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84 V,HLAVAT Y

facilement d'après les inégalités (8) que l'on a une relation de la
forme:

|02 -ej <*&
k étant une constante, ^ un nombre positif compris entre 0 et 1.

On aura donc aussi :

|cos B2— cos ôj | kh^|sin Ô2 — sin |

On montrerait facilement alors, en employant la méthode
analogue à celle utilisée dans le cas d'uue fonction d'une variable
(cf. P. Montel, Sur les polynômes d'approximations. Bull. Soc.
Math. Fran. 1918) qu'on peut former deux polynômes Pn(s) et
Qn (5) représentant respectivement u0 et p0 avec une
approximation:

Alors &0(s) et (s) admettent des dérivées u0'(s),
continues.

SUR LES DÉPLACEMENTS ISOHODOÏQUES

PAR

V. Hlavaty (Prague).

1. Exposition1. Désignons par Xv les paramètres d'une
variété à n(>1) dimensions, par 1^0 les n? paramètres
de son déplacement, que nous désignons par Ln. Il est bien

connu que pendant la transformation des paramètres X (au
jacobien A ^ 0)

X X('X) (1)

les K, se transforment d'après

- a'x? (6X' aX'A r&XV \ö'X" ö'X* ô'X ô'XV
'

t *

1 Nous employons la symbolique de M. Schouten, exposée dans son livre Der Ricci-
Kalkül. Berlin, 1924.
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Il s'ensuit que la différence de deux paramètres des déplacements

divers est un affineur

r:' r;' + g.--v (2)
A a À;x

1

A a

Ces équations définissent la transformation du déplacement.
Si cette transformation conserve les lignes géodésiques, nous

l'appelons transformation isohodoïqu.Dans ce cas, il faut et

il suffit que l'on ait
ci - ' _L g- v — Av 4- Av »

Au.
* U;dA ^ ;a5'a '

g[X étant un vecteur arbitraire covariant et l'affineur-unité
(Delta de Kronecker).

Les déplacements aux mêmes lignes géodésiques seront dits
déplacements isohodoïques. On a donc une infinité de déplacements

isohodoïques.
Nous nous proposons d'étudier le déplacement (désigné par

*Ln, ou Ln) qui tout en ayant les mêmes lignes géodésiques

que Ln ne dépend pas de la transformation (2). Mais on a deux
cas à distinguer: Ou bien la différence

est de la forme
G: 'v — G\;v

AU uA

2G,v\ G.',v — G-: '— Av h.,[A [JLJ a;JL ;XA A U ;X A

h.x étant un vecteur arbitraire covariant, ou bien cette
différence est un affineur général. Nous étudierons tout d'abord le

premier cas, où la transformation isohodoïque peut être écrite
en général

d:a + p^I + <7>,a; (2')

avec p,x, q,xvecteurs arbitraires covariants, et ensuite nous
examinerons le cas plus général.

2. Paramètres du déplacement *Ln. L'élimination de

et q.x de (2') nous montre que les expressions

u, + -Ai [A-: (r;, - »u,) + a; (u, - » u,)] w

ne dépendent pas de la transformation isohodoïque (2'). Les <$l,x

sont donc invariantes par rapport au choix des vecteurs et q[x.
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Si le jacobien A est constant,elles peuvent être considérées comme
paramètres du déplacement *Ln. Mais nous admettons aussi
les transformations plus générales, au jacobien-fonction des Xv.
Dans ce cas, si g est une fonction qui pendant (1) se transforme
d'après

'g A g (4)

les expressions

*r:' «!>:' + —4—rfK — log g + Av A; log g") (5)

se transforment précisément comme On peut donc les

prendre pour les paramètres du déplacement *Ln. En effet,
ce déplacement est invariant par rapport aux transformations
isohodoïques (2/). En désignant par P,A, les vecteurs

Pi* (rî* - "rU + ~ 9

Q, râ (ri - »r;j + -1- log,

on peut écrire au lieu de (5)

*^ a + P,Aï + QxA;. (5')

Pour trouver les affineurs du déplacement *Ln, on se sert
de la règle suivante: Etant donné un de du
déplacement Ln, on obtient Vafflneucorrespondant de *Ln en

y remplaçant par *r^.
Ces affineurs sont naturellement indépendants de la

transformation (2'). Nous les désignerons par un astérisque * en haut
à gauche.

3. Fonction g. Une fonction qui se transforme d'après (4)
est facile à trouver. On peut prendre pour g le produit d'une
constante et de l'unique composante d'un ^-vecteur arbitraire
covariant, ou du déterminant des 2 composantes des n vecteurs
covariants linéairement indépendants, ou enfin de la %me
puissance du déterminant d'un tenseur (affineur symétrique) covariant

du second ordre. Mais en tout cas g n'est une fonction
scalaire que si A est constant, égal à 1. Pour trouver la difïé-
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rentielle covariante $g (qui pour le cas A 1 égale la
différentielle ordinaire rfg), supposons g définie de la dernière manière,

c'est-à-dire posons

cp ~ c déterminant de f ^,

où f,,xest un tenseur (affineur symétrique) arbitraire et c une

constante quelconque. Si est du rang n (ce que nous

supposerons), on peut trouver le tenseur pXK au moyen de l'équation

r'f—Av
I I V.[X [A

Cela étant, on trouve

S92 2ôS8 rY-X-A

- 9 2r\àfvx-r- rL

^92 — + r?x)

29(^9-r iJ^z).Il s'ensuit

8q — dq— ra dXma
O u a t» <->

Or, en désignant par *$ le symbole de la différentiation
covariante de *Ln, on peut écrire

*sg — d$ —*r«wrfXwg 0 (6)

La différentielle covariante de g dans *Ln est nulle. Ce résultat
est naturellement indépendant de la manière, dont g est définie.

Si © est une fonction qui se transforme comme g, on peut
la «jauger » d'après le principe de M. Klein

<5 s g (V)

où s est une fonction scalaire. Les expressions

+r-;, "'i + ~ I««© + a;^ logS) <7>
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sont de même paramètres d'un déplacement linéaire. On a
d'après (4') et (7)

+1^ *r^ + .^1 + Sl A; -JLp JL iogs (8)

Nous reviendrons encore sur ce sujet.

4. L'affineur *S^v. On sait que la différence Flp — est
un affineur. Nous la désignerons avec M. Schouten par

V2(ri,-ry rM s-

Si Sip- — S[xAJl], nous disons que le déplacement est semi-

symétrique, si S^v 0 nous disons le déplacement symétrique.
En appliquant la règle que nous venons d'énoncer plus haut,
on obtient l'affineur

*s--v *r;, -1 s--7 + a;,? 1 + a; q,,X;a |X{aJ Xja 1 [X jxJ
1 [\x aJ

Mais comme on a

a^ -Qri)^4-ï (Aï, r-,. - r^AJ,)

^n(Ais^- a;s^) ^-laÏ,S^
on trouve

*S--V S"7 H S-;*-
Xja X|a

1

n— [X jaJ a (9)

nOr, si Ln n'est pas (semi)-symétrique, le déplacement *L
n'est pas symétrique en général. Si Ln est semi-symétrique, on
trouve

•Si;' + n
(A7Sr Aa-, — A7 S,, AM sr Sr, A\ + Sr A,v, 0.* a [ja «J [A [X aJ / [X ja] I XJ

Si Ln est semi-symétrique,*Ln est symétrique. Ce théorème

peut être aussi énoncé d'une autre manière : Chaque déplacement

semi symétrique peut être transformé isohodoïquement en un
déplacement symétrique. -
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5. Isométrie. La différentielle covariante d'un n-vecteur
arbitraire u''1""'" est

su''-'« + r* uv'-''"rfx*
1 au

Si <5^ et â2sont les symboles des différentielles covariantes

aux directions diverses et d2X.'^1 on trouve facilement

(8,8, - 82S,)= d X1*J3X"U,'*"v»(-A
VdX'

jpt/.
^

jpa
[X ao)

^ ^ <»> a\x

C'est le changement subi par UVl" si celui-ci décrit un
contour fermé infiniment petit. On trouve facilement que

—~~r *ÎXest un bivecteur (affineur alterné)
o X1 ö X

v,„;i — v,,,„ — r» — r*
öX;, «» aX ^

La condition nécessaire et suffisante pour qu'un ^-vecteur
(co- ou contre-variant) ne subisse aucun changement après avoir
décrit un contour fermé infinitésimal est

Vw, 0

Dans ce cas on dit que le déplacement est isométrique. Pour
examiner, si *Ln est ou n'est pas isométrique, il faut connaître
*~pry

•1 a %

*ra — w n
ö X

On a donc tout de suite

*v„,„ — *r- SL*r'/- 2
& log9 — 0 (io)

öX:" ftX» &X^iiX"l

Le déplacement *Ln estisométrique. Ce théorème peut être
énoncé d'une autre manière: Chaque déplacement peut être

transformé isohodoïquement en un déplacement isométrique.

6. Quantité de courbure. Désignons par y-* resp.
les symboles de la dérivation covariante dans Ln resp. *Ln. Si

et uy sont deux vecteurs indépendants de rÇ les affineurs
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*V(^v et *vIXWx ne dépendent pas de la transformation isoho-
doïque (2'). En appliquant la règle pour la formation des affineurs
de *Ln, on obtient d'après (5')

*v.y v,y + sPp + aVqx - «\p;, - •

(il) -

Ces formules nous seront utiles pour le calcul de la quantité
de courbure du déplacement *Ln. Soit Rla quantité de

courbure du déplacement original Ln

r —F'—— r:— r r\a + r r?WjlÀ -y M), A CO **7- Â CC CO A JA ' GC JA Aoj
ÖÄr

On trouve facilement
R • a V

o)[ia to JA

L'affineur R^vintervient dans les identités de Ricci,
généralisées par M. Schouten

2Vr V ==-— R"'i + 2S"av v'2Vr V R"v w + 2S"Ky i\\& V [to V jxJ tojAÀ
1

co [A * oc Lw rJ A co jaa v
1

to ja * a À

Or, en appliquant l'opérateur *yoi à (11) et en alternant les

indices co, ^ on obtient une relation entre R^v et la quantité
de courbure *R»|âv de *Ln. En tenant compte de ce que cette
relation est valable pour un vecteur arbitraire vv (ou Wy) on

parvient à

*K£ R;^v - 2AI pm +2a Î» +2 *s:; (A: Q, + AIp») (12>

avec
P\k\ — ^|x P* ^ '

^(xX~ ^\xQ\ ^x^X^3 P[xl w
^jx^Xa ^ '•

La sommation d'après à v nous apprend

0 — *Vwjx Vw;x — 2nPM + 2^[Fl.] + 2*S^|xa(Qa + wPa) ' (13)

tandis que la sommation d'après « v nous donne

*R;,ia - *v= V - + (* - v + 2*VP*
(R,X K,ia) • (14)
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Ces formules nous permettent d'éliminer et de (12)-(14).
En introduisant les afïineurs

PM „2 _ „ _ 2(~T~ v + R|
to [X

1 I m [x I

Q!" - — iT=~ï[IV + 2IV]]

et les affineurs correspondants *P[,nil], *Q,a, l'élimination de

pv, et q,XKnousdonne

(15)
L'affineur

1 ~ " a; *s- - -j—*-—-a? *s~/\ >'x tr — n — 2 wi* /r — « — 2 I 'MA

ne s'annule pas en général pour *S;h' ^ 0.
Il s'ensuit le théorème suivant pour 2:
En général Vaffineur

w-;:v H : — 2A: P, -, -f 2A; Q v

ft'esZ invariant par rapport aux transformations isohocloïques (2')
que si Ln est (semi-)symétrique.

Remarque. Ce théorème n'est valable que pour les
transformations isohodoïques non-spéciales. Parce que l'affineur

p • • * A a ^ O V i
^ ïl a v i n r/

^- A, ' £>., ~rH,_n_ 2 A, "S;- - - ^ _ 2 AJ„ *S;j«

est invariant par rapport à (2'), il s'ensuit que F;;.;-; F^Q. se
transforme d'après

F* — F'"A— af>[xA to [X A to p. À / a

Cette équation nous permet de trouver le mode de transformation
de l'affineur W,correspondant à (2')

W— \V • + 2K«<»>p. a (op„Â Jf r/.
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Or, l'affineur W^x' est invariant par rapport aux transformations

isohodoïques

r^r^ + ^A;, (2")

même si *S'^ ^ 0. Le sens géométrique de cette transformation

est bien évident. Si $ désigne le symbole de la différentielle
covariante appartenant à (2"), la différence vectorielle

5 v'— 5 v' 8 — 8
A À

est toujours dans la direction du vecteur cv(u\) arbitraire.

7. Déplacement semi-symétrique. Supposons que Ln soit
semi-symétrique. Dans ce cas les équations (12) et (15) se simplifient

*PVxV KJ- 2 A; pM + 2 Al - V[xl Sx) (120

*R:üV - 2AI *PM + 2A?«- 2A; p[-|t] + 2A^,Q^ (150

On pourrait se demander si dans ce cas, il peut résulter le

déplacement *Ln à courbure nulle? (*R^xv 0). Pour pouvoir
répondre affirmativement à cette question, il suffit évidemment
de démontrer que les équations

72= aipM --v,]sx) t16)

Pla Vx-p,Qx (17)

ne sont pas incompatibles. Nous le démontrons en suivant un
procédé analogue à celui dont M. Schouten s'est servi pour
résoudre le problème : « Peut-on transformer isohodoïquement un
déplacement affine en un déplacement projectif-euclidien » En
tenant compte de (16), on trouve la condition d'intégrabilité
complète de (17)

Pour 2 cette équation est une conséquence de (16). En
effet, l'identité de M. Bianchi, généralisée par M. Schouten

V7 D...V £>Q..aT>...V

nous donne

Àî(2SI-/'w'- V.-]> + + V»]* + 0 •
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On en déduit moyennant la sommation d'après v

2S[,.Pfi] • (19)

D'autre part, la sommation d'après nous donne

2S0 Pwl — — 3 ~ SA +

ou bien, en tenant compte de (19) pour ^ 2

C'est précisément l'équation (18). On voit donc que l'équation
(16) pour 2 nous représente la condition nécessaire et
suffisante pour que s'annule la quantité de courbure Mais
si (16) est valable et seulement dans ce cas, on a

P[<»;U — P['^]'~ Vxl (— a

Il s'ensuit pour n^2:
jPowr qu'on obtienne le déplacement *Ln à courbure ^

nécessaire et suffisant que s''annule Vaffineur

W- :v rrr R- :v — 2AJ Pr + 2A/ Q rtop, À top. A À L^p-J L*° r*j'v

Ce n'est que dans ce cas que l'on a

W *R- :V 0
to p. A top. A

Il nous reste le cas exclu n 2. Dans ce cas l'équation (16)
peut être toujours résolue d'après pab (a, 1, 2), mais (18)
n'est pas en général la conséquence de (16). L'affineur *R^iv ne
s'annule donc que si (16), (17) et (18) sont satisfaites.

8. Affineurs absolus. *Ln n'est pas l'unique déplacement
isohodoïque avec Ln qui soit indépendant de (2'). L'équation

+rl, — *ri + %AÎ > (5ri ;yq^V°ss) (8)

nous apprend qu'il y en a une infinité, selon le choix de la fonction

s. La quantité de courbure +R;:hv d'un tel déplacement
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sé calcule par analogie comme la quantité de courbure du déplacement

*Ln :

+R4 *R4 + v *V^ - (20)

La sommation d'après où v nous donne

+fV + (n-l)v (21)

L'élimination de s{a de (20) et (21) nous conduit à l'équation

+R';x' — -rAï+r Ti *R";V n + 2*S--,s,wp.À Yi J Lw JXJA WJJIÀ ^ [ü3 jxJA 1

wp. A •

Or, si Ln est (semi-)symétrique, l'affineur

*U*:V *R •'— —-—-A! *R
top, A top A

Yi J[ Lw I^JA

ne dépend pas du vecteur dans *Ln et par cette raison même
est indépendant du choix de la fonction g. Un tel affineur sera
dit affineur absolu.Ce qui est curieux, c'est que de tels affineurs
sont exprimables au moyen de <K.* comme si $>i[x étaient les

paramètres du déplacement. Nous en donnons trois exemples
différents :

1° *Sj^v est un affineur absolu. En effet, on a

*C-.v -j-pv + pv dp% ~ iM — •

2° De même l'affineur *VW}X est un affineur absolu comme on
déduit facilement

*y • — _JL_ *pa __
^

*pa __
^ + p« ^ + p« __

«Oit öXp, «CO. öXo. «Jt. ôX^ «CO
öXW

«co

ö
0

" öX^ aw öX#

3° Pour exprimer *XJ'm'v£ avec posons

1 0
i

ö A»\ ;r+7 ^log 9 ' V ~~ - v*
V —

ö
<f);; — (l)v -L <i>v (f)a

^ wp^
^

Aw
^ "^w Ap c.w Ap ccp AtO
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Cela étant la quantité de courbure *R,'V est

*r" p" + 2a: y.,. + 2*S-;;y, (22)
<op.A ^ top.A

1 [to i uJa 1

top *A

d'où l'on déduit par la sommation d'après w y

*py,, p;a + (n ~ 1) V - P^x • *23'

L'élimination de de (22) et (23) nous donne

*R ": ' —rAr' *R p* L-AI p + 2*S\'"yv
io'xa [to pj7<. ï to;jlà ^2 - L(° 0)t

et pour Ln (semi-)symétrique
2

îfcTT • .V V ^ A V

t');ù —~ ^ to ut.À [to < p]7v *

Mais il faut remarquer que les expressions
ne sont affineurs que si le jacobien A constant.

9. Déplacement Ln. Décomposons les paramètres TL de Ln:

r; °r; h- s:-v °n + rvD
A ut, A ;x

1 A a Ap \ Aul 1

p. A/

et désignons par °Ln le déplacement affine, fixé par °rL. Si

°R:^ est sa quantité de courbure, on trouve facilement

R* °R* * :v — S ';v
top. a to [LA top A

avec
'/„s-:/ V, S-;:' + S""S'V + S:;«S-; •

1 top. A [ p 10 JA 1

top. a A ' a[ p. to Ja

Gela posé, on peut étudier le déplacement isohodoïque avec
Ln qui est invariant par rapport à la transformation du déplacement

FL 1
V + Al + A;1 0\ + G[{;I] ' (G['{;I] »Aine 11 r nOIl-Spécial)

(24)
On déduit de cette équation

G-;v, S; •v — S: •v
[a;j.J L ;X AU

1
<r
P-x /£ -f-

T[ra — s-a —r* +s--al1 L • «;-«•
1

«p J

1 r— -Ptt e..a pa I e • v."l

q_ 1 L 1
p* d~

pv. J •
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En substituant ces valeurs dans (24), on trouve que les expressions

1 ia y — opy a v on« a v op«^ n-}-1 ^ -J- 1 f*

sont invariantes par rapport aux transformations (24). Il s'ensuit

que les expressions

r;; iog g + a; JL iog g) (25«)

peuvent être prises comme paramètres du déplacement cherché.
Nous le désignerons par Ln. On peut aussi écrire

T;; t;, - [^(t; -^ I.« ») + a;(t -^ i.g ,)]
(25^)

ou bien, en désignant par le vecteur

M t-t (°ra — log 0^
n+ 1 \ ai" /

r;; + a;mx - s-; (25c)

Ce déplacement est symétrique et de plus isométrique. C'est

ce que l'on voit aussitôt en cherchant d'après (25è)
w

p'« _ op« H_fop« ü_ log g\ _w a'xn4-1 \ ^b/
H —7 (°r* — log g\ — log g

ax*
8 7 dX*

Si v'n est le symbole de la dérivée covariante dans Ln, on a

pour un vecteur arbitraire ou W-,

V v^v' + + /(A;M, - s-)
w'xVi, wM,. — "V + si^V ,vv •

Ces équations nous permettent de trouver la quantité de

courbure RL^'* de Ln-
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On obtient après un calcul facile

R'...v _ 0R...v _ 2Av _j_ 2A-' t (26)
wu to a A A Lt0!^J Lw 9-J *

ou
m V M. — M M. — S\*a M

;xA (x A ;x i [xA a •

L'élimination de m[x-K de l'équation (26) nous conduit à l'affineur

or;;A" - )^nA>.°v», - ^nA[»(0R,^. + ^TrW
qui est invariant par rapport aux transformations (24).

Prague, septembre 1926.

SUR LE TRIANGLE DES PIEDS DES HAUTEURS

PAR

Arnold Streit, Dr Phil. (Berne).

Introduction.

Dans les développements, nous avons surtout utilisé des
procédés trigonométriques. Ceux-ci nous ont permis de découvrir
un certain nombre de théorèmes et quelques relations
trigonométriques.

Notations. — Nous désignerons les sommets du triangle donné

par A, B, C; les côtés opposés par a, è, c; les angles correspondants

par a, /3, y; les hauteurs par A', A", A"', leurs segments
supérieurs par s\ss'"et les segments inférieurs par i", i'" ;
les segments déterminés par les hauteurs sur les côtés respectifs
par a', a", b\b",c',c"; le rayon du cercle inscrit par r, celui du
cercle circonscrit par R et ceux des cercles ex-inscrits par ra, r&,
rc ; le périmètre par u et la surface par S.

L'Enseignement mathém., 26e année; 1927. 7
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