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126 - : A. STREIT

centre M’ est le point milieu de la distance des centres H et M des
cercles inscrit et circonscrit (fig. 12 et 13).

Le triangle des pieds des hauteurs A; B; C; étant un triangle
quelcongue, la 11me propriété est aussi applicable au triangle
donné ABC. |

9. — Produits égaux (fig. 14).

pwl

TutorEME 1. — Si des sommets du triangle des pieds des hau-
teurs on abaisse les perpendiculaires sur les cotés du triangle donné,
les produits de trois perpendiculaires de méme sens sont égaux

(fig. 14).
Démonstration. \
AG = ¢ sinf, A K = b, sinyg,
B,I = a, sin 9, C;M = a, sin B,
CIJA:b1 sin « ', BIL:C'I'sina.
- Par suite .
A,G.B,I.C,J =AK.CM.B, L. (61)
TutoriME 2. — Le produit des distances des sommets d’un

triangle aux cétés correspondants du triangle des pieds des hau-
teurs est égal au produit des distances de méme sens des sommets

du triangle des pieds des hauteurs aux cétés du triangle donné
(fig. 14):

g 2
AD.BE.CF:AIG.BII.CIJ(:E). (62)
A r/
Démonstration.
AD = ¢/ siny ,. AG =a"siny,
BE — a’ sin a , B,I = b sina,
CF = b sinff, CJ =¢c"sinf,

d’ou résulte ~
B AD .BE .CF = d'b’¢’ (sin « sin f sin ).
et - : ot ,
A,G.B,I.C,J = a”b"c"(sin a sin B sin 9) .
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Mais, d’apres le théoreme de Ceva
a' b’c’ = b’ .
Donc
AD.BE.CF = A,G.B,1.CJ(= A,K.C,M.B,L) .

THEOREME 3. — Le produit des trois cotés du triangle des preds
des hauteurs est égal au produit de trois segments non consécutifs
déterminés par les hauteurs sur les cotés du triangle donné (fig. 14):

a,bye, = a'b'c' (= a""b"c") . (63)

Démonstration.

@, = a cos o , @' = ccos B,

by = b cos 8, b' = a cos vy,

¢, = ¢ cos 7y , ¢ = b cos a .
Par suite

abic, = a'b'c .
Remarque. — Ce théoréme peut aussi étre démontré au moyen
des triangles semblables AB; C;, BC; A;, CA,B,.

THEOREME 4. — Le produit de deux cdtés du triangle des pieds

des hauteurs est égal au produit des deux segments qui concourent
avec eux (fig. 14).
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b

Démonstration. -
- A AB,C, ~ A BC,A, :
a, i = ¢ b, 5
a b, = c'c" |
| (64)

byc, = a'a’
cia, = b'b"

Remarque. — En multipliant ces trois relations membre &

membre, on serait conduit au théoréme précédent. .
10. — Droites se coupant en un méme point.

1o Abaissons de chaque sommet d’un triangle la.perpendicu-
laire sur le coté correspondant du triangle des pieds des hauteurs:
THEOREME 1. — St Uon abaisse de chaque sommet d’ un triangle
donné la perpendiculaire sur le cété correspondant du triangle des
pieds des hauteurs, ces trois perpendiculaires se coupent en un
méme point qui est le centre du cercle circonscrit au triangle donné.

Démonstration. — Soit O le centre du cercle circonscrit au
triangle ABC. On a (fig. 15):
: AO | AD ; mais AD|a, .
Done .
AO | a,; - de méme BO | b, et CO | ¢ .

Les perpendiculaires abaissées de A, B, C respectivement
sur ay, by, ¢; passent donc par O.

Fig. 15.
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