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Donc
ON + OT + OV #- + R (31)

c'est-à-dire
Théorème. — La somme des distances du centre du cercle

circonscrit à un triangle aux côtés du triangle est égale à la somme
des rayons des cercles inscrit et circonscrit.

Conséquence. —- Il en résulte que le périmètre de l'hexagone
O' VO" NO'" T est égal à 2 (r +R).

3. — Triangles aux sommets.

A. Cercles inscrits. — Les triangles aux sommets ABX Cx,
BCX Ax, CA1B1 étant semblables au triangle ABC donné, nous
avons (fig. 1):

A AB.C. — — — — cos a
r a

d'où
A ABj Cj r' zzz r cos a

A BCjAj r" — r cos ß

A CAjBj r"' — r cos y,
c'est-à-dire

Le rayon du cercle inscrit dans Vun quelconque des triangles aux
sommets est égal au rayon du cercle inscrit dans le triangle donné
multiplié par le cosinus de Vangle commun.

Par suite

r' _j_ r"yf"— 7.(cos a -f- cos ß -J- cos y)

Or

v -|— R
cos a 4- cos ß -J- cos y — —-— (32)R

Done
.2

R *

En outre

+ ,.// + ,./// r + *
% (33)

r' r" ] — /,3(cos a cos ß cos y)
Mais (16)

cos a cos ß cos 7 rrr 2j_
1 1 2R
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Donc

Y* j»3

r'r"r"Lz- 1 - •— •— - « -a
2R '

d'où
DrW" ~ r,r3 (34)

B. Cercles circonscrits. — Les angles A et HCXA
étant droits, AH (c'est-à-dire s') est le diamètre du cercle
circonscrit au triangle ABX Cx (fig. 1 et 12) :

2Rr .s' — 2R cos a

•S
^

A AB, Cj R' — — — R cos a
M

aBCjA,... R" Ç R cos ß
là

s'"
A CAjBj R"' — — R cos

&

Par suite
R' + R" + R'" .1 (s' -f s" + s'")

£

Or (30)
*'; + s"-pV"-f R)

Donc
R' 4. R" 4- R'" - r-j-R (35)

c'est-à-dire

La somme des rayons des cercles circonscrits aux triangles aux
sommets est égale à la somme des rayons des cercles inscrit et

circonscrit au triangle donné.

En outre
2R' ,2R" .2R'" s's"s"'.

Mais 1

Donc

d'où

c'est-à-dire

i Op. cité, formule 22, p. 44.

s's"s"'r,DV. (36)

D'. D'-'. D'" r/D2 ss dl. D,'l D

R'. R" R'" r, R, R (37)
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Leproduit des rayons des cercles circonscrits aux triangles aux
sommets est égal au produit des rayons des cercles inscrit et

circonscrit au triangle des pieds des hauteurs par le rayon du cercle

circonscrit au triangle donné.
C. Distances des centres des cercles circonscrits aux

TRIANGLES AUX SOMMETS AUX CÔTÉS DU TRIANGLE DES PIEDS

des hauteurs. — Les centres des cercles circonscrits aux
triangles aux sommets sont les points milieu des segments
supérieurs des hauteurs du triangle donné. On a (fig. 6 et 12):

A

Fig. 6.

07L7 + 0//L// + O"'L'" — (O'M + 0"M + 0777M) — (ML' + ML" + ML"').

Or, M étant le centre du cercle circonscrit au triangle Ax Bx Gx
et ML', ML", ML'" ses distances aux côtés de ce triangle, on a,
en vertu de (31)

ML' 4- ML" + ML7" Rj 4-
En outre

O'M 4- 0"M 4- O777M — 3R1

Remplaçons ci-dessus:

O'L7 4- Q77L77 4- Q"'L7'7 2Rt — r, R — r, (38)

c'est-à-dire
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Théorème. — Lasomme des distances des centres des cercles

-

circonscrits aux triangles aux sommets, — points milieu des

segments supérieurs des hauteurs du triangle donné, — aux côtés

correspondants du triangle des pieds des hauteurs est égale à la
différence entre le rayon du cercle circonscrit au triangle donné et

le rayon du cercle inscrit dans le triangle des pieds des

La relation ci-dessus peut aussi être interprétée comme suit
(fig. 6 et 12):

Si du centre (M) du cercle circonscrit à un triangle (A^jC^)
on abaisse les perpendiculaires sur les côtés, la somme des segments
compris entre les côtés et la circonférence (circonscrite) est égale à

la différence entre le diamètre du cercle circonscrit et le rayon du
cercle inscrit.

4. — Somme des distances des sommets du triangle donné aux côtés

correspondants du triangle des pieds des hauteurs. (Somme des

rayons des cercles ex-inscrits à un triangle.)

La figure (4) donne :

AD crsin7
} AD -4- BE sin 7

BE c"sin 7

BE a'sin a
[ BE -f" GF a sin a

CF — a"sina

CF =r Vsinß
> CF -j- AD ~ b sin ß

AD b" sin ß

t

d'où, en additionnant membre à membre

2 (AD -|~ BE 4" CF) a sin a + sin ß + c sin 7

V

Le second membre peut s'exprimer en fonction des rayons R
et : :

— 2R, a 2R shi a -b isz 2R sin ß, 2R sin 7;
sin a'-_ • - <- - -

asin ce bsin ß + c sin 7 2 R [sin2 a -f- sin2 ß + sin2 7]'.
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