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128 A. STREIT

b

Démonstration. -
- A AB,C, ~ A BC,A, :
a, i = ¢ b, 5
a b, = c'c" |
| (64)

byc, = a'a’
cia, = b'b"

Remarque. — En multipliant ces trois relations membre &

membre, on serait conduit au théoréme précédent. .
10. — Droites se coupant en un méme point.

1o Abaissons de chaque sommet d’un triangle la.perpendicu-
laire sur le coté correspondant du triangle des pieds des hauteurs:
THEOREME 1. — St Uon abaisse de chaque sommet d’ un triangle
donné la perpendiculaire sur le cété correspondant du triangle des
pieds des hauteurs, ces trois perpendiculaires se coupent en un
méme point qui est le centre du cercle circonscrit au triangle donné.

Démonstration. — Soit O le centre du cercle circonscrit au
triangle ABC. On a (fig. 15):
: AO | AD ; mais AD|a, .
Done .
AO | a,; - de méme BO | b, et CO | ¢ .

Les perpendiculaires abaissées de A, B, C respectivement
sur ay, by, ¢; passent donc par O.

Fig. 15.
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Remarque 1. — On peut aussi démontrer ce théoréme en se
basant sur la réciproque du théoréme de Ceva.

\

\
\

Fig. 16.

Remarque 2. — Les sommets du triangle donné (ABC) étant
les centres des cercles ex-inscrits au triangle des pieds des hau-
teurs (A, B; C;), les perpendiculaires en question sont les rayons
aboutissant aux points de contact des cotés (fig. 16). Le théo-
réme ci-dessus peut done aussi s’énoncer comme suit:

TarorEME 1. — St lon construit les cercles ex-inscrits a un
triangle (A; By C,) et les rayons aboutissant aux points de contact
des cotés, les prolongements de ces trois rayons se coupent en un
méme point qui est le centre du cercle circonscrit au triangle ayant
pour sommets les centres (A, B, C) des cercles ex-inscrits (fig. 16).

20 Abaissons, comme précédemment, de chaque sommet d’un
triangle la perpendiculaire sur le coté correspondant du triangle
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- des pieds des hauteurs et joignons les pieds aux sommets opposés
de ce second triangle:

TuktoriME 2. — Si lon abaisse de chaque sommet d’un triangle
la perpendiculaire sur le cdté correspondant du triangle des pieds
des hauteurs et qu’on joigne les pieds de ces perpendiculaires aux
sommets opposés de ce dernier triangle, les trots drottes ainst obte-
nues se coupent en un méme point (fig. 17).

a’’ cos a ,

2 = a’ cos a , x!!

y = b’ cos B, y”’ = b" cos B,

IE ’ [ /I

. z/ = ¢ cos 9, 2 cos ¢ .
- Mais
a’b'¢’ = a’’ b’ " (Théoréme de Ceva) .
- Done |
xy = x”y" #”.,. : (65)

Par suite, d’aprés la réciproque du théoréme de Ceva, les trois
drmtes A, D, B, E et G, F se coupent en un méme point Q. Ce
point est le cmquzeme pomt remarquable du trlangle des pieds

des hauteurs.
Remarque——-—De(55)AE BDC.lD AFB F=GCGE
résulte aussi A; E.G;D.B, F = AF.B;D.CE.

-
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30 Menons les bissectrices des angles d’un triangle et joignons
leurs points d’intersection avec les cotés respectifs du triangle
des pieds des hauteurs aux sommets opposés de ce 2me triangle:

TukorEME 3. — St lon méne les bissectrices des angles d'un
triangle jusqu’a leurs points d’intersection avec les cotés respectifs
du triangle des pieds des hauteurs et qu’on joigne ces points d’inter-
section aux sommets opposés du second triangle, les trois transver-
sales ainst obtenues se coupent en un méme point.

Démonstration. — Soient G, N et T les points d’intersection
des bissectrices avec les cotés respectifs a;, b, ¢; (fig. 18):

AAB,C..AT:BT = a”: 0,

ABCA.. B,G:C,G = b : ¢
ACAB...CN: AN=1¢":a
d’ot
AT.BG. C,N:A N. C,G.B, T = 2”1V :d b ¢
Mais

a/ l)lc/ — (L,, [)IIC// X
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Par suite | - |
A,T.B,G.C,N = A\N.C,G.B,T . (66)

Remarque. — Ce théoréme peut étre généralisé: on peut rem-
placer les trois hauteurs du triangle donné par trois transversales
quelconques AA’, BB’, CC’ issues des sommets et se coupant en
un méme point: en menant les bissectrices des angles A, B, G
jusqu’a leurs points d’intersection avec les cOtés respectifs du
triangle A’ B’ C’ et en joignant ces points aux sommets opposés
A’, B’, C’, on obtient trois droites se coupant en un méme point.
(La démonstration est exactement la méme.) |

40 Construisons les hauteurs A; D, B; E, C; F du triangle des
pieds des hauteurs et joignons leurs pieds D, E, F aux sommets
correspondants A, B, C du triangle donné (fig. 19):

" THEOREME 4. — Les droites de jonction des sommets d’un triangle

" aux pieds des hauteurs correspondantes du triangle des pieds des
hauteurs se coupent en un méme point. |
Démonstration. — Soient X, Y, Z les points d’intersection de

ces droites de jonction avec les cOtés respectifs a, b, c. En appli-
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quant le théoréme du sinus aux six triangles

CFA, , CFB, , ADB, , ADC, , BEC, , BEA, , on obtient
1)A,F:CF = sin ¢ :sin a ; 2) CF : B,F = sin 8 :sin 3" ;

3)B,D:AD = sin o/ :sin 8 ; 4)AD:C,D = sin y: sin a” ;
5)C,E:BE = sinf/:sin g ; 6) BE: A, E = sin a:sin " .
1).2) ... A,F: B F = sin § sin ¢ :sin a sin 9"",
3).4) ... B D:C,D = sin ¢ sin ' :sin § sin o” ,

ot

).6) ... C,;E:AE = sin asin ":sin y sin 77,
d’ou

«)A,F.B,D.C,E:A,E.C,D.B,F = sina/sin " sin 9’ :sina” sin " sin¢" .

Appliqué aux six triangles CZA, CZB, AXB, AXC, BYC, BYA,
le théoreme du sinus donne

1) AY : BY = sin ' : sin a ; 2)BY: CY = sin y:sin " ;
3)) CX : AX = sin o :sin p ; 4)"AX : BX = sin B:sin o ;
5 BZ : CZ = sin 9 :sin § ; 6) CZ : AZ = sin a:'sin 9" .
1)7.2)" ... AY: CY = sin ¢ sin f’ : sin a sin 8’ ,
3)".4)" ... CX:BX = sin f sin o : sin ¢ sin o’ ,
5)".6)" ... BZ: AZ = sin a sin 9’ : sin Bsin " ,
d’ou

B)AY.CX.BZ:AZ.BX.CY = sin o sin ' sin 9’ : sin o” sin B” sin §” .

De «) et [3) résulte

AY.CX.BZ:AZ.BX.CY = A|F.B,D.C,E:A,E.C'D.B,F = 1,

car, d’aprés le théoréme de Ceva appliqué aux hauteurs A, D,
B, Eet G F:
A,F.B,D.C,E = A,E.C,D.B,F .

Done ‘
AZ .BX.CY

I

AY.CX.BZ . (67)

Par suite, d’apres la réciproque du théoréme de Ceva, les trois
droites AX, BY, CZ se coupent en un méme point P.




	10. — Droites se coupant en un même point.

