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LA THÉORIE DES GROUPES ET LA GÉOMÉTRIE1

PAR

E. Cartan (Paris).

Ce serait une tâche bien ambitieuse que d'essayer de faire
tenir dans une seule conférence le problème général des rapports
entre la Théorie des groupes et la Géométrie. Bien que la mise en
évidence de ces rapports ne remonte pas à. beaucoup plus d'un
demi-siècle, il n'est aucun mathématicien qui ne sache l'influence
profonde exercée sur le développement de la Géométrie par les
idées systématiquement développées en 1872 dans le célèbre.
«Programme d'Erlangen » de Félix Klein2. Aussi bien n'ai-je
pas l'intention de revenir sur ces idées, qui font maintenant
partie du patrimoine commun de tous les mathématiciens. Je

voudrais essayer d'indiquer brièvement comment, malgré le

contrecoup formidable produit en Géométrie par la Relativité
généralisée, le principe directeur de Klein, convenablement
généralisé, permet une nouvelle synthèse des plus importantes
des théories géométriques récentes, sans parler de celles qui
n'existent encore qu'en germe et attendent de l'avenir leur complet

développement3. Je resterai strictement sur le terrain
géométrique sans incursion dans le problème philosophique de

l'espace, si brillamment traité par M. Weyl 4. Je tâcherai
également, à la lumière de recherches toutes récentes, de montrer
comment la Géométrie permet d'aborder certains problèmes
nouveaux de la théorie des groupes et éclaire par contrecoup
d'un jour inattendu les Géométries de Klein les plus importantes.

1 Conférence faite à la session de printemps de la Société mathématique suisse,
tenue à Berne le 7 mai 1927.

2 Math. Ann., t. 43, 1893, p. 63-109; Gesamm. Math. Abh. F. Klein, 1.1, 1921.
s Cf. E. Cartan, La théorie des groupes et les recherches récentes de géométrie différentielle

(Enseign. math., 1924-5, p. 18; traduction espagnole dans la Revista matem.
Hispano-Americana, 1927).

4 V. par exemple; H. Wèyl, Die Einzigartigheit der Pythagorischen Massbestimmung,
Math. Zeitschr., 12, 1922, p. 114-146), et Mathematische Analyse des Raumproblems
Berlin, Springer, 1923).
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I

L'idée fondamentale de Klein peut être rattachée, comme on

sait, aux notions les plus anciennes de la science. La Géométrie

élémentaire est l'étude des propriétés des figures qui sont
indépendantes de leur position particulière dans l'espace. Il a fallu
un grand nombre de siècles pour traduire cette phrase un peu

vague en un langage précis: les propriétés qu'étudie la Géométrie
élémentaire sont celles qui sont invariantes par un certain
ensemble de transformations formant un groupe, à savoir les

déplacements. L'axiome d'après lequel deux figures égales à

une troisième sont égales entre elles exprime précisément, sous

une forme en quelque sorte métaphysique, la propriété des

déplacements de former un groupe. La Géométrie projective,
qui constituait d'abord un simple chapitre de la Géométrie
ordinaire et qui était arrivée, par son évolution même, à se constituer
en doctrine autonome, est aussi pour Klein l'étude des

propriétés des figures invariantes par un certain ensemble de
transformations (les transformations homographiques) formant un
groupe.

D'une manière générale tout groupe de transformations continu
G définit une Géométrie autonome. Si l'on regarde les variables
transformées par le groupe comme constituant un point d'un
espace à un nombre suffisant de dimensions, cette Géométrie
étudie les propriétés des figures invariantes par les transformations

du groupe G, qui jouent ainsi le rôle des déplacements en
Géométrie euclidienne, des homographies en Géométrie projective.
Le groupe G est dit le groupe fondamental de la Géométrie. On est
arrivé ainsi à constituer la Géométrie affine, la Géométrie
conforme ou anallagmatique, la Géométrie de Laguerre, la Géométrie
hermitienne, etc.

On a été conduit, pour la commodité du langage, à accoler au
mot espace une épithète rappelant le groupe fondamental de
la Géométrie étudiée; c'est ainsi qu'on parle de l'espace euclidien,
de l'espace projectif, etc. Tous les espaces de Klein, comme on
les appelle, sont homogènes,en ce sens que leurs propriétés sont
invariantes par les transformations du groupe fondamental
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correspondant: c'est du reste ce groupe qui donne en quelque
sorte la mesure de son homogénéité. L'espace parfaitement
homogène est celui dont le groupe fondamental est le groupe
infini de toutes les transformations continues : c'est l'espace
de 1'Analysis situs; les propriétés géométriques des figures y
sont du reste relativement peu variées; elles deviennent déjà plus
considérables si on prend pour groupe fondamental le groupe
infini de toutes les transformations continues et dérivables. Dans

un espace qui n'aurait aucune espèce d'homogénéité, c'est-à-
dire dont le groupe fondamental se réduirait à la transformation
identique, il n'y aurait en revanche, au sens du programme
d'Erlangen, aucune science du général; toute la Géométrie se

réduirait à des faits particuliers, sans lien les uns avec les autres.

II

En marge de la riche moisson de travaux géométriques suscitée

par les idées de Klein, s'est développée entre 1867 et 1914 une
théorie géométrique toute différente, issue de la célèbre Dissertation

inaugurale de Riemann : « Sur les hypothèses qui servent
de fondement à la Géométrie »x. Les points de départ des deux
grands géomètres sont bien différents. Pour Klein la notion
géométrique fondamentale est contenue dans l'axiome de

l'égalité, interprété à la lumière de la notion de groupe. Pour
Riemann, à une époque du reste où la théorie des groupes
continus n'était pas fondée, la notion géométrique fondamentale
est celle de longueur; mais, obéissant à la tendance générale
de la Physique moderne et répugnant à l'idée de soumettre cette
notion à des lois a priori faisant intervenir, dans chaque région
de l'espace, l'espace tout entier, il suppose la longueur définie
de proche en proche au moyen d'une forme différentielle, que,

pour plus de simplicité, on peut supposer quadratique, mais

a priori arbitraire. L'espace ordinaire se retrouve comme un
cas tout à fait particulier des espaces plus généraux introduits
par Riemann.

i La thèse inaugurale de Riemann fut soutenue sous ce titre le 10 juin 1854 devant la
Faculté de Philosophie de Göttingen; elle est reproduite dans les Gesamm. math. Werke
de Riemann (Leipzig, 1872, p. 254-269).
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Il est clair que la Géométrie riemanienne, développée surtout
en Allemagne et en Italie, ne rentre pas du tout dans le cadre

du programme d'Erlangen, car une variété riemannienne n'admet
en général aucune espèce d'homogénéité. On pourrait néanmoins

essayer 1 de subordonner la Géométrie riemannienne à l'idée
directrice de Klein en se servant d'un principe qui joue un rôle
fondamental dans le programme d'Erlangen, à savoir principe
d1 adjonction. La Géométrie de Riemann est en effet l'étude des

invariants du groupe infini de toutes les transformations
ponctuelles à n variables, auquel on a adjoint une forme différentielle
quadratique déterminée. Mais raisonner ainsi serait détourner le

principe d'adjonction de Klein de sa vraie signification. On sait
en quoi il consiste. On peut déduire, par exemple, la Géométrie
affine de la Géométrie projective en adjoignant à l'espace pro-
jectif un plan privilégié (le plan de l'infini). Cela veut dire deux
choses: 1° que le groupe fondamental de la Géométrie affine est

un sous-groupe du groupe projectif; 2° que ce sous-groupe est
formé de toutes les transformations projectives qui laissent
invariant le plan de l'infini. Rien de pareil dans la Géométrie
riemannienne; les propriétés qu'elle étudie ne sont pas celles

qui sont invariantes par les transformations qui conservent la
forme différentielle quadratique adjointe, car en général il n'y a

aucune transformation de cette nature. En poussant jusqu'au
bout l'extension abusive faite du principe d'adjonction, on
pourrait dire que tout problème mathématique rentre dans le
cadre du programme d'Erlangen; il suffit d'adjoindre au groupe
de toutes les transformations possibles les données du problème
à résoudre.

A la vérité on pourrait se rapprocher des idées de Klein par
les considérations suivantes. Soit G le groupe infini à —

variables xuglj7 obtenu en adjoignant aux équations d'une
transformation arbitraire portant sur les variables xx,x2, xm
celles qui indiquent comment cette transformation transforme
les composantes g{jdutenseur fondamental. Le groupe G est le
groupe fondamental d'une Géométrie de Klein, étudiant les

1 Cf. J. A. SciïouTEN, Erlanger Programm (Rend. Cire. mat.
Palermo, t. 50, 1 920, p. 1-28).
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propriétés d'un espace E à - — -dimensions. Toute variété

riemannienne peut être regardée comme une variété Xn à n
dimensions plongée dans cet espace et définie par les équations
qui donnent les g^en fonctions des Mais d'abord la Géométrie
riemannienne correspondante n'est pas en toute rigueur l'étude
des propriétés de la variété Xn dans ses relations avec l'espace
ambiant, et, le serait-elle, elle n'en constituerait pas plus une
Géométrie au sens de Klein que l'étude d'une surface particulière

plongée dans l'espace euclidien, la surface des ondes, par
exemple, n'en constitue une.

III

La Relativité généralisée jeta dans la Physique et la Philosophie
l'antagonisme qui existait entre les deux principes directeurs
de la Géométrie, celui de Riemann et celui de Klein. Les espaces-
temps de la mécanique classique et de la relativité restreinte sont
du type de Klein, celui de la Relativité généralisée est du type de
Riemann. Ce fait même que presque tous les phénomènes
étudiés par la science depuis de nombreux siècles pouvaient
s'expliquer aussi bien en se plaçant à l'un des points de vue qu'à
l'autre était hautement significatif et suggérait malgré tout la
possibilité d'une synthèse englobant les deux principes
antagonistes.

La découverte par Levi-Civita 1 en 1917 du transport par
parallélisme dans un espace de Riemann orienta les esprits vers
une nouvelle direction. C'est en généralisant la notion du
parallélisme de Levi-Civita d'une part, en poussant d'autre part à

ses dernières conséquences l'idée directrice de Riemann par
l'affirmation de la relativité de la longueur, que Weyl2 arriva
à la conception d'espaces métriques plus généraux que ceux de

Riemann. Les géomètres furent surtout frappés par là fécondité
de la notion du transport parallèle et on pensa être arrivé ainsi
au principe constructeur de la Géométrie différentielle générale.

1 T. Levi-Civita, Nozione di parallélisme* in una varietà qualunque (Rend Cire. Mat.
Palermo, 42, 1947, p. 173-205).

2 H. Weyl, Raum, Zeit, Materie,3teAuflage (Berlin, Springer, 1922).
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Qu'une telle vue fût incomplète, l'impossibilité de fonder la
Géométrie projective ou la Géométrie conforme classiques sur

un tel principe le prouve avec évidence; en Géométrie projective
la notion de parallélisme n'existe pas; en Géométrie conforme, la
notion de vecteur disparaissant elle-même, disparaît ipso facto

le problème du transport des vecteurs par parallélisme.

IV

Mais si le transport parallèle ne fournit pas par lui-même un
principe assez général pour englober les différentes théories

géométriques connues, il fournit du moins, envisagé d'une
manière convenable, un moyen pour y parvenir.

Reprenons dans un espace de Riemann une petite région
entourant un point donné A; la connaissance du ds2, de l'espace
fait jusqu'à un certain point de cette région un petit morceau
d'espace euclidien; on peut imaginer par exemple un repère
rectangulaire d'origine A, et rapporter à ce repère tous les

points M infiniment voisins de A en leur attribuant ainsi des

coordonnées cartésiennes rectangulaires; les formules qui expriment

la distance d'un point M à l'origine, l'angle de deux vecteurs
joignant le point A à deux points M, M' infiniment voisins de A,
celles qui traduisent un changement de coordonnées rectangulaires,

sont exactement les mêmes que dans l'espace ordinaire.
La difficulté commence quand on considère deux portions
voisines de l'espace, l'une entourant un point A, l'autre un point
voisin A'; elles constituent deux morceaux d'espace euclidien
qui sont en quelque sorte isolés l'un de l'autre, tant qu'on n'a
pas réussi à les orienter l'un par rapport à l'autre. D'une manière
plus précise si nous attachons aux points A et A' deux repères
rectangulaires, nous savons localiser, à la manière euclidienne,
l'origine A' du second repère par rapport au premier, mais nous
ne savons pas orienter les axes du second repère par rapport à

ceux du premier. Le transport par parallélisme de Levi-Civita
nous fournit précisément un moyen de fixer cette orientation,
puisque nous savons, grâce à lui, reconnaître quand deux
vecteurs d'origine A et A7 doivent être regardés comme parai-
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lèles. Le parallélisme de Levi-Civita ne nous fournit donc pas
seulement une relation entre les vecteurs attachés à deux points
infiniment voisins de l'espace, mais, et cela a une portée beaucoup

plus grande, il nous permet d'intégrer dans un seul et même

espace euclidien deux petits morceaux contigus de l'espace de
Riemann.

Du point de vue précédent, l'espace de Riemann est donc
regardé comme une collection de petits morceaux d'espaces
euclidiens raccordés de proche en proche les uns avec les autres.
Ce qui est essentiel à remarquer, c'est que le raccord se fait
nécessairement en série linéaire.Etant donnés deux points A et
B de l'espace reliés entre eux par un arc de courbe continu (C),
on peut regarder la ligne (C) et toute la région de l'espace qui
l'avoisine immédiatement comme faisant partie d'un seul et
même espace euclidien; ou, si l'on veut, pour employer une
expression suggestive, on peut développer cette région de l'espace
sur un espace euclidien fictif, l'espace euclidien tangent en A à

l'espace riemannien. Le fait que l'espace donné n'est pas euclidien
se traduit par le fait que le développement d'un autre arc de
courbe (C') joignant A à B ne donnera pas, pour le point B et la
petite région environnante, la même position qu'auparavant dans

l'espace euclidien tangent en A.
La possibilité de raccorder dans un même espace euclidien

deux morceaux contigus de l'espace de Riemann peut s'exprimer
en disant que c'est un espace à connexion euclidienne. Le fait
que le raccord de deux morceaux non contigus entourant deux
points A et B se fait de proche en proche et dépend du chemin
suivi pour aller de A en B peut s'exprimer en disant que l'espace
de Riemann est un espace euclidien non holonome.

Revenons maintenant au point de vue de Klein. L'espace
euclidien ordinaire est un espace de Klein dont le groupe
fondamental G est le groupe des déplacements. C'est ce groupe qui
contient l'essence de la géométrie ordinaire. Les équations
fondamentales .qui régissent le déplacement à plusieurs paramètres
d'un trièdre mobile ne sont autres que les équations de structure

du groupe G, au sens que j'ai donné à ce mot dans ma
théorie de la structure des groupes continus, et la théorie des

courbes, des surfaces, des congruences et des complexes de
*
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droites, etc., n'est au fond qu'une simple conséquence analytique
de ces équations fondamentales. Dans un espace de Riemann

à chaque point duquel on a attaché un repère rectangulaire, le

passage d'un repère à un repère infiniment voisin se fait aussi

par une transformation du groupe G, transformation qu'on peut
décomposer en une translation et une rotation; la translation est

donnée immédiatement par le d2de l'espace, la rotation est

donnée par le transport parallèle de Levi-Civita. On peut donc

dire que l'espace de Riemann admet le même groupe fondamental
G que l'espace euclidien, mais la transformation de G qui fait
passer d'un repère à un autre n'est définie que de proche en

proche et n'a de sens que si on se donne le chemin joignant les

origines des deux repères. L'espace de Riemann est un espace

non holonome à groupe fondamental G.

V

Il n'y a maintenant aucune difficulté à imaginer des espaces
non holonomes à groupe fondamental quelconque h Un espace
projectif non holonome, par exemple, s'obtiendra en attachant
in abstracto à chaque point d'une variété numérique un espace
projectif (espace tangent) et en se donnant une loi permettant
d'intégrer dans un seul et même espace projectif les deux espaces
projectifs attachés à deux points infiniment voisins. Si par
exemple on attache à chacun d'eux un repère projectif (tétraèdre
de référence), la loi de raccord se traduira analytiquement par
une transformation (infiniment petite) du groupe projectif, qui
joue ainsi le rôle du groupe fondamental. Il est clair que la
notion ainsi obtenue d'espace à connexion projective dépasse
la notion de transport parallèle, bien qu'on puisse utiliser, comme
l'a fait M. Schouten, la propriété du groupe projectif d'être mis
sous forme linéaire pour appliquer la théorie analytique générale
des transports parallèles à l'exposition de la théorie des espaces
à connexion projective.

Les espaces de Weyl rentrent dans la théorie générale précé-

1 Cf. E. Cartan, Les espaces à connexion conforme (Ann. Soc. polon. de math., 1923,
p. 171-221): Sur lesvariétés à connexion projective (Bull. Soc. Math., 52,1924, p. 205-241).
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dente; il suffit de prendre connne groupe fondamental, non pas
le groupe des déplacements, mais le groupe des déplacements et
des similitudes de l'espace ordinaire.

Une propriété commune à tous les espaces non holonomes à

groupe fondamental est la suivante. Si .l'on considère un arc de

courbe AB, la région de l'espace environnant immédiatement
cet arc de courbe peut être regardée comme faisant partie d'un
seul et même espace de Klein. Par suite, la théorie des courbes
est identiquement la même dans -un espace non holonome que
dans un espace holonome au même groupe fondamental. Les
classes remarquables de courbes dans l'espace holonome ont
leurs analogues dans l'espace non holonome. C'est ainsi que les

droites, qui existent en Géométrie euclidienne, en Géométrie
affine, en Géométrie projective, ont leurs analogues dans les

espaces à connexion euclidienne, affine, projective: ce sont les

géodésiques de ces espaces, qu'on peut définir comme les lignes
se développant suivant des droites. Dans un espace de Riemann à

trois dimensions, les notions de courbure et de torsion d'une ligne
s'étendent elles-mêmes; dans un espace de Weyl celles qui les

remplacent sont les deux invariants fondamentaux d'une courbe
euclidienne par rapport au groupe des similitudes. A un autre
point de vue, on pourrait imaginer des espaces à groupe
fondamental à une dimension ; ces espaces sont nécessairement
holonomes.

La non holonomie d'un espace ne se révèle que si on le développe

suivant deux arcs de courbe distincts joignant les deux
mêmes points, ou encore, ce qui revient au même, si on le
développe suivant un contour feimé ou cycle. A un tel cycle, issu d'un
point A par exemple et y revenant, est associée, dans l'espace
holonome tangent en A, une transformation du groupe
fondamental qui révèle la non holonomie de l'espace le long du cycle.
Si ce cycle est infinitésimal, la transformation associée est aussi

infinitésimale et définit la courbure riemannienne de l'espace le

long du cycle. Un cas particulier important est celui où cette
transformation infinitésimale laisse fixe le point A; j'ai proposé
de dire que l'espace non holonome est alors sans torsion. C'est ce

qui se passe pour les espaces de Riemann, dont la connexion
euclidienne est définie au moyen du. parallélisme de Levi-Civita;
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c'est également ce qui se passe pour les espaces de Weyl. Dans le

cas des espaces à connexion affine, qui comprennent en particulier
les espaces précédents, la transformation associée à un cycle

infinitésimal peut se décomposer en une translation (appliquée

au point A) et une rotation affine. La translation définit la
torsion de l'espace, la rotation sa courbure. Un espace à connexion

affine sans courbure est un espace dans lequel le parallélisme
de deux vecteurs a une signification indépendante du

chemin par lequel on relie leurs deux origines. Nous verrons tout
à l'heure que ces espaces sans courbure ont des applications
importantes.

VI

Nous avons implicitement parlé jusqu'à présent des espaces

non holonomes ponctuels. On s'est habitué depuis longtemps,
en Géométrie projective, par exemple, à attribuer à l'espace
d'autres éléments générateurs que le point, par exemple le plan,
ou la droite. La nature de l'élément générateur ne joue du reste

qu'un rôle accessoire et n'atteint pas l'essence de la Géométrie;
le groupe fondamental change de forme analytique avec le

changement de l'élément générateur de l'espace, mais sa structure
reste la même et c'est en elle que résident les propriétés intimes
de la Géométrie correspondante.

Dans le cas des espaces non holonomes, le choix de l'élément
générateur joue au contraire un rôle essentiel. Un espace de

Riemann est un espace euclidien ponctuel non holonome. On peut
imaginer un espace euclidien t(c'est-à-direengendré
par des plans) non holonome; sa géométrie diffère profondément
de [a géométrie riemannienne. Un espace à courbure constante de

Cayley-Klein, dans lequel le point est pris comme élément
générateur, est un espace euclidien non holonome; mais si on
prend au contraire le plan comme élément générateur, il n'en
est plus de même, car la figure formée des plans infiniment
voisins d'un plan donné ne jouit pas du tout des mêmes propriétés
infinitésimales que la figure analogue dans l'espace euclidien.
Dans un espace de Cayley à courbure positive, deux plans
infiniment voisins ont un invariant qui est une forme différen-

L'Enseignement muthém., *2(>e année; 1927.
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tielle quadratique ternaire définie positive (c'est par exemple le
carré de la distance de leurs pôles par rapport à l'absolu); dans
l'espace euclidien, l'invariant de deux plans est l'angle infiniment
petit de leurs normales, qui ne fait intervenir que deux différentielles

indépendantes au lieu de trois; en un certain sens l'espace
euclidien, en tant qu'engendré par les plans, est moins rigide
que l'espace à courbure constante.

On conçoit d'après cela la très grande variété des géométries
non holonomes possibles; un très petit nombre d'entre elles ont
été envisagées jusqu'à présent.

Ce qui précède s'éclaircira peut-être par un exemple particulier.
Partons du groupe projectif du plan. Nous aurons une première
classes d'espaces non holonomes à deux dimensions en prenant
le point pour élément générateur; les espaces obtenus admettent
des géodésiques, qui, lorsqu'on rapporte l'espace à un système
quelconque de coordonnées ponctuelles x et y, sont les courbes

intégrales d'une équation différentielle de la forme

+ A(ar. y) (ïj£j + B(*. y) + C(x, y)i| + D(*. y) 0

Inversement, étant donnée une équation différentielle de cette
forme, on peut trouver une infinité de connexions projectives
faisant des courbes intégrales de cette équation les géodésiques
de l'espace correspondant; parmi toutes ces connexions il en est
du reste une privilégiée, pour laquelle le déplacement projectif
associé à un cycle infinitésimal d'origine A laisse invariant le

point A, ainsi que toutes les droites issues de A.
Prenons maintenant, avec le même groupe fondamental, non

pas le point, mais l'élément de contact de Lie (ensemble d'un
point et d'une droite passant par ce point) comme élément
générateur. Nous arriverons alors à des espaces d'éléments (à trois
dimensions) à connexion projective. Cette fois nous pourrons nous

arranger pour que les géodésiques (correspondant aux droites du
plan projectif envisagées comme lieux d'éléments de contact)
soient les courbes intégrales d'une équation différentielle du
second ordre absolument quelconque, de sorte que nous pourrons
géométriser la théorie des invariants d'une équation différen-
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tielle du second ordre vis-à-vis du groupe des transformations

ponctuelles les plus générales.
Dans l'exemple précédent l'espace était un lieu d'éléments

de contact; le groupe fondamental était le groupe de transformations

de contact résultant du prolongement, au sens de Lie,
du groupe projectif ponctuel. Il n'y a naturellement aucune

difficulté à partir d'un groupe de transformations de contact
irréductible quelconque, par exemple le groupe des transformations

de contact qui changent les sphères orientées en sphères

orientées; on bâtirait avec lui des espaces non holonomes, en

prenant comme élément générateur l'élément de contact par
exemple, ou encore la sphère orientée, etc.

VII

Les espaces non holonomes ont été envisagées jusqu'ici
abstracto; la connexion qui sert à les définir est une loi interne.

C'est H. Weyl qui le premier a défini le transport par parallélisme
par une propriété interne de l'espace. Levi-Civita se plaçait au
contraire à un point de vue tout différent qui, bien qu'inférieur
philosophiquement à celui de Weyl, a une très grande importance
en Géométrie; il se rattache à la théorie générale des connexions
induites dont je dirai seulement quelques mots.

Avant d'indiquer la manière de procéder de Levi-Civita, nous
pouvons la faire pressentir sur un exemple extrêmement élémentaire.

Considérons une courbe tracée dans un plan ordinaire
(euclidien) ; la présence de la courbe dans le plan permet de définir
sur cette courbe une abscisse curviligne. Oublions maintenant
que la courbe est dans le plan et considérons-la en elle-même;
rien ne la distingue d'une droite euclidienne ; la formule de
Chasles qui lie les abscisses de trois points d'une droite lie également

les abscisses curvilignes de trois points de la courbe. La
présence de la courbe dans le plan euclidien nous a donc donné le

moyen de faire de cette courbe un espace euclidien à 1 dimension.
Nous pouvons du reste nous représenter physiquement le mécanisme

de l'opération en déroulant ou développant la courbe sur
une de ses tangentes; nous pouvons aussi définir chaque stade
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infinitésimal de ce développement en faisant correspondre à tout
point M infiniment voisin d'un point A le point M' de la
tangente en A qui est la projection orthogonale de M.

Si nous prenons maintenant une surface plongée dans l'espace
ordinaire, nous pourrons de même essayer de développer la surface
sur le plan tangent en un de ses points A. Si la surface est dévelop-
pable, le développement sera possible ; sinon on pourra toujours
l'effectuer le long d'un arc de courbe AB, ce qui revient à
développer la surface développable circonscrite à la surface le long
de AB, mais le développement le long d'un autre arc de courbe
joignant A ä B ne conduirait pas au même résultat final: le
développement n'est pas holonome. Nous pouvons donc regarder la
surface plongée dans l'espace euclidien comme un plan euclidien
non holonome; l'intégration en un seul même plan euclidien des

points infiniment voisins de A et des vecteurs issus de ces points
peut s'obtenir très simplement par projection orthogonale de la
surface sur le plan tangent en A. Là encore la présence de la
surface dans l'espace euclidien permet de doter la surface d'une
connexion euclidienne induite;si nous oublions ensuite l'espace
ambiant pour ne considérer que la surface en elle-même avec la
connexion euclidienne que nous lui avons attribuée, nous obtenons

tout simplement un espace de Riemann à deux dimensions,
dont le ds2estcelui de la surface, avec le transport par parallélisme

de Levi-Civita: deux vecteurs tangents issus de A et de M
sont parallèles si la projection du second sur le plan tangent en A
est parallèle au premier vecteur. Nous remarquerons que l'espace
euclidien (ici plan euclidien) tangent en un point, a maintenant
une signification concrète,tandis que du premier point de vue,
il est purement fictif.

La notion de connexion induite peut être appliquée de beaucoup

de manières différentes et elle semble devoir jouer un rôle
très important dans les théories géométriques classiques. J'en
citerai quelques exemples simples.

Prenons, en Géométrie conforme plane, une courbe quelconque
(G); on peut développer cette courbe sur le cercle osculateur en

un de ses points, autrement dit on peut regarder la courbe comme

un espace conforme à une dimension (cercle). Le développement
ne se fait naturellement pas au sens ordinaire, métrique du mot,
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avec conservation des longueurs d'arcs, puisque la longueur d'un
arc n'a pas de sens en Géométrie conforme. Les choses peuvent
être présentées d'une manière peu rigoureuse, mais assez élémentaire.

Prenons sur la courbe trois points très voisins A, Ax, A2 ;

ils peuvent être regardés comme appartenant au cercle osculateur
à la courbe en A; soit maintenant A3 un quatrième point très
voisin des trois premiers; la droite qui joint le centre du cercle
osculateur au point A3 coupe ce cercle en un point A'3 qu'on fera
correspondre à A3 dans le développement de la courbe; on

pourra, du reste, remplacer la droite par un cercle passant par
deux points fixes donnés inverses l'un de l'autre par rapport
au cercle osculateur. Amenons par une transformation conforme
les trois points Ax, A2, A3 à coïncider avec Ax, A2, A'3 ; la courbe
prendra une nouvelle position et on pourra recommencer pour
un cinquième point de la courbe la construction de tout à l'heure
qui le fera correspondre à un cinquième point Al du cercle et
ainsi de suite. Analytiquement, il existe sur un cercle un
paramètre projectif défini à une transformation homographique près:
c'est le paramètre en fonctions duquel les coordonnées d'un point
de la courbe s'expriment rationnellement. On pourra donc définir
sur une courbe plane quelconque un paramètre projectif, grâce
auquel on connaîtra le rapport anharmonique de quatre points
de la courbe. Analytiquement, ce paramètre s'obtient très simplement

comme le quotient de deux solutions particulières de

l'équation différentielle

où s désigne l'arc de la courbe et p le rayon de courbure.
En Géométrie projective plane, on peut de même développer

projectivement une courbe quelconque sur la conique osculatrice
et définir également ainsi le rapport anharmonique de quatre
points de la courbe. Mais ici ce développement n'intéresse pas
seulement la courbe donnée, mais tout le plan qui en est un certain
sens solidaire et qui se trouve ainsi muni d'une métrique cav-
leyenne à courbure constante. En effet, par un point quelconque P
du plan menons une tangente PA à la courbe et traçons la
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conique osculatrice à la courbe en A; elle peut être regardée
comme l'absolu d'une géométrie cayleyenne; la distance cay-
leyenne du point P à un point infiniment voisin P' sera le logarithme
du rapport anharmonique des deux points P, P' et des deux
points où la droite PP' coupe la conique. Naturellement le ds2

du plan est indéfini et n'existe que dans les régions du plan d'où
on peut mener une tangente à la courbe; la direction PA est

isotrope, la seconde direction isotrope en P est celle de la seconde

tangente menée de P à la conique osculatrice en A. Les géodési-

ques de la métrique ne sont plus en général des droites. L'adjonction

d'une courbe quelconque nous a permis ici de faire du plan
un espace cayleyen à deux dimensions; cet espace est holonome,
parce que la connexion cayleyenne du plan est commandée par le

développement de la courbe donnée sur sa conique osculatrice, et
ce développement est nécessairement holonome, puisque la
courbe n'a qu'une dimension.

On peut de même, dans l'espace projectif à trois dimensions,
développer une surface sur la quadrique de Lie ; le développement
n'est plus holonome, à moins que la surface ne soit réglée: dans

ce dernier cas, en effet, la quadrique de Lie est la même tout le

long d'une même génératrice; on n'a en réalité à faire qu'à une
variété (de droites) à une dimension, ce qui entraîne nécessairement

l'holonomie.
$

VIII

Revenons maintenant aux espaces non holonomes à groupe
fondamental G. Comme nous l'avons vu, à tout cycle partant
d'un point A de l'espace et y revenant est associée une transformation

du groupe G, transformation qui opère dans l'espace
holonome tangent en A. A l'ensemble des cycles issus de A est

donc associé un ensemble de transformation de G, qu'on démontre
facilement former un groupe g: c'est le groupe tfholonomie de

l'espace, qui est essentiellement le même en tous les points A.
Le groupe g donne en quelque sorte une mesure de la non holo-
nomie de l'espace; s'il se réduit à la transformation identique,
c'est qu'on a un espace de Klein. On a donc là un principe de

classification des espaces à groupe fondamental donné, de même
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que le groupe de Galois d'une équation algébrique permet en

gros une classification suivant le degré d'irrationalité des racines.

Les transformations infinitésimales de G associées aux cycles

infinitésimaux appartiennent au groupe d'holonomie, mais elles

ne fournissent pas toujours toutes les transformations infinitésimales

génératrices de ce groupe. Néanmoins, si elles sont toutes
nulles, c'est-à-dire si la courbure riemannienne de l'espace est

partout nulle, le groupe d'holonomie se réduit à la transformation
identique et l'espace est holonome. Cette conclusion peut se

démontrer facilement par le calcul ou par un raisonnement
géométrique approché. Mais ici interviennent des considérations

d'Analysis situs; la conclusion n'est rigoureuse que si l'espace
est simplement connexe, c'est-à-dire si tous les cycles peuvent,
par déformation continue, être réduits à zéro. Dans le cas

contraire, l'espace peut avoir partout sa courbure riemannienne
nulle sans être vraiment holonome. Un exemple classique est
fourni par un cylindre de révolution plongé dans l'espace
ordinaire; son développement le long d'un cycle sur un de ses plans
tangents est holonome si le cycle est réductible à zéro, mais le

développement le long d'une section droite a pour effet de faire
subir au point de départ A une translation finie; le groupe d'holonomie

est formé des puissances de cette translation. Les mêmes
considérations s'appliqueraient à ce qu'on est convenu d'appeler
les formes de Clifford de l'espace euclidien. On pourrait aussi
imaginer, in abstracto,sur un cylindre une connexion (non induite)
de Weyl, dont la courbure riemannienne soit partout nulle sans

que cependant l'espace à deux dimensions constitué par le cylindre

doué de cette connexion soit intégralement euclidien, ni
même riemannien; seulement, ce n'est qu'en faisant le tour du
monde qu'un habitant de cet espace pourrait s'apercevoir que
son univers n'est ni euclidien, ni riemannien.

Le principe de classification des espaces d'après leur groupe
d'holonomie peut être rattaché au principe d'adjonction ou de
subordination de Klein. Une Géométrie de Klein est subordonnée
à une autre si le groupe fondamental de la première est un sous-
groupe de celui de la seconde. Par exemple, la Géométrie affine est
subordonnée à la Géométrie projective, c'est si l'on veut, un
chapitre particulier de la Géométrie projective dans lequel on étudie
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les propriétés des figures contenant le plan de l'infini; on pourrait,
du reste, imaginer une infinité de Géométries affines dans un
même espace projectif, suivant le plan auquel on voudrait faire
jouer le rôle du plan de l'infini. Si l'on est maintenant dans un
espace projectif non holonome, les choses ne se passent plus de la
même manière; pour qu'on puisse dans cet espace imaginer une
Géométrie affine, il faut qu'on puisse y choisir des repères
projectifs liés entre eux suivant une loi affine; pour cela, il est nécessaire

et suffisant que le groupe d'holonomie de l'espace soit un
groupe affine, ce qui n'arrive pas toujours. D'une manière générale,

tout espace non holonome à groupe fondamental G, admettant

pour groupe d'holonomie un sous groupe de G, pourra être
regardé comme un espace non holonome admettant pour groupe
fondamental tout sous groupe de G contenant lui-même g comme
sous-groupe. C'est ainsi qu'un espace de Weyl peut être regardé
comme riemannien, si son groupe d'holonomie ne contient que
des déplacements, sans homothétie.

IX

Comme on le voit, l'importance de la notion de groupe n'a pas
été réduite par les développements récents de la Géométrie
différentielle; il semble bien qu'elle seule au contraire soit capable
de les embrasser dans une même synthèse. Je voudrais maintenant

aussi brièvement que possible, donner un aperçu des services

que peuvent rendre à la théorie des groupes elle-même les notions
nouvelles de la Géométrie différentielle.

Considérons un groupe de transformations continu G à

paramètres et représentons chaque transformation
du groupe par un point (ax, ar) d'un espace à dimensions,

que nous appellerons l'espace du groupe. Dans un article récentx,
nous avons, M. Schouten et moi, indiqué comment on pouvait
doter cet espace de trois connexions affines remarquables
intrinsèquement liées aux propriétés du groupe; j'ai développé plus
longuement cette étude dans un mémoire qui vient de paraître 2.

1 E. Cartan and J. A. Schouten, On.thGeometryof the Group-manifold of simple
and semi-simple groups (Proc. Akad. Amsterdam, 29, 1926; p. 803-815).

2 E. Cartan, La Géométrie des groupes de transformations (Journal Math., 6, 192T,
p. 1-119).
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Chacune de ces connexions fait de l'espace du groupe un espace
affine non holonome. Deux de ces connexions sont sans

ce qui, comme je l'ai déjà dit, signifie que le parallélisme des

vecteurs y a une signification absolue. Leur définition est très

simple. Rappelons que le produit de deux transformations dépend
en général de l'ordre dans lequel elles sont effectuées, de sorte

que l'opération inverse de la multiplication est possible de deux
manières; on peut prendre comme quotient de deux transformations

S' et S soit la transformation S'S-1, soit la transformation
S-1 S'. Cela posé un vecteur de l'espace du groupe est défini par
les deux transformations S et S' que représentent son origine et
son extrémité; deux vecteurs (S,S') et (T, T') seront dits équipol-
lents de première ou de seconde espèce suivant qu'on aura

S'S"1 T'T~l ou S"1 S' — T-1 T' ;

chacune de ces espèces d'équipollence définit une des deux
connexions sans courbure de l'espace du groupe; elles comportent
au contraire chacune une torsion et ces deux torsions sont
égales et opposées. Quant à la troisième connexion, elle est sans
torsion, mais elle comporte une courbure, et l'équipollence de
deux vecteurs ne peut s'y définir que de proche en proche.

Les géodésiques de l'espace du groupe sont les mêmes dans les
trois connexions; elles sont liées aux sous-groupes à un
paramètre du groupe donné; aux sous-groupes à plusieurs
paramètres sont également liées des variétés totalement
c'est-à-dire telles que toute géodésique qui y a deux de ses

points y est contenue tout entière ; mais il existe d'autres variétés
totalement géodésiques que celles qui proviennent des sous-
groupes de G, et elles jouent dans la théorie des groupes un rôle
qu'on n'avait pas encore soupçonné.

Beaucoup de notions et de théorèmes fondamentaux de la
théorie des groupes prennent de cette manière un caractère
géométrique inattendu. C'est ainsi que les constantes de structure

du groupe sont celles qui définissent la torsion de l'un
quelconque des espaces sans courbure du groupe; deux groupes
qui admettent le même espace sans courbure sont isomorphes.
Au contraire, il peut arriver que deux groupes admettent le
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même espace sans torsion sans être isomorphes ; l'identité des

espaces sans torsion de deux groupes définit par suite une sorte
d'isomorphisme plus général que l'isomorphisme classique et
qu'on pourrait appeler l'isomorphisme affine. On peut aussi
définir un isomorphisme projectif en dotant l'espace du groupe
d'une connexion projective liée au groupe d'une manière
invariante.

Parmi les groupes continus, une classe est particulièrement
importante, c'est celle des groupes simples ou semi-simples.
Les espaces sans torsion de ces groupes sont riemanniens, avec
un ds2qui n'est pas nécessairement défini. Ils font partie d'une
catégorie plus générale d'espaces riemanniens, caractérisés par
la propriété que le transport par parallélisme y conserve la
courbure riemannienne. Chose curieuse, cette propriété est
équivalente à la suivante, qui paraît de nature beaucoup moins
restrictive: la symétrie par rapport à un point quelconque de

l'espace est une transformation c'est-à-dire laisse
invariant le ds2 de l'espace.

La détermination de tous les espaces de Riemann à ds2 défini
positif dont la courbure riemannienne est conservée par le

transport parallèle peut être faite complètement1; les plus
généraux peuvent se déduire très simplement de certains d'entre
eux, de dimensions moindres, et qui sont, en ce sens,
Ce sont ces espaces de Riemann irréductibles qui nous ouvrent
les vues les plus inattendues sur certains problèmes importants
de la théorie des groupes simples, d'une part, sur des théories
classiques de la Géométrie d'autre part. Je les désignerai pour
abréger sous le nom d'espaces &.

X

Pour bien comprendre le rôle joué par les espaces ê, quelques

remarques préliminaires sur les groupes simples ne seront pas
inutiles. A chaque structure simple d'ordre r correspond d'abord

i Elle fait l'objet d'un mémoire récent (Bull.Soc. Math., 54,1926, p. 214-264, et
55, 1927, p. 114-134). V. aussi E. Cartan, Sur les espaces de Riemann dans lesquels
le transport par parallélisme conserve la courbure (Rend. Acc. Lincei, 6me série, 31, 1926,
p. 544-547).

i
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un groupe à r paramètres complexes ax, ar (en réalité une
infinité, mais tous isomorphes entre eux). Mais il peut aussi lui
correspondre des groupes obtenus en prenant pour ax, ar
des fonctions analytiques convenablement choisies de r
paramètres réels a3, ar;nous dirons pour abréger que le groupe
est complexe dans le premier cas, réel dans le second cas. Par

exemple les groupes de toutes les transformations homogra-
phiques complexes ou réelles de n variables sont respectivement
complexe et réel, mais correspondent à la même structure.

A une structure simple donnée correspondent plusieurs formes
réelles distinctes, irréductibles l'une à l'autre; en particulier
au groupe homographique complexe de variables correspondent
le groupe homographique réel de n variables, et aussi les groupes
linéaires unimodulaires d'une forme d'Hermite à + 1

variables, définie ou indéfinie. Bien que les variables soient
complexes, ces derniers groupes sont dits réels parce qu'on porte
son attention sur les {n+ l)2— 1 quantités réelles dont dépendent
les paramètres de leurs substitutions.

J'ai déterminé en 1914 1 toutes les formes réelles distinctes
correspondant à une même structure simple. Parmi toutes ces
formes il y en a une dont H. Weyl a montré l'extrême importance

2, c'est la forme dite unitaire;le domaine d'un groupe réel
unitaire est fermé tandis que ceux des autres groupes réels sont
ouverts. Il y a donc lieu en résumé de distinguer pour une structure

simple donnée, une forme com,une forme réelle unitaire
et plusieurs formes réelles non unitaires.

Revenons maintenant aux espaces &. Un premier résultat
remarquable, c'est que leur détermination revient à celle des
différentes formes réelles correspondant aux différentes structures

simples possibles. D'une manière plus précise à la forme
complexe et à chacune des formes réelles non unitaires d'une
structure simple donnée correspondent deux classes d'espaces ë;
ceux de la première classe ont leur courbure riemannienne
partout positive ou nulle; ceux de la seconde classe ont leur

1 E. Cartan, Les groupes réels simples, finis et continus (Ann. Ec. Norm., 3me série, 31,
1914, p. 263-355).

3 H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch
lineare Transformalionen (Math. Zeitschr.,23,1925, p. 271-309; 24, 1925, p. 328-395).
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courbure riemannienne partout négative ou nulle; dans chaque
classe on n'a du reste essentiellement qu'un seul espace, car
on passe de l'un à l'autre en changeant simplement l'unité de

longueur.

C'est surtout des espaces & à courbure négative que je vous
parlerai. Tous ces espaces ont une métrique partout régulière;
ils sont simplement connexes et jouissent de la propriété que
par deux points quelconques il passe une géodésique et une
seule. Chacun d'eux admet un groupe des déplacements qui est
tout simplement le groupe complexe ou réel non unitaire auquel
il correspond : dans le premier cas son groupe des déplacements
est à 2 rparamètres réels, dans le second cas il n'est qu'à r
paramètres réels. Le groupe des déplacements des espaces & à courbure

positive est au contraire toujours le groupe réel unitaire
correspondant. Pour les uns et les autres le groupe des rotations
isométriques autour d'un point (groupe d'isotropie) est simple
unitaire ou se décompose en groupes simples unitaires.

XI

Je signalerai seulement deux problèmes de la théorie des

groupes que la considération des espaces & permet d'aborder
avec succès.

On sait que, pour S. Lie, tout groupe continu est engendré par
des transformations infinitésimales ; en fait toute transformation
finie suffisamment voisine de la transformation identique peut
être obtenue en répétant une infinité de fois une même
transformation infiniment petite, de même qu'une rotation d'un angle
fini a autour d'un axe peut être obtenu en répétant une infinité
de fois une rotation d'un angle infiniment petit autour de cet
axe. Mais il y a des cas où toute une partie des transformations
finies du groupe échappe à cette génération. Par exemple la
substitution unimodulaire réelle à trois variables

a' =z ax y' ~ by cz =1)
où a est positif, betcsontnégatifs, ne peut pas être engendrée

par une substitution linéaire réelle infinitésimale.
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Pour les structures simples en particulier, le groupe complexe
et le groupe réel unitaire s'engendrent complètement au. moyen
de leurs transformations infinitésimales, tandis qu'il n'en est plus
de même en général pour les groupes réels non unitaires. Il est

vrai que toute transformation finie peut être regardée comme le

produit d'un certain nombre de transformations admettant
chacune une transformation infinitésimale génératrice, mais on
ne sait pas a priori si ce nombre est borné. Or l'existence des

espaces & à courbure négative nous donne à cet égard un
renseignement précis et très simple.

Soit en effet G un groupe réel non unitaire et & l'espace à

courbure négative dont G est le groupe des déplacements.
Fixons un point 0 de l'espace. Parmi les déplacements de l'espace
nous distinguerons les rotations autour de 0 et les :

je désigne sous ce nom un déplacement dans lequel une géodésique
glisse sur elle-même, les vecteurs issus de ses points se transportant
parallèlement à eux-mêmes au sens de Levi-Civita; la géodésique
considérée sera dite la base de la transvection. Cela posé tout
déplacement peut être décomposé d'une manière et d'une seule

en une rotation autour de 0 et une transvection ayant pour base

une géodésique passant par 0. Or chacun de ces déplacements
composants admet un déplacement infinitésimal générateur
(rotation ou transvection infinitésimale). Par suite toute
transformation finie de G peut être décomposée d'une manière et
d'une seule en deux transformations admettant chacune une
transformation infinitésimale génératrice. Par exemple toute
substitution linéaire unimodulaire réelle peut être décomposée
d'une manière et d'une seule en une substitution orthogonale et
une substitution symétrique positive (c'est-à-dire dont l'équation
séculaire ait toutes ses racines réelles et positives).

Le second problème que je voulais signaler est le suivant. J'ai
dit qu'à une structure (infinitésimale) donnée correspondent
une infinité de groupes G, mais qui sont tous isomorphes entre
eux. Cela n'est pas absolument exact si l'on considère le domaine
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entier d'existence de ces groupes; il se peut qu'à une transformation

de l'un correspondent plusieurs transformations et même
une infinité de transformations de l'autre. C'est ainsi qu'à une
transformation homographique réelle à une variable
correspondent deux substitutions linéaires unimodulaires à deux
variables. On peut toujours en tout cas imaginer un groupe
abstrait G' tel qu'à toute transformation de G' corresponde une
transformation et une seule de l'un quelconque des groupes G-,

à une transformation de ce groupe G pouvant correspondre
plusieurs transformations de G'. Ce groupe G' a un domaine
simplement connexe, c'est-à-dire que tout contour fermé y est
réductible à zéro par déformation continue. Tout groupe G qui
a un isomorphisme non absolument holoédrique avec G' n'est pas
simplement connexe, et le nombre des contours fermés
irréductibles entre eux par déformation continue dans le domaine
de G est égal au nombre des transformations de G' qui
correspondent à la transformation identique de G; ce nombre peut
être fini ou infini; les transformations en question de G' engendrent

un groupe discontinu qu'on peut appeler le groupe de

connexion de G.

H. Weyl a démontré 1 que tout groupe simple réel unitaire a

un groupe de connexion fini, et on peut ajouter qu'il existe

toujours un groupe linéaire simplement connexe de la structure
réelle unitaire considérée. En fait on connaît les groupes de

connexion des groupes simples réels unitaires. Mais la méthode

par laquelle Weyl a obtenu ce résultat fondamental ne s'applique
pas aux formes réelles non unitaires des groupes simples, par
exemple au groupe homographique réel, au groupe linéaire réel
d'une forme quadratique indéfinie, etc. Les espaces & à courbure
négative attachés aux groupes réels non unitaires nous
fournissent au contraire une méthode immédiate pour résoudre le

problème. En effet soit G le groupe des déplacements de &,

Chaque transformation de G se décompose d'une manière et
d'une seule en une rotation autour d'un point fixe 0 et une
transvection amenant 0 en un certain point A, transvection
complètement déterminée par le point A. Il en résulte que tout

i Math. Zeitschr., 24, 1925, p. 380.
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contour fermé dans le domaine du groupe G se ramène à deux
contours fermés: l'un dans le domaine du groupe des rotations,
ou groupe d'isotropie, l'autre dans le domaine des transvections,
c'est-à-dire en définitive dans l'espace 3. L'espace & étant
simplement connexe, le second contour fermé est réductible à zéro.

Il en résulte que deux contours fermés du domaine du groupe
total G seront réductibles ou non l'un à l'autre si les contours
fermés correspondants du domaine du groupe d'isotropie le

sont. Autrement dit le groupe de connexion de G est identique à

celui du groupe d'isotropie. Et comme ce dernier est un groupe
linéaire unitaire, ou se décompose en groupes unitaires, et, dans
certains cas, un groupe à un paramètre isomorphe au groupe des

rotations du plan, on connaît facilement son groupe de connexion,
de sorte que le problème proposé est résolu. La conclusion générale

est la suivante. Le groupe de connexion de tout groupe
simple réel non unitaire, ou bien est formé d'un nombre fini
d'opérations, ou bien se décompose en un groupe fini et un
groupe cyclique d'ordre infini.

Je signalerai seulement un résultat curieux. Le groupe de

connexion du groupe homographique réel d'une variable est
infini, tandis qu'il est fini pour le groupe homographique de

plusieurs variables.
Dans tous les cas du reste on peut effectivement construire,

pour une forme réelle non unitaire donnée d'une structure
simple, un groupe simplement connexe G'; seulement ce groupe
n'est pas nécessairement linéaire, comme dans le cas des formes
unitaires. Dans le cas du groupe homographique réel d'une
variable, le groupe simplement connexe G' est par exemple
donné par la formule

ate; x -I- b
to- x' —V .X—

ci tg x -f- !>'

A la transformation homographique identique b' 1,
a' b — 0) correspondent les transformations en nombre infini

x'— x il t. (n entier)

La méthode précédente s'applique aussi au groupe simple
complexe, qui a du reste le même groupe de connexion que le

groupe réel unitaire.
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XIII

Les espaces & dont je viens de parler sont des espaces de

Klein, admettant pour groupe fondamental le groupe de leurs
déplacements. L'existence de ces espaces montre que toute
Géométrie de Klein à groupe fondamental simple devient
riemannienne par un choix convenable de l'élément générateur
de l'espace; le choix est essentiellement unique1 si le groupe
fondamental est complexe,ouréel non unitaire; il est multiple
si le groupe fondamental est réel unitaire2'. Ce résultat s'étend
évidemment à un groupe semi-simple. Si on veut bien remarquer
que les Géométries de Klein les plus importantes sont celles dont
les groupes fondamentaux sont simples ou semi-simples (Géométries

projective, affine, conforme, de Laguerre, d'Hermite, etc.),
on arrive à cette conclusion inattendue que la Géométrie riemannienne

(à ds2défini) occupe une place tout à fait privilégiée.
Partis, au début de cette conférence, de l'antagonisme entre les

Géométries de Klein et la Géométrie riemannienne générale,
nous arrivons, après un long détour, à cette constatation que
c'est sous la forme riemannienne que ces Géométries de Klein,
ou du moins les plus importantes d'entre elles, montrent le
mieux leurs propriétés fondamentales. Il y aurait beaucoup à

dire sur ce côté géométrique de la question3. Je me contenterai
d'en signaler un aspect intéressant.

On sait l'importance du principe de dualité en Géométrie
projective; or ce principe n'apparaît pas du tout si l'on se borne

1 Cela signifie que si l'on a deux systèmes d'éléments générateurs rendant la Oéométrie
riemannienne, on peut établir entre les éléments des deux systèmes une correspondance
biunivoque telle que deux éléments correspondants soient invariants par le même sous-
groupe du groupe fondamental; au fond, c'est ce sous-groùpe qui, suivant les idées
de Klein et de Poincaré, définit le « point » de l'espace.

2 Dans ce dernier cas, il peut en outre se présenter des formes riemanniennes
torsion, la courbure et la torsion étant encore conservées par le transport parallèle.

» En Arithmétique et dans la Théorie des fonctions, l'existence de ces formes riemanniennes

joue un rôle important. C'est ainsi que H. Poincaré fait reposer la possibilité
d'une théorie générale des groupes hyperfuchsiens sur la forme riemannienne
qu'on peut donner à la Géométrie d'une forme d'Hermite indéfinie (C. R., 98, Ï884,
p. 503-503), de même que la théorie des groupes fuchsiens et celle des groupes kleinéens
reposent sur les Géométries non-euclidiennes à 2 et à 3 dimensions, formes riemanniennes

des Géométries projectives de la droite réelle et de la droite complexe.
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à la partie continue du groupe fondamental de cette Géométrie, à

savoir le groupe des homographies: le groupe fondamental
complet est formé des homographies et des corrélations. Dans

toute Géométrie de Klein, à groupe fondamental continu donné,
il sera du plus haut intérêt de savoir si ce groupe continu n'est

pas à compléter par d'autres familles de transformations
analogues aux corrélations de l'espace projectif. Or c'est là un
problème que nos connaissances actuelles sur les groupes
unitaires nous permettent de résoudre complètement toutes les fois

que le groupe fondamental est simple ou semi-simple. Je signalerai

simplement ce résultat assez curieux, c'est que, dans la
Géométrie cayleyenne à 7 dimensions dont l'absolu est une
quadrique de la forme

2.2.2.2 2 2 2 2 Ax\ 4" '*'2 + 'r3 + 'r4 X5— <r6 — — 0 '

le groupe des déplacements proprements dits se complète par
23 autres familles de transformations.

J'espère vous avoir montré toute la variété des problèmes que
la Théorie des groupes et la Géométrie, en s'appuyant mutuellement

l'une sur l'autre, permettent d'aborder et de résoudre.
Il y a encore là un champ de recherches à peine exploré et qui
promet des résultats très intéressants.

L'Enseignement mathém., 26e année; 102". 15
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