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84 V. HLAVATY

facilement d’aprés les inégalités (8) que I'on a une relation de la
forme: |
16, — 6,| << kh*

k étant ime eonstante, p un n’ombi’e'positif compris entre 0 et 1.
On aura donc aussi :

|cos 6, — cos 0,| < kh* - |sin 6, — sin §,| < kR

On montrerait facilement alors, en employant la méthode
analogue & celle utilisée dans le cas d’uuéfonction d’une variable
(¢f. P. Montel, Sur les’ polynomes d’ approximations. Bull. Soc.
Math. Fran. 1918) qu’on peut former deux polynomes P, (s) et

Qn (s) représentant respectivement u, (s) et ¢, (s) avec une
approximation: ’

Alors - uy(s) et v,(s) admettent des dérivées uy'(s), ¢y (s)
continues.

SUR LES DEPLACEMENTS ISOHODOIQUES

PAR

V. Hravary (Prague).

1. Exrpositionl. Désignons par X* les n parameétres d’une
variété & n(> 1) dimensions, par I, (32 I'..) les n® paramétres
de son déplacement, que nous désignons par L,. Il est bien
connu que pendant la transformation des parameétres X (au

Jacoblen A 7é 0) , _
X = X(X) | )

les T, se transforment d’aprés

Xt/ axXt aXH 2 X
= e P;L+—————° _
dX” \0/X"” d'X" ‘ o’X”"b’X“

1 Nous employons la symbollque de M Schouten, exposée dans son livre Der Ricci-
Kalkil. Berlin, 1924,
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Il s’ensuit que la différence de deux parameétres des déplace-
ments divers est un affineur

F;.:L — F;\g,\ + G"/.\;.L‘) (2)

Ces équations définissent la transformation du déplacement.
Si cette transformation conserve les lignes géodésiques, nous
Pappelons transformation isohodoigue. Dans ce cas, il faut et
il suffit que 'on ait

ooV o X K
G)..u -+ G:A‘l\ - A}. g;.L + A;JVg’A :

g, étant un vecteur arbitraire covariant et A; l’affineur-unité
(Delta de Kronecker).

Les déplacements aux mémes lignes géodésiques seront dits
déplacements isohodoiques. On a donc une infinité de déplace-
ments isohodoiques.

Nous nous proposons d’étudier le déplacement (désigné par
*Ly, ou Ly,) qui tout en ayant les mémes lignes géodésiques
que L, ne dépend pas de la transformation (2). Mais on a deux
cas a distinguer: Ou bien la différence

oV ooV
G wo G;th

n

est de la forme
ZG['.,:,I] =G =G = Ak — A ],

ik LA }

h, étant un vecteur arbitraire covariant, ou bien cette diffé-
rence est un affineur général. Nous étudierons tout d’abord le
premier cas, ou la transformation isohodoique peut étre écrite
en général

| U, =T, + A + 8L ()

avec p,, ¢, vecteurs arbitraires covariants, et ensuite nous
examinerons le cas plus général.

2. PARAMETRES DU DEPLACEMENT *L,. L’élimination de p,
et ¢, de (2’) nous montre que les expressions ®;, -

=TIy + ! [A:,((F'f- — nrg;“) + A (rs, — nF;{-,,_)] (3)

n?®—1 e

ne dépendent pas de la transformation isohodoique (2). Les @,
sont donc invariantes par rapport au choix des vecteurs p, et g¢,.
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Si le jacobien A est constant, elles peuvent étre considérées comme
parametres du deplacement *L,. Mais nous admettons aussi
les transformations plus générales, au jaeobien-fonction des X.

Dans ce cas, si g est une fonction qui pendant (1) se transforme
d’apres

'9 = Ag (4)
les expressions
) v 1 v 0 , 0
*Plu. - q)”* T " + (A logg + AP- 6—-}2—)" log‘ g) (5)

> X*

se transforment précisément comme I4,. On peut donc les
prendre pour les paramétres du déplacement *L,. En effet,
ce déplacement est invariant par rapport aux transformations
isohodoiques (2"). En désignant par P,, Q, les vecteurs

1

1 0
P = e —nl —— - log
@ n? — (I o ”F,,,“) + n 4+ 1 yx» log g
1 S 1 d
Qu — n2 1 (.Fv-xx T nFW) + n -+ 1 yx* log 9

on peut écrire au lieu de (b)
WY, =T7, + P A+ QA . (5)

Pour trouver les affineurs du déplacement *L,, on se sert
de la regle suivante: Etant donné un affineur-fonction de T, du
déplacement Ly, on obtient laffineur correspondant de *L, en
y remplacant T, par *T%,.

Ces affineurs sont naturellement indépendants de la trans-
formation (2’). Nous les désignerons par un astérisque * en haut
a gauche. "

3. Foxcrion g. Une fonction qui se transforme d’aprés (4)
est facile & trouver. On peut prendre pour g le produit d’une
constante et de 'unique composante d’un n-vecteur arbitraire
covariant, ou du déterminant des n? composantes des n vecteurs
‘covariants linéairement indépendants, ou enfin de la 15™e puis-
sance du déterminant d’un tenseur (affineur symétrique) cova-
riant du second ordre. Mais en tout cas g n’est une fonction
scalaire que si A est constant, égal & 1. Pour trouver la diffé-
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rentielle covariante d¢q (qui pour le cas A =1 égale la d.1ffe-
rentielle ordinaire dg), supposons g définie de la derniere maniere,
c’est-a-dire posons

2 A a - «
g% = c.déterminant de f;x,. ,

ot f, est un tenseur (affineur symétrique) arbitraire et ¢ une

constante quelconque. Si f,, est du rang n (ce que nous sup-
o 7 A4 3

poserons), on peut trouver le tenseur f* au moyen de I'’équation

“f = A
f ol [T

Cela étant, on trouve
Bg? = 2909 = ¢*/*"3f,

= (L, — T F AN = T, dX)

— d 82 - dX-“) gg (Ij::(l) Ai(:: + F}U»-ll) A;’/“)

= 2g(dg — I} dX"g) .
Il s’ensuit
b9 = dg — I dX"g .

Or, en désignant par *¢ le symbole de la différentiation
covariante de *L,, on peut écrire

#g = dg — *I" dX"g =0 . (6)

La différentuelle covarrante de g dans *Li, est nulle. Ce résultat
est naturellement indépendant de la maniére, dont g est définie.

St © est une fonction qui se transforme comme g, on peut
la «jauger » d’apres le principe de M. Klein

G

= sq, (-’1’)

ou s est une fonction scalaire. Les expressions

v v 1 Y D ~ ~ D ~
+1 — (l).m + PR <A)‘ ~ log @ + A;L - log 6) (7)
VA Qs
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sont de méme parameétres d’un déplacement linéaire. On a
: d’apres (4') et (7)
- 1

+P;\p, — *F‘{{L + stA; -+ sxA‘; , s; = PR logs . (8)

Nous reviendrons encore sur ce sujet.

4. L’AFFINEUR *S5;.. On sait que la différence I', — T, est
un affineur. Nous la désignerons avec M. Schouten par 2S;.

BT — Ta) = T = Si7

A
Si S;," = Sp Ay, nous disons que le déplacement est semi-
symétrique, si S;," = 0 nous disons le déplacement symétrique.

En appliquant la régle que nous venons d’énoncer plus haut,
on obtient l'affineur *S;,’
S = *Pb\:k] = S"'\};v + Afx Pst] + AE:& Q-

Mais comme on a

V v —_— v — 1 3 “% N —
APy + AL Q) = Ap(Py — Q) = 7 (AT, — IY, A)) =
1 % ". e O —_— 2 Y
= —— (A]8;;F — A} 5.%) = ——— A, S,
on trouve
*G:+Y — SV _l_ 2 AV S (9)
N V7S n — 1 Tple

Or, si L, n’est pas (semi)-symétrique,-le déplacement *L.,
n’est pas symétrique en général. Si L, est semi-symétrique, on
trouve | | |

1

n—1

*Sm' — SD; A:L] -+

(418, A% — A, S A%) = Sy + S A} =0.

St Ly est semi-symétrique, *Ly, est symétrique. Ce théoréme
peut étre aussi énoncé d’'une autre maniere : Chaque déplace-
ment semi symétrique peut étre transformé isohodoiquement en un
déplacement symétrique.




DEPLACEMENTS ISOHODOIQUES 89

5. Isomérrie. La différentielle covariante d’un n-vecteur
: s Vi.on LY PR
al’bltl’all’e [ Ve l [v1 vu] est

3UM"n = dU"t"n 4 T Ut"ndX* .

Si 9, et 9, sont les symboles des différentielles covariantes
aux directions diverses d; X* et d,X*, on trouve facilement

N IN (T s T \ T N 0 al 0 Y.
(0,0, — 8,8,) Ut = d, X*d, X" U"t""n — 1, — — Ia.y. :
) oX* 7 doX” 7
o . v b . . . 4 M
Cest le changement subi par U2 si celui-ci décrit un
contour fermé infiniment petit. On trouve facilement que

N I"L
- 72 0
o X X

I';. est un bivecteur (affineur alterné)

0 0

Vmp. = — Vr;xm = D r«

d X 2] 3 X° A

La condition nécessaire et suffisante pour qu'un n-vecteur
(co- ou contre-variant) ne subisse aucun changement apreés avoir
décrit un contour fermé infinitésimal est

Vou = 0 .

Dans ce cas on dit que le déplacement est isométrigue. Pour

examiner, si *L,, est ou n’est pas isométrique, il faut connaitre
*T '

d
** — log g .
w = o 108
On a done tout de suite
O D 32
*\,7{,,{L po— ¢ *I‘:j/-[y) _ ¢ *I‘:/'U ] Q;m_ — 0 . (10)
o X ‘ dpX» oXlr gy el

Le déplacement *Ly est isométrigue. Ce théoréme peut étre
énoncé d’une autre maniére: Chaque déplacement peut étre
transformé isohodoiquement en un déplacement isométrique.

6. QUANTITE DE COURBURE. Désignons par y, resp. *y,
les symboles de la dérivation covariante dans L, resp. *L,. Si
v’ et wy sont deux vecteurs indépendants de TI';, les affineurs
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*V.9' et *v,.w ne dépendent pas de la transformation isoho-

doique (2). En appliquant la régle pour la formation des affineurs
de *L,, on obtient d’aprés (5)

*V{Lv" = VPVV + v'P, + A‘;,kaQx , Vo = V¥ — o P, —w Q, .
(11)
Ces formules nous seront utiles pour le calcul de la quantité

de courbure du déplacement *L,. Soit R.; la quantité de
courbure du déplacement original L,

d d
eeeV v v ™™ o, 1o
R = dXH 5 X D — LB + FWIM '
On trouve facilement
R"*=YV .
wy.a Wk

L’affineur R, intervient dans les identités de Ricci, géné-

ralisées par M. Schouten

\

2V, VY =—RiJV 287,02y, V% = RiLw, + 28 0y, w, .

WAL

Or, en appliquant Popérateur *y, a (11) et en alternant les
indices o, p. on obtient une relation entre R;.' et la quantité
de courbure *R;;;" de *L,. En tenant eompte de ce que cette
relation est valable pour un vecteur arbitraire ¢V (ou 'wy) on
parvient a

*R o = R — 2A7p 0+ 247 g, + 2%5,%(A,Q, + AJP,) (12)

avecl
P = V

P,—P,Q,,
'qp.l - V[LQ)\ PV.Q7\< pp.l n__1V S >

La sommation d’aprés A = v nous apprend
0=V, =V, —2np, .+ 2,7+ 2*5,(Q, + nP) . (13)
tandis que la sommation d’aprés o = v nous donne
Gl S *RM = R — 2P[M] + (n —1) 9.0 -+ 2*Si‘;“ P,

aph
(R, = R;;%) - | (14)
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Ces formules nous permettent d’éliminer p,; et ¢,, de (12)—(14).
En introduisant les affineurs

1 n—1
—_— V ~ R )
P[mp.] ILQ —_n — 2 ( 2 W N im(i.])

1
(2;1\'/\ - -1 [Rp.). + 2P[;x7._]]

n

et les affineurs correspondants *Py,,;, *Q,, élimination de
Pux. €t ¢,, nous donne

TR = 2ALRP ) 240 FQ = R 240 P 247 QA 2F
(15
L’affineur
1 —n 2
D v — Yok Qe - v g A *S'/
1'):U Qa<A'\ *szk + n®—n — ZA S o — o — 2 :L]A>

ne s’annule pas en général pour *S;;" == 0.

Il s’ensuit le théoréme suivant pour n =41, 2:

En général Uaffineur

Woil = R — 200 P+ 240 Q,,

n'est ineariant par rapport aux transformations tsohodoiques (2')
que sv Ly est (semi-)syméirique.

ReyMarQuE. Ce théoréme n’est valable que pour les trans-
formations isohodoiques non-spéciales. Parce que l'affineur
l — n I *S 2 A‘I *S..’l.

—_n — 2 nz —_ ) — 2 [m ;LJ‘A

N /A o Qv 1
l I'):L)' - A). SU):.L —I_

n?

est invariant par rapport a (2'), il s’ensuit que F; = F..1"Q, se
transforme d’apres

ARSI R (Yo o VO

: . — - (/ .
QPR WA wiLh a.

Cette équation nous permet de trouver le mode de transformation
de Paffineur W.:;" correspondant a (2')
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Or, I'affineur W;,;" est invariant par rapport aux transforma-
tions isohodoiques

T, = I}, + p, AL, (2")

méme i *S,; ¢ 0. Le sens géométrique de cette transforma-
tion est bien évident. Si & désigne le symbole de la différentielle
covariante appartenant a (2”), la différence vectorielle

3y’ — 8¢, Swy, — dw.

est toujours dans la direction du vecteur ¢’(w,) arbitraire.

7. DEPLACEMENT SEMI-SYMETRIQUE. Supposons que L, soit

semi-symétrique. Dans ce cas les équations (12) et (15) se simpli-
fient |

*R;, )u.)\ = R )'1.7\ QA;\ p[my.] + 2AEw (Py.]‘/\ —V Sl) (12,)

: #]
*Rc;g.l.i\v _ 2A7'\ *P[myt] -,_I_ 2AEm*Q;L]l - Rm[ﬂ - 2A; P[w;x] + 2AE<-»QM]‘A : (15’)
On pourrait se demander si dans ce cas, il peut résulter le
déplacement *L, & courbure nulle? (*R,;;’ = 0). Pour pouvoir
répondre affirmativement & cette question, il suffit évidemment
de démontrer que les équations

TR = = A Plow] — ‘f;&(l’“p V.S (16)
PM—VP—PQ | (17)

ne sont pas incompatibles. Nous le démontrons en suivant un
procédé analogue & celui dont M. Schouten s’est servi pour
‘résoudre le probléme: «Peut-on transformer isohodoiquement un
déplacement affine en un déplacement projectif-euclidien ? » En
tenant compte de (16), on trouve la condition d’intégrabilité
complete de (17) , |
$.Pt T SpPun = VuPup (18)

Pour n == 2 cette .équatioh est une conséquence de (16). En
effet, 'identité de M. Bianchi, généralisée par M. Schouten

V ¢ R “])\ — ZS[MZL RE]V1

nous donne

A;(Qs[u,l’g,u]'— ViePuop) T A5, Pep + Vepop + PunS) =0 .
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On en déduit moyennant la sommation d’apres A = v
28, P,: = ViePou - , (19)

D’autre part, la sommation d’aprés w = v nous donne

n — 2 .
250 P51 — ViePuy = —5— (VP — Sl + SppPup)

ou bien, en tenant compte de (19) pour n == 2
v[.’.l.PE_]‘L — Slp[y.i] + S[;LPE]/

(est précisément I’équation (18). On voit donc que I’équation
(16) pour n== 2 nous représente la condition nécessaire et suffi-
sante pour que s’annule la quantité de courbure *R,.'. Mais
s1 (16) est valable et seulement dans ce cas, on a
P[m;L] — p[u):L:] ’ Q;.O. — (/;L‘A (: P}JJ - Vgx S?) .

Il s’ensuit pour n == 2:

Pour qu’on obtienne le déplacement *L, & courbure nulle, il
est nécessaire et suffisant que s’annule Uaffineur

W — R Y — 2A:}’\ P[“)w] + QAEanQ(L])~ .

A WA

Ce n’est que dans ce cas que 'on a

Wt = *R;::Y = 0 .

Il nous reste le cas exclu n = 2. Dans ce cas I’équation (16)
peut étre toujours résolue d’apres pgp (a, b = 1, 2), mais (18)
n’est pas en général la conséquence de (16). L’affineur *R,;; ne
s’annule done que si (16), (17) et (18) sont satisfaites.

8. AFFINEURS ABSOLUS. *Lj, n’est pas 'unique déplacement
isohodoique avec Ly, qui soit indépendant de (2'). L’équation

v et v ) 1

FAL:L - *Fl‘u + S.AA{;. + S:L Al ’ <Sﬁ - n + 1 V{.(. lOg S) (8)
nous apprend qu’il y en a une infinité, selon le choix de la fone-
tion s. La quantité de courbure TR d’un tel déplacement

mLA
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sé calcule par analogie ‘comme’ la quantité de courbure du déplace-
ment *L,,:

+Rmu.i\, = *R; u.)\ + 2A ]X + 2% Swu. ’ §

o = *VH.?'K — 8,8 - (20)

La sommation d’aprés w = v nous donne
TR, = *R, + (n —1)s,, . - (21)
L’élimination de s, de (20) et (21) nous conduit & ’équation

2 2
+Rv ~ v+ —_— ey v
Rw%ﬂ n — 'IA[‘” Rz*]7~ - *RwM n — ’1A[w w1 + 2% w'x S

Or, si L, est ‘(semi-)symétrique, I’affineur

: 2
% [Tee+? — %R+ __ ~ *
u)[L)» - Rw}.ﬂ\ . n — 1 [LU Rp.]l

ne dépend pas du vecteur s, dans *Li, et par cette raison méme
est indépendant du choix de la fonction g. Un tel affineur sera
dit affineur absolu. Ce qui est curieux, c’est que de tels affineurs
sont exprimables au moyen de ®;, comme si &;, étaient les
parametres du déplacement. Nous en donnons trois exemples
différents:

1o *5;," est un affineur absolu. En effet, on a

*8i, = g = T, = Oy, -

20 De méme l’affineur *V,, est un affineur absolu comme on
déduit facilement

= o ape 2 ape = 2 pe 0 4

W > X * ow d>X© [ .G .r/.w X e

b(b_b

“%

GRS TR

30 Pour exprimer *U.; avec ®;,, posons

1 o oy
Ta n + 1 DXM logg, T — dX# A e T Tt o
v b v @l I + (bl @m
szﬂ\ Aw ML o Aw ' .

b‘{“’
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Cela étant la quantité de courbure *R.,. est
*R,'u;.[l.v — \o::;fA + 2AE<.) Y:L]). + Q*S(;:‘: Y\A ’ (22)
d’ott on déduit par la sommation d’apres o = v
*R’J.‘A = Px) + (n' - II)Y:JJA ’ PZ;AI — toyl y (23)

L’élimination de v, de (22) et (23) nous donne

2 2
eV “~ ) — v PR QeY
*Rmyf/\ - n — lj\[u *R:L]). - kom;!k — n — 1 A[mp;x]l + = Sm;; 1o
et pour L, (semi-)symétrique
2 )
YooV o \
* wuh T \ow;ﬁ\ - n — 1 A[m ko;i]); ¢

Mais il faut remarquer que les expressions y , 7., £’ , P..
ne sont affineurs que si le jacobien A est constant.

9. DEpLACEMENT L,. Décomposons les parametres I';, de Li,:
Do = T + 87 T = "h(l, + )

et désignons par °L, le déplacement affine, fixé par °I%.. Si
OR... est sa quantité de courbure, on trouve facilement

l{/ —_ ()R...‘/ S/

SRS w ;1.7. D) ;JJ.

avec
1/ S()L/ — V. S( ]/ + ‘ rlS + SI[¢ U]/

Cela posé, on peut étudier le déplacement isohodoique avec

L, qui est invariant par rapport a la transformation du déplace-
ment

l‘f/’_: = 1, + A’ g g, - A;g)‘ - G['_/:::] , (G['h — aflineur non-spécial) .
(24)
On dédmt de cette équation
G[l*] - b SI:L/

1 = Q..o o
b = [T =S 4 8] =

! e S \Z RN
e = S = s
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: /
En substituant ces valeurs dans (24), on trouve que les expres-
sions
1 1
voo— oY v o7 % ao o
A, =T, — g AT — +1uF

. sont invariantes par rapport aux transformations (24). Il s’en-
suit que les expressions

Ay v 1 v
Ly, = AMJL + P 1(\A)‘b logg + A’ log g) (25a)

le

peuvent étre prises comme paramétres du déplacement cherche
Nous le des1gnerons par L,. On peut aussi écrire

. or 1 A" {ope | v {opa > :
F'}\P« - OF'}\(L n _|_ /1 [ (OPap. )&[" ]Og g) + AH(\OF‘A(/. — ;{f log g)]

. (25b)
ou bien, en désignant par M, le vecteur

1
M —= — 0"—-—-—
" n +1(P d X log 9)

Iy, = °T;, + 2A‘('1M;LJ‘ =T}, + AM, + A7 M, — S;.7 . (25¢)

Ce déplacement est symétrique et de plus isométrique. C’est
ce que ’on voit aussitdt en cherchant I‘w d’apres (25b)

a___om_ n ope
I = oTe, — - +1<I‘m ——XH log g)

-1 D d
o«
+ - 1(I‘ ~ixr ]ogg) -—-——olglogg.

Siv, est le symbole de la dérivée covariante dans Ln, on a
pour un vecteur arbitraire ¢* ou w,

Iy o v v A v T Qe
V‘Lv _.V}Lv +VM;L+V(AP~”M7\_—S7~F-) ,
\ w1 =V wl—w)\-M —w M1+ Si“‘w

Ces equatlons nous permettent de trouver 1a quantlte de
courbure RM de L,.




LE TRIANGLE DES PIEDS DES HAUTEURS 97

On obtient apres un calcul facile

R o sV p— OR...V . QA; ,n[wzj'] + 2Avw 'n‘)‘])‘ , (26)

ik wph
ou
/ oo U
my =V, M, —M M, —S;:*M,
L’élimination de m,; de ’équation (26) nous conduit a l’affineur

1 2

1
N ) o v (o ) oy .
ik n - 1 A‘A Vmgx n — 1 A[m ( Rp.]i. -+ n -+ 1 ;L]/.)

qui est invariant par rapport aux transformations (24).

oV

0

Prague, septembre 1926.

SUR LE TRIANGLE DES PIEDS DES HAUTEURS

PAR

Arnold Streir, DTr Phil. (Berne).

INTRODUCTION.

Dans les développements, nous avons surtout utilisé des pro-
cédés trigonométriques. CGeux-ci nous ont permis de découvrir
un certain nombre de théoremes et quelques relations trigono-
meétriques.

Notations. — Nous désignerons les sommets du triangle donné
par A, B, G; les c6tés opposés par a, b, c; les angles correspon-
dants par «, 8, v; les hauteurs par A', A", A'", leurs segments
supérieurs par s’, s”, s’’’ et les segments inférieurs par ¢/, 1", 1"’ ;
les segments déterminés par les hauteurs sur les cotés respectifs
par a’, a”, b’, b", ¢’, ¢"; le rayon du cercle inscrit par r, celui du
cercle circonscrit par R et ceux des cercles ex-inscrits par rq, rp,
r.; le périmetre par u et la surface par S.

L’Enseignement mathém., 26¢ année; 1927,




	SUR LES DÉPLACEMENTS ISOHODOÏQUES

