Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 26 (1927)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LE TRIANGLE DES PIEDS DES HAUTEURS

Autor: Streit, Arnold

Kapitel: 11. — Points en ligne droite.

DOI: https://doi.org/10.5169/seals-21251

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

11. — Points en ligne droite.

1º Déterminons les points d'intersection X, Y, Z des côtés correspondants — ou leurs prolongements — d'un triangle et du triangle des pieds des hauteurs (fig. 20):

Théorème 1. — Les côtés correspondants — ou les prolongements des côtés — d'un triangle et du triangle des pieds des hauteurs se coupent en trois points en ligne droite.

 $D\'{e}monstration$. — 1^{er} procédé. — Le théorème de $Menela\"{u}s$ appliqué aux trois transversales $A_1 B_1 Z$, $C_1 B_1 X$, $C_1 A_1 Y$ du triangle ABC donne successivement

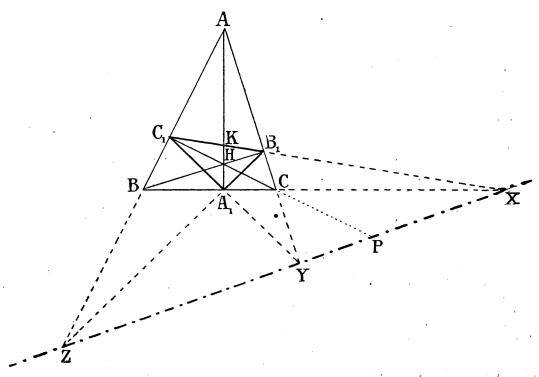


Fig. 20.

1)
$$AZ \cdot BA_1 \cdot CB_1 = AB_1 \cdot CA_1 \cdot BZ$$
,

2)
$$AC_1 \cdot BX \cdot CB_1 = AB_1 \cdot CX \cdot BC_1$$
,

3)
$$AC_1 \cdot BA_1 \cdot \underline{CY} = \underline{AY} \cdot CA_1 \cdot BC_1$$
.

En multipliant membre à membre, on obtient

α) (AZ . BX . CY) . (AC₁ . BA₁ . CB₁)² = (AY . CX . BZ) . (AB₁ . CA₁ . BC₁)² .

135

Or, d'après le théorème de *Ceva* appliqué aux hauteurs du triangle ABC, on a

4)
$$AC_1 \cdot BA_1 \cdot CB_1 = AB_1 \cdot CA_1 \cdot BC_1$$
,

d'où

4)'
$$(AC_1 \cdot BA_1 \cdot CB_1)^2 = (AB_1 \cdot CA_1 \cdot BC_1)^2 \cdot \alpha$$

 α : 4)' ... AZ . BX . CY = AY . CX . BZ . (68)

Par suite, d'après la réciproque du théorème de Menelaüs, les trois points X, Y, Z sont en ligne droite.

2^{me} Procédé. — Dans un quadrilatère complet, les trois diagonales se coupent harmoniquement. Donc (fig. 20):

Multiplions membre à membre:

$$\alpha) \frac{AZ \cdot BX \cdot CY}{AY \cdot CX \cdot BZ} = \frac{AC_1 \cdot BA_1 \cdot CB_1}{AB_1 \cdot CA_1 \cdot BC_1}$$

Les transversales AA_1 , BB_1 , CC_1 (issues des sommets A, B, C) se coupant en un même point H, on a, d'après le théorème de Ceva

$$AC_1 \cdot BA_1 \cdot CB_1 = AB_1 \cdot CA_1 \cdot BC_1$$
.

Le second membre de α) est donc égal à 1, par suite aussi le 1^{er} ; donc

$$AZ \cdot BX \cdot CY = AY \cdot CX \cdot BZ$$
.

D'après la réciproque du théorème de Menelaüs, les trois points X, Y, Z sont en ligne droite.

Remarque. — Ce théorème peut être généralisé: En appliquant les mêmes procédés de démonstration au cas de trois transversales quelconques issues des sommets d'un triangle et se coupant en un même point, on aboutit au résultat suivant:

Théorème 2. — Si l'on mène par les sommets d'un triangle trois transversales se coupant en un même point et qu'on détermine leurs points d'intersection avec les côtés correspondants, les droites de jonction de ces trois points coupent les côtés respectifs du triangle en trois points en ligne droite.

Théorème 3. — Chaque hauteur d'un triangle détermine sur la droite de jonction des points d'intersection X, Y, Z des côtés avec les côtés respectifs du triangle des pieds des hauteurs le 4^{me} harmonique de ces points X, Y, Z (fig. 20).

 $D\'{e}monstration$. — Soit P le point d'intersection de la hauteur CC_1 avec la droite XY. Les quatre points A, K, H, A_1 forment un groupe harmonique, car la diagonale AH du quadrilatère complet AC_1 HB₁ BC est coupée harmoniquement par les deux autres C_1 B₁ et BC. En les projetant à partir du point C_1 , on obtient le faisceau harmonique C_1 (AKHA₁) et celui-ci coupe la droite XYZ en quatre points harmoniques ZXPY (c.q.f.d.).

2º On sait que le centre O du cercle circonscrit à un triangle, son centre de gravité G et l'orthocentre H sont en ligne droite $(GO = \frac{1}{2} GH)$. En se basant sur cette propriété et en appliquant la 7^{me} propriété (voir 8) au triangle IJK des pieds des hauteurs du triangle O' O" O"' (ou la 10^{me} au triangle ABC), on est conduit au théorème suivant (fig. 12 et 21):

Théorème 4. — Le centre O du cercle circonscrit à un triangle donné, le centre de gravité G, le point H d'intersection des hauteurs (ou le centre du cercle inscrit dans le triangle des pieds des hauteurs), le centre M du cercle circonscrit au triangle des pieds des hauteurs (ou le centre du cercle passant par les points milieu O', O", O''' des segments supérieurs des hauteurs), le centre de gravité G' du triangle ayant pour sommets les points milieu des segments supérieurs des hauteurs et le centre M' du cercle passant par les points milieu des segments inférieurs des hauteurs sont (6 points) en ligne droite.

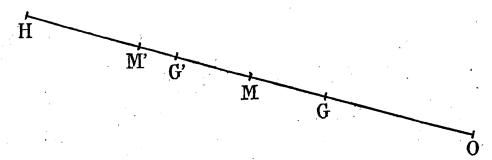


Fig. 21.

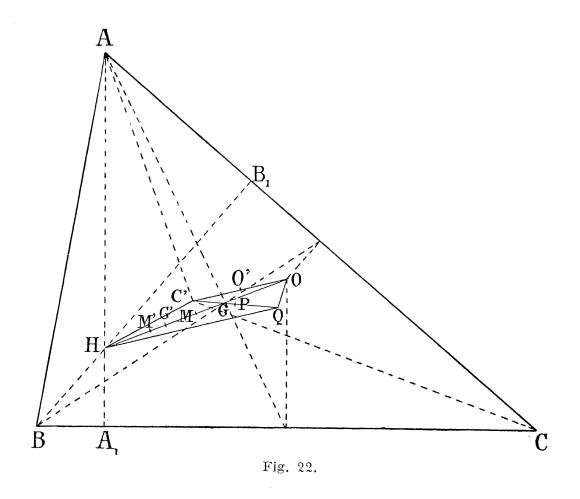
Positions relatives de ces points:

$${\rm HG}=2\,.\,{\rm GO}$$
 , ${\rm \ HM}={\rm \ MO}$, ${\rm \ HG'}=2\,.\,{\rm \ G'M}$, ${\rm \ HM'}={\rm \ M'M}=\frac{1}{4}$ ${\rm \ HO}$,
$${\rm \ HG'}={\rm \ G'G}$$
 .

Rayons des cercles en question:

$${\rm OA} \; = \; R \; \; , \qquad {\rm MA}_{_1} \; = \; R_{_1} \; = \; \frac{R}{2} \; \; , \qquad {\rm M'} \; I \; = \; \frac{R_{_1}}{2} \; = \; \frac{R}{4} \; \; . \label{eq:oa}$$

3º On sait que l'orthocentre H d'un triangle, le point d'intersection Q des transversales joignant les sommets aux points de contact des cercles ex-inscrits, le centre O du cercle circonscrit et le centre C' du cercle inscrit sont les quatre sommets d'un trapèze dont les diagonales se coupent au centre de gravité G du triangle (fig. 22). La grande base HQ est le double de la petite



base C'O. Ces points H, G, O, C', Q sont les 5 points remarquables du triangle. Le point milieu M de la diagonale HO est le centre du « cercle des 9 points », donc le centre du cercle circonscrit au

triangle des pieds des hauteurs et le point milieu P de la diagonale C'Q, le centre du cercle inscrit dans le triangle ayant pour sommets les points milieu des côtés du triangle donné.

D'après ce qui précède, nous sommes à même de fixer, sur la petite base C'O et la diagonale HO du trapèze, les positions de 3 nouveaux points qui sont:

- 1. Le centre O' du cercle passant par les points milieu des segments supérieurs des bissectrices: il est situé au milieu de la distance des centres des cercles inscrit et circonscrit (voir 8, 11^{me} propriété), donc au milieu de la petite base C' O du trapèze;
- 2. Le centre M' du cercle passant par les points milieu des segments inférieurs des hauteurs: il se trouve au milieu de HM, donc au quart de la diagonale HO à partir de l'orthocentre H;
- 3. Le centre de gravité G' du triangle ayant pour sommets les points milieu des segments supérieurs des hauteurs: il est au milieu du segment HG de la diagonale HO.

En résumé (fig. 22):

HQ = 2 . C'O; HM = MO; C'P = PQ; C'O' = O'O; HM' = M'M; HG' = G'G = GO.

MÉLANGES ET CORRESPONDANCE

A propos d'un article sur les hauteurs d'un triangle.

J'ai lu avec beaucoup d'intérêt le travail sur les hauteurs d'un triangle publié par M. Streit dans l'Enseign. Math. (Tome XXV, p. 22-45, 1926). Permettez-moi de faire remarquer que le résultat exposé au § 4 (p. 31-32) n'est qu'un cas particulier d'une propriété plus générale. En effet, en remplaçant les hauteurs par les perpendiculaires abaissées d'un point quelconque du plan du triangle sur les côtés, on trouve encore que les sommes des carrés construits sur trois segments non consécutifs sont égales.