. Nous remarquerons que l’espace
euclidien (ici plan euclidien) tangent en un point, a maintenant
une signification concréte, tandis que du premier point de vue,
il est purement fictif.

La notion de connexion induite peut étre appliquée de beau-
coup de manieres différentes et elle semble devoir jouer un role

trés important dans les théories géométriques cla331ques J’en

citerai quelques exemples simples.

Prenons, en Géométrie conforme plane, une courbe quelconque
(C); on peut développer cette courbe sur le cercle osculateur en
un de ses points, autrement dit on peut regarder la courbe comme
un, espace conforme a une dimension (cercle). Le développement
ne se fait naturellement pas au sens ordinaire, métrique du mot,
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avec conservation des longueurs d’arcs, puisque la longueur d’un
arc n’a pas de sens en Géométrie conforme. Les choses peuvent
étre présentées d’une maniére peu rigoureuse, mais assez élémen-
taire. Prenons sur la courbe trois points tres voisins A, A, A,;
ils peuvent étre regardés comme appartenant au cercle osculateur
a la courbe en Aj; soit maintenant A; un quatrieme point tres
voisin des trois premiers; la droite qui joint le centre du cercle
osculateur au point A, coupe ce cercle en un point A’; qu’on fera
correspondre & A, dans le développement de la courbe; on
pourra, du reste, remplacer la droite par un cercle passant par
deux points fixes donnés inverses 'un de ’autre par rapport
au cercle osculateur. Amenons par une transformation conforme
les trois points Ay, A,, A; a coincider avec A;, Ay, A';; la courbe
prendra une nouvelle position et on pourra recommencer pour
un cinquieme point de la courbe la construction de tout & 'heure
qui le fera correspondre & un cinquiéme point A; du cercle et
ainsi de suite. Analytiquement, il existe sur un cercle un para-
metre projectif défini & une transformation homographique prés:
c¢’est le parametre en fonctions duquel les coordonnées d’un point
de la courbe s’expriment rationnellement. On pourra donc définir
sur une courbe plane quelconque un parametre projectif, grace
auquel on connaitra le rapport anharmonique de quatre points
de la courbe. Analytiquement, ce paramétre s’obtient trés simple-
ment comme le quotient de deux solutions particulieres de
I'équation différentielle

ou s désigne I'arc de la courbe et p le rayon de courbure.

En Géométrie projective plane, on peut de méme développer
projectivement une courbe quelconque sur la conique osculatrice
et définir eégalement ainsi le rapport anharmonique de quatre
points de la courbe. Mais ici ce développement n’intéresse pas
seulement la courbe donnée, mais tout le plan qui en est un certain
sens solidaire et qui se trouve ainsi muni d’une métrique cay-
leyenne & courbure constante. En effet, par un point quelconque P
du plan menons une tangente PA a la courbe et tracons la
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conique osculatrice & la courbe en A; elle peut étre regardée
comme l’absolu d’une géométrie cayleyenne; la distance cay-
leyenne du point P & un point infiniment voisin P’ serale logarithme
du rapport anharmonique des deux points P, P’ et des deux
points ol la droite PP’ coupe la conique. Naturellement le ds?
du plan est indéfini et n’existe que dans les régions du plan d’ou
on peut mener une tangente a la courbe; la direttion PA est
isotrope, la seconde direction isotrope en P est celle de la seconde
tangente menée de P & la conique osculatrice en A. Les géodési-
ques de la métrique ne sont plus en général des droites. L’adjonc-
tion d’une courbe quelconque nous a permis ici de faire du plan
un espace cayleyen & deux dimensions; cet espace est holonome,
parce que la connexion cayleyenne du plan est commandée par le
développement de la courbe donnée sur sa conique osculatrice, et
ce développement est nécessairement holonome, puisque la
courbe n’a qu’une dimension.

On peut de méme, dans I’espace projectif a trois dimensions,
développer une surface sur la quadrique de Lie; le développement
n’est plus holonome, & moins que la surface ne soit réglée: dans
ce dernier cas, en effet, la quadrique de Lie est la méme tout le
long d’une méme génératrice; on n’a en réalité & faire qu’a une
variété (de droites) & une dimension, ce qui entraine nécessaire-
ment I’holonomie.

VIII

Revenons maintenant aux espaces non holonomes & groupe
fondamental G. Comme nous P’avons vu, & tout cycle partant
d’un point A de ’espace et y revenant est associée une transfor-
mation du groupe G, transformation qui opére dans I’espace
holonome tangent en A. A I'ensemble des cycles issus de A est
donc associé un ensemble de transformation de G, qu’on démontre
facilement former un groupe g: c’est le groupe d’holonomie de
Pespace, qui est-essentiellement le méme en tous les points A.
Le groupe g donne en quelque sorte une mesure de la non holo-

nomie de Pespace; §’il se réduit a la transformation identique,

¢’est qu’on a un espace de Klein. On a donc 14 un principe de
classification des espaces & groupe fondamental donné, de méme
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que le groupe de Galois d’'une équation algébrique permet en
gros une classification suivant le degré d’irrationalité des racines.

Les transformations infinitésimales de G associées aux cycles
infinitésimaux appartiennent au groupe d’holonomie, mais elles
ne fournissent pas toujours toutes les transformations infinitési-
males génératrices de ce groupe. Néanmoins, si elles sont toutes
nulles, c¢’est-a-dire si la courbure riemannienne de ’espace est
partout nulle, le groupe d’holonomie se réduit & la transformation
identique et l'espace est holonome. Cette conclusion peut se
démontrer facilement par le calcul ou par un raisonnement
géométrique approché. Mais ici interviennent des considérations
d’Analysis situs; la conclusion n’est rigoureuse que s1 I'espace
est simplement connexe, c’est-a-dire sitous les cycles peuvent,
par déformation continue, étre réduits & zéro. Dans le cas
contraire, 'espace peut avoir partout sa courbure riemannienne
nulle sans étre vraiment holonome. Un exemple classique est
fourni par un cylindre de révolution plongé dans ’espace ordi-
naire; son développement le long d’un cycle sur un de ses plans
tangents est holonome si le cycle est réductible & zéro, mais le
développement le long d’une section droite a pour effet de faire
subir au point de départ A une translation finie; le groupe d’holo-
nomie est formé des puissances de cette translation. Les mémes
considérations s’appliqueraient a ce qu'on est convenu d’appeler
les formes de Clifford de Pespace euclidien. On pourrait aussi
1maginer, in abstracto, sur un cylindre une connexion (non induite)
de Weyl, dont la courbure riemannienne soit partout nulle sans
que cependant I'espace a deux dimensions constitué par le cylin-
dre doué de cette connexion soit intégralement euclidien, ni
méme riemannien; seulement, ce n’est qu’en faisant le tour du
monde qu'un habitant de cet espace pourrait s’apercevoir que
son univers n’est ni euclidien, ni riemannien.

Le principe de classification des espaces d’apreés leur groupe
d’holonomie peut étre rattaché au principe d’adjonction ou de
subordination de Klein. Une Géométrie de Klein est subordonnée
a une autre si le groupe fondamental de la premiére est un sous-
groupe de celui de la seconde. Par exemple, la Géométrie affine est
subordonnée & la Géomeétrie projective, c’est si 'on veut, un cha-
pitre particulier de la Géométrie projective dans lequel on étudie
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les propriétés des figures contenant le plan de I'infini; on pourrait,
du reste, imaginer une infinité de Géomsétries affines dans un
méme espace projectif, suivant le plan auquel on voudrait faire
jouer le role du plan de 'infini. Si ’on est maintenant dans un
espace projectif non holonome, les choses ne se passent plus de la
méme maniére; pour qu’on puisse dans cet espace imaginer une
Géométrie affine, il faut qu’on puisse y choisir des repéres pro-
jectifs liés entre eux suivant une loi affine; pour cela, il est néces-
saire et suffisant que le groupe d’holonomie de I’espace soit un
groupe affine, ce qui n’arrive pas toujours. D’une maniére géné-
rale, tout espace non holonome a groupe fondamental G, admet-
tant pour groupe d’holonomie un sous groupe g de G, pourra étre
regardé comme un espace no_n holonome admettant pour groupe
fondamental tout sous groupe de G contenant lui-méme g comme
sous-groupe. C’est ainsi qu'un espace de Weyl peut étre regardé
comme riemannien, si son groupe d’holonomie ne contient que
des déplacements, sans homothétie.

IX

Comme on le voit, 'importance de la notion de groupe n’a pas
été réduite par les développements récents de la Géométrie
différentielle; il semble bien qu’elle seule au contraire soit capable
de les embrasser dans une méme synthése. Je voudrais mainte-
nant aussi briévement que possible, donner un apergu des services
que peuvent rendre a la théorie des groupes elle-méme les notions
nouvelles de la Géométrie différentielle.

Considérons un groupe de transformations continu G a r
parametres a,, a,, ..., a, et représentons chaque transformation
du groupe par un point (a, ..., a,) d’un espace a r dimensions,
gue nous appellerons I’espace du groupe. Dans un article récent ?,
nous avons, M. Schouten et moi, indiqué comment on pouvait
doter cet espace de trois connexions affines remarquables intrin-
séquement liées aux propriétés du groupe; j’ai développé plus
longuement cette étude dans un mémoire qui Vient de paraitre 2.

1 E. CARTAN and J. A. SCHOUTEN On the Geomelry of the Group-manifold of ezmple
and semi-simple groups (Proc. Akad. Amsterdam, 29, 1926, p. 803-815).
2 E. CARTAN, La Géométrie des groupes de transformations (Journal Math., 6, 1927,

P. 1-119).
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Chacune de ces connexions fait de ’espace du groupe un espace
affine non holonome. Deux de ces connexions sont sans courbure,
ce qui, comme je I’ai déja dit, signifie que le parallélisme des
vecteurs y a une signification absolue. Leur définition est tres
simple. Rappelons que le produit de deux transformations dépend
en général de l'ordre dans lequel elles sont effectuées, de sorte
que Popération inverse de la multiplication est possible de deux
manieres; on peut prendre comme quotient de deux transfor-
mations S’ et Ssoit la transformation S’S™!, soit la transformation
S71S’. Cela posé un vecteur de lespace du groupe est défini par
les deux transformations S et S’ que représentent son origine et
son extrémité; deux vecteurs (S,S) et (T, T’) seront dits équipol-
lents de premiere ou de seconde espéce suivant qu’on aura

§’s™l — ! on Sls — 17y .

chacune de ces espéces d’équipollence définit une des deux
connexions sans courbure de ’espace du groupe; elles comportent
au contraire chacune une torsion et ces deux torsions sont
égales et opposées. Quant a la troisiéme connexion, elle est sans
torsion, mais elle comporte une courbure, et 1’équipollence de
deux vecteurs ne peut s’y définir que de proche en proche.

Les géodésiques de I'espace du groupe sont les mémes dans les
trois connexions; elles sont liées aux sous-groupes a un para-
metre du groupe donné; aux sous-groupes a plusieurs para-
metres sont également liées des variétés totalement géodésiques,
c’est-a-dire telles que toute géodésique qui v a deux de ses
points y est contenue tout entiere; mais il existe d’autres variétés
totalement géodésiques que celles qui proviennent des sous-
groupes de G, et elles jouent dans la théorie des groupes un role
qu’on n’avait pas encore soupconné.

Beaucoup de notions et de théorémes fondamentaux de la
théorie des groupes prennent de cette maniére un caractére
geométrique inattendu. C’est ainsi que les constantes de strue-
ture du groupe sont celles qui définissent la torsion de l'un
quelconque des espaces sans courbure du groupe; deux groupes
qui admettent le méme espace sans courbure sont 1somorphes.
Au contraire, il peut arriver que deux groupes admettent le
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meéme espace sans torsion sans étre isomorphes; l'identité des
espaces sans torsion de deux groupes définit par suite une sorte .
d’isomorphisme plus général que.l’isomorphisme classique et
qu’'on pourrait appeler l'isomorphisme affine. On peut aussi
définir un isomorphisme projectif en dotant I’espace du groupe
d’une connexion pro;ectlve liée au groupe d’une maniére inva-
riante. ,

Parmi les groupes continus, une classe est partwuherement
importante, c’est celle des groupes simples ou semi-simples.
Les espaces sans torsion de ces groupes sont riemanniens, avec
un, ds® qui n’est pas nécessairement défini. Ils font partie d’une
“catégorie plus générale d’espaces riemanniens, caractérisés par
la propriété que le transport par parallélisme y conserve la
courbure riemannienne. Chose curieuse, cette propriété est équi-
valente a la suivante, qui parait de nature beaucoup moins
restrictive: la symétrie par rapport & un point quelconque de
Iespace est une transformation isométrique, c’est-a-dire laisse
invariant le ds? de Pespace.

La détermination de tous les espaces de Riemann a ds? défini
positif dont la courbure riemannienne est conservée par le
transport paralléle peut étre faite complétement ; les plus
généraux peuvent se déduire trés simplement de certains d’entre
eux, de dimensions moindres, et qui sont, en ce sens, irréductibles.
Ce sont ces espaces de Riemann irréductibles qui nous ouvrent
les vues les plus inattendues sur certains problémes importants
de la théorie des groupes simples, d’une part, sur des théories
classiques de la Géométrie d’autre part. Je les des1gnera1 pour
abréger sous le nom d’espaces &.

X

Pour bien comprendre le role joué par les espaces &, quelques
remarques préliminaires sur les groupes simples ne seront pas
inutiles. A chaque structure simple d’ordre r correspond d’abord

1 Elle fait I'objet d’un mémoire récent (Bull.Soc. Math., 54,1926, p 214-264, et
55, 1927, p. 114-134). V. aussi E. CARTAN, Sur les espaces de Riemann dans lesquels
le transport par parallélisme conserve la courbure (Rend. Acc. Lincei, 6 ™¢ série, 31, 1926,
pP. 544-547). .
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un groupe a r parametres complezes ay, ..., a, (en réalité une infi-
nité, mais tous isomorphes entre eux). Mais il peut aussi lui
correspondre des groupes obtenus en prenant pour a4, ..., @,
des fonctions analytiques convenablement choisies de r para-
metres réels a4, ..., a,; nous dirons pour abréger que le groupe
est complexe dans le premier cas, réel dans le second cas. Par
exemple les groupes de toutes les transformations homogra-
phiques complexes ou réelles de n variables sont respectivement
complexe et réel, mais correspondent & la méme structure.

A une structure simple donnée correspondent plusieurs formes
réelles distinctes, irréductibles 'une & [l'autre; en particulier
au groupe homographique complexe de n variables correspondent
le groupe homographique réel de n variables, et aussi les groupes
linéaires unimodulaires d’une forme d’Hermite a n 4+ 1 va-
riables, définie ou indéfinie. Bien que les variables soient com-
plexes, ces derniers groupes sont dits réels parce qu'on porte
son attention surles (n -+ 1)2— 1 quantités réelles dont dépendent
les parameétres de leurs substitutions.

J’al déterminé en 1914 ! toutes les formes réelles distinctes cor-
respondant a une méme structure simple. Parmi toutes ces
formes il y en a une dont H. Weyl a montré I'extréme impor-
tance 2, c’est la forme dite unitaire; le domaine d’un groupe réel
unitaire est fermé tandis que ceux des autres groupes réels sont
ouverts. Il y a donc lieu en résumé de distinguer pour une struc-
ture simple donnée, une forme complexe, une forme réelle unitaire
et plusieurs formes réelles non unitaires.

Revenons maintenant aux espaces &. Un premier résultat
remarquable, c’est que leur détermination revient a celle des
différentes formes réelles correspondant aux différentes struc-
tures simples possibles. D’une maniére plus précise a la forme
complexe et a chacune des formes réelles non unitaires d’une
structure simple donnée correspondent deux classes d’espaces &;
ceux de la premiére classe ont leur courbure riemannienne
partout positive ou nulle; ceux de la seconde classe ont leur

L I. CARTAN, Les groupes réels simples, finis et continus (Ann. Ec. Norm., 3me gérie, 31,
1914, p. 263-355).
_ 2 H. WEvYL, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch
tineare Transformalionen ( Math. Zeitschr., 23, 1925, p. 271-309; 24, 1925, p. 328-395).
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courbure riemannienne partout négative ou nulle; dans chaque
classe on n’a du reste essentiellement qu’un seul espace, car
on passe de I'un & 'autre en changeant simplement I’unité de lon-
gueur. S |

(’est surtout des espaces & a courbure négative que je vous
parlerai. Tous ces espaces ont une métrique partout réguliére;
ils sont simplement connexes et jouissent de la propriété que
par deux points quelconques il passe une géodésique et une
seule. Chacun d’eux admet un groupe des déplacements qui. est
tout simplement le groupe complexe ou réel non unitaire auquel
il correspond: dans le premier cas son groupe des déplacements
est & 2r parametres réels, dans le second cas il n’est qu’a r para-
metres réels. Le groupe des déplacements des espaces & a cour-
bure positive est au contraire toujours le groupe réel unitaire
correspondant. Pour les uns et les autres le groupe des rotations
isométriques autour d’un -point (groupe d’isotropie) est simple
unitaire ou se décompose en groupes simples unitaires.

XTI

Je signalerai seulement deux problémes de la théorie des
groupes que la considération des espaces & permet d’aborder
avec succes. A

On sait que, pour S. Lie, tout groupe continu est engendré par
des transformations infinitésimales; en fait toute transformation
finie suffisamment voisine de la transformation identique peut
étre obtenue en répétant une infinité de fois une méme trans-
formation infiniment petite, de méme qu’une rotation d’un angle
fini o autour d’un axe peut étre obtenu en répétant une infinité
de fois une rotation d’un angl'e infiniment petit autour de cet
axe. Mais il y a des cas ol toute une partie des transformations
finies du groupe échappe & cette génération. Par exemple la
substitution unimodulaire réelle a trois variables = |

al = ax , y = by , - c3 (abc = 1)
ou a est positif, b et ¢ sont négatifs, ne peut pas étre engendrée
par une substitution linéaire réelle infinitésimale. .
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Pour les structures simples en particulier, le groupe complexe
et le groupe réel unitaire s’engendrent compléetement au moyen
de leurs transformations infinitésimales, tandis qu’il n’en est plus
de méme en général pour les groupes réels non unitaires. Il est
vrai que toute transformation finie peut étre regardée comme le
produit d’un certain nombre de transformations admettant
chacune une transformation infinitésimale génératrice, mais on
ne sait pas a priort si ce nombre est borné. Or I'existence des
espaces & a courbure négative nous donne a cet égard un ren-
seignement précis et tres simple.

Soit en effet G un groupe réel non unitaire et & 'espace a
courbure négative dont G est le groupe des déplacements.
Iixons un point O de I’espace. Parmi les déplacements de 'espace
nous distinguerons les rotations autour de O et les transvections :
je désigne sous ce nom un déplacement dans lequel une géodésique
glisse sur elle-méme, les vecteurs issus de ses points se transportant
parallelement & eux-mémes au sens de Levi-Civita; la géodésique
considérée sera dite la base de la transvection. Cela posé tout
déplacement peut étre décomposé d’une maniere et d’une seule
en une rotation autour de O et une transvection ayant pour base
une geéodésique passant par O. Or chacun de ces déplacements
composants admet un déplacement infinitésimal générateur
(rotation ou transvection infinitésimale). Par suite toute trans-
formation finie de G peut étre décomposée d’une maniére et
d’une seule en deux transformations admettant chacune une
transformation infinitésimale génératrice. Par exemple toute
substitution linéaire unimodulaire réelle peut étre décomposée
d'une maniére et d’'une seule en une substitution orthogonale et
une supstitution symétrique positive (¢’est-a-dire dont 1’équation
séculaire ait toutes ses racines réelles et positives).

XII

Le second probléme que je voulais signaler est le suivant. J’ai
dit qu& une structure (infinitésimale) donnée correspondent
une mfinité de groupes G, mais qui sont tous isomorphes entre
eux. Cela n’est pas absolument exact si on considére le domaine
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entier d’existence de ces groupes; il se peut qu’a une transfor-
mation de I'un correspondent plusieurs transformations et méme
une infinité de transformations de 1'autre. C’est ainsi qu’a une
transformation homographique réelle & une variable corres-
pondent deux substitutions linéaires unimodulaires & deux
variables. On peut toujours en tout cas imaginer un groupe
abstrait G’ tel qu’a toute transformation de G’ corresponde une
transformation et une seule de 'un quelconque des groupes G,
4 une transformation de ce groupe G pouvant correspondre
~plusieurs transformations de G’. Ce groupe G’ a un domaine
simplement connexe, c’est-a-dire que tout contour fermé y est
réductible & zéro par déformation continue. Tout groupe G qui
a un isemorphisme non absolument holoédrique avec G’ n’est pas
simplement connexe, et le nombre des contours fermés irré-
ductibles entre eux par déformation continue dans le domaine
de G est égal au nombre des transformations de G’ qui corres-
pondent a la transformation identique de G; ce nombre peut
étre fini ou infini; les transformations en question de G’ engen-
drent un groupe discontinu qu’on peut appeler le groupe de
connexion de G.

H. Weyl a démontré ! que tout groupe simple réel unitaire a
un groupe de connexion fini, et on peut ajouter qu’il existe
toujours un groupe linéaire simplement connexe de la structure
réelle unitaire considérée. En fait on connait les groupes de
connexion des groupes simples réels unitaires. Mais la méthode
par laquelle Weyl a obtenu ce résultat fondamental ne s’applique
pas- aux formes réelles non unitaires des groupes simples, par
exemple au groupe homographique réel, au groupe linéaire réel
d’une forme quadratique indéfinie, etc. Les espaces & & courbure
négative attachés aux groupes réels non unitaires nous four-
nissent au contraire une méthode immédiate pour résoudre le
probléme. En effet soit G le groupe des déplacements de &.
Chaque transformation de G se décompose d’une maniére et
d’une seule en une rotation autour d’un point fixe O et une
transvection amenant O en un certain point A, transvection
complétement déterminée par le point A. Il en résulte que tout

1 'Math. Zeitschr., 24, 1925, p. 380.
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contour fermé dans le domaine du groupe G se ramene a deux
contours fermés: I'un dans le domaine du groupe des rotations,
ou groupe d’isotropie, ’autre dans le domaine des transvections,
¢’est-a-dire en définitive dans I'espace &. L’espace & étant sim-
plement connexe, le second contour fermé est réductible a zéro.
Il en résulte que deux contours fermés du domaine du groupe
total G seront réductibles ou non I'un a I'autre si les contours
fermés correspondants du domaine du groupe d’isotropie le
sont. Autrement dit le groupe de connexion de G est identique a
celui du groupe d’isotropie. Et comme ce dernier est un groupe
linéaire unitaire, ou se décompose en groupes unitaires, et, dans
certains cas, un groupe a un parametre isomorphe au groupe des
rotations du plan, on connait facilement son groupe de connexion,
de sorte que le probleme proposé est résolu. La conclusion géné-
rale est la suivante. Le groupe de connexion de tout groupe
simple réel non unitaire, ou bien est formé d’un nombre fini
d’opérations, ou bien se décompose en un groupe fini et un
groupe cyclique d’ordre infini.

Je signalerai seulement un résultat curieux. Le groupe de
connexion du groupe homographique réel d’une variable est
infini, tandis qu’il est fini pour le groupe homographique de
plusieurs variables.

Dans tous les cas du reste on peut effectivement construire,
pour une forme réelle non unitaire donnée d’une structure
simple, un groupe simplement connexe G'; seulement ce groupe
n’est pas nécessairement linéaire, comme dans le cas des formes
unitaires. Dans le cas du groupe homographique réel d’une
variable, le groupe simplement connexe G’ est par exemple
donné par la formule

o o — & tox + b
o Tl Lgxi}—/)'
A la transformation homographique identique (¢ = b’ = 1,
a’ = b = 0) correspondent les transformations en nombre infini
= x 4+ n=x (n entier)

La méthode précédente s’applique aussi au groupe simple
compleze, qui a du reste le méme groupe de connexion que le
groupe réel unitaire.
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X111

Les espaces & dont je viens de parler sont des espaces de
Klein, admettant pour groupe fondamental le groupe de leurs
déplacements. L’existence de ces espaces montre que toute
Géométrie de Klein a groupe fondamental simple devient
riemannienne par un choix convenable de I’élément générateur
de ’espace; le choix est essentiellement unique ! si le groupe
fondamental est complexe, ou réel non unitaire; il est multiple
si le groupe fondamental est réel unitaire? Ce résultat s’étend
évidemment & un groupe semi-simple. Si on veut bien remarquer
que les Géométries de Klein les plus importantes sont celles dont
les groupes fondamentaux sont simples ou semi-simples (Géomé-
‘tries projective, affine, conforme, de Laguerre, d’Hermite, etc.),
~on arrive a cette conclusion inattendue que la Géométrie rieman-
nienne (& ds? défini) occupe une place tout a fait privilégiée.

Partis, au début de cette conférence, de 'antagonisme entre les.

Géométries de Klein et la Géométrie riemannienne générale,
nous arrivons, apres un long détour, & cette constatation que
c’est sous la forme riemannienne que ces Géométries de Klein,
ou du moins les plus importantes d’entre elles, montrent le
mieux leurs propriétés fondamentales. Il y aurait beaucoup a
dire sur ce coté géométrique de la question 3. Je me contenterai
d’en signaler un aspect intéressant.

On sait 'importance du principe de dualité en Geometrle
projective; or ce principe n’apparait pas du tout si I’on se borne

1 Cela signifie que si’on a deux systémes d’éléments générateurs rendant la Géométrie
riemannienne, on peut établir entre les éléments des deux systémes une correspondance
biunivoque telle que deux éléments correspondants soient invariants par le méme sous-
groupe du groupe fondamental; au fond, c’est ce sous- groupe qui, suivant les idées
de Klein et de Poincaré, définit le « point » de I’espace.

2 Dans ce dernier cas, il peut en outre se présenter des -formes riemanniennes avec
torsion, la courbure et la torsion étant encore conservées par le transport paralléle.

3 En Arithmétique et dans la Théorie des fonctions, ’existence de ces formes rieman-
niennes joue un role important. C’est ainsi que H. Poincaré fait reposer la possibilité
d’une théorie générale des groupes hyperfuchsiens discontinus sur la forme riemannienne
qu’on peut donner a la Géométrie d’une forme d’Hermite indéfinie (C. R., 98, 1884,
p. 503-503), de méme que la théorie des groupes fuchsiens et celle des groupes kleinéens
reposent sur les Géométries non-euclidiennes & 2 et & 3 dimensions, formes rieman-
niennes des Géométries projectives de la droite réelle et de la droite complexe. .
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a la partie continue du groupe fondamental de cette Géométrie, a
savoir le groupe des homographies: le groupe fondamental
complet est formé des homographies et des corrélations. Dans
toute Géomeétrie de Klein, a groupe fondamental continu donné,
il sera du plus haut intérét de savoir si ce groupe continu n’est
pas a compléter par d’autres familles de transformations ana-
logues aux corrélations de I’espace projectif. Or c’est la un
probleme que nos connaissances actuelles sur les groupes uni-
taires nous permettent de résoudre complétement toutes les fois
que le groupe fondamental est simple ou semi-simple. Je signa-
lerai simplement ce résultat assez curieux, c’est que, dans la
Géométrie cayleyenne a 7 dimensions dont I’absolu est une
quadrique de la forme

2 2 2 2 o 2 2 2
Xy xy oy F oy — g —ag—a; —axg = 0,

le groupe des déplacements proprements dits se compléte par
23 autres familles de transformations.

J’espére vous avoir montré toute la variété des problemes que
la Théorie des groupes et la Géométrie, en s’appuyant mutuelle-
ment I'une sur I'autre, permettent d’aborder et de résoudre.
Iy a encore 14 un champ de recherches a peine exploré et qui
promet des résultats trés intéressants.

L [;nsexgnement mathém., 26 annéce ; 1927
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