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FONCTIONS ADDITIVES D'ENSEMBLE 63

ADDENDUM

1o La démon.tration compléte des propriétés énoncées dans
l» présent article prouvera sans doute par elleeméme que toute
fonction satisfaisant & 1’équation (L), ne rentrant pas dans
la catégorie particuliére du théoréme VI, est une fonction
analytique de z, y, z, t.

20 L’expression

02w du du D2 du du 2w du du D2 du du

>NoXaYoY oXoYoXoY 0aXoYoX dY  oYoaYoXoX'

doat il a été question au sujet du théoréme VI, jouit de la
méme invariance que AAu par rapport aux transformations
analytiques de X et Y. Son annulation a la signification
suivante: par tout point (X, Y) il passe une courbe analytique
sur laquelle u est constant. Ces courbes dépendent de deux
paramétres réels, mais non d’un paramétre complexe s1 AAu
n’est pas nul.

LES FONCTIONS ADDITIVES D’ENSEMBLE,
LES FONCTIONS DE POINT A VARIATION BORNEE
ET LA GENERALISATION DE LA NOTION D’ESPACE
A n DIMENSIONS

PAR

R. C. Youna (Cambridge).

1. — A la fin du Chapitre VI de sa monographie: « Intégrales
de Lebesgue, fonctions d’ensemble, classes de Baire », M. de la
Vallée Poussin établit la proposition suivante, sous I’hypothese
d’'un nombre quelconque, soit n, de dimensions:

Toute fonction de point f (P), qui est continue et & variation
bornée, définit une fonction p (e), continue et additive, d’en-
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semble (normal?). Cette fonction est égale, pour chaque inter-
valle & n dimensions (« domaine rectangle ») & l’accroissement
(n turle) de f (P) dans cet intervalle 2. Remarquons tout d’abord
que la « continuité » de p (e) définie au n® 82 de la dite monogra-
phie comme propriété de tendre vers zéro avec le diameétre de e,
prend ici un caractere plus précis: p (e) tend vers zéro avec le
diameétre de la projection de e sur I'un des axes, ou, ce qui revient
au méme, s’annulle identiquement dans chaque « plan » (& (n.— 1)
dimensions) paralléle & 'un des plans de coordonnées. Cest ce
caractére que nous pourrons, avantageusement, prendre comme
définissant la continuité d’une fonction additive d’ensemble, au
lieu du caractere moins précis, qui coincide du reste avec celui-la
au cas de I’espace linéaire. Nous pouvons remarquer de plus que
la définition d’une fonction & variation bornée du n° 104 de la
monographie fait coincider une telle fonction quelconque avec
la différence de deux fonctions quelconques d accroissements
ntuples toujours positifs ou nuls (mais bornés). Or une fonction a
accroissement ntuPle horné et de signe invariable, définie dans
un domaine rectangle quelconque, ne difféere d’une fonction
monotone que par une somme de fonctions dépendant chacune
de (n—1) coordonnées au plus® — et ne contribuant en rien a la
valeur de l'accroissement ntuple, c’est-a-dire a la fonction p (e).
Nous aurons donc avantage également & interpréter la désigna-
tion de fonction @ variation bornée comme signifiant la différence
de deux fonctions monotones, au sens défini dans notre précé-
dente note, c¢’est-a-dire de fonctions dont tous les accroissements-
ont un méme signe invariable4. Une fonction de n variables a -
variation bornée est alors & variation bornée par rapport a
chaque groupe de k variables et pour chaque valeur des (n — k)
autres variables, maintenus fixes, k = 1, 2, ..., n. Avec ces

1 Nous allons omettre le qualificatif de «normal». On sait que les ensembles
«normaux» (relativement & une fonction additive) comprennent tous les ensembles
mesurables B (voir au n° 80 de la monographie citée), les seuls qui possédent une
individualité définie par rapport 4 des considérations du genre qui vont suivre.
Dans la présente note, le symbole e et le moj ensemble représenteront toujours un
er’'semble mesurable B.

2 Définitions au n°s 2, 3 de ma note de lEnsezgnement Mathématique, 1924-5, p. 79
et suivantes : «Les fonctions monotones et I’intégration dans I’espace & n dimensions».

3 Valeurs de la fonction, affectées du signe + ou —, aux projections de P sur les
cotés et «faces» de tous ordres du domaine rectangle. .

4 Loc. cit. n° 3. :
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conventions, la continuité de p (e) résultera de la continuité de la
fonction & variation bornée dont elle est déduite par 'intermédiaire
de la propriété immédiate:

Toute fonction continue @ variation bornée a son accroissement
nturle pul a Uintérieur de chaque intervalle a k < n dimensions
et en chaque pointt.

2. — Les restrictions que M. de la Vallée Poussin faisait entre-
voir, en terminant le chapitre cité, pour la généralisation aux
fonctions discontinues a variation bornée ne subsistent pas a
Pexamen détaillé. On sait aujourd’hui que I’énoncé rappelé ci-
dessus demeure vrai lorsqu’on y omet le terme continu, ¢c’est-a-
dire:

Toute fonction de point {(P) @ variation bornée définit une fonc-
tion p (e) additive d’ensemble. ,

p(e) est défini d’abord pour chaque intervalle ouvert a n
dimensions, comme limite des accroissements ntuples de f(P)
dans les intervalles d’une suite croissante tendant vers l'inter-
valle ouvert; en d’autres mots, on égale p (e) sur les intervalles
ouverts aux accroissements nturles de f(P) & intérieur de ces
intervalles; de 1a p (e) se définit d’une facon unique et toujours
possible sur chaque ensemble e, par une répétition finie ou trans-
finie de passages a la limite, identique a celle qui définit la mesure
de ’ensemble en partant de la mesure des intervalles (méthode
des suites monotones). La fonction p (e) est donc, précisément,
Uintégrale par rapport a f(P) de la fonction caractéristique de
l'ensemble e (égale & 'unité aux points de e et nulle ailleurs). En
particulier, sur un intervalle ouvert & moins de n dimensions,
p (e) a pour valeur I'accroissement nttple de f (P) & I'intérieur de
cet intervalle et sa valeur sur un point unique est 'accroissement

nturle de f (P) en ce point. On appelle aussi p (e) Paccroissement
total de T (P) sur Uensemble e.

3. — L’accroissement total d’une fonction f(P), discontinue
et & variation bornée, sur les intervalles ouverts, et par la sur
tout ensemble, — est entierement défini par les valeurs limites

1 Lioc. cit. pp. 83, 84.

L’Enseignement mathém., 26c année; 1927. 5
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de f (P) dans les quadrants ouverts en chaque point !; la valeur
réelle de f (P) n’intervient que pour la définition de ces valeurs
limites. La question se pose: Peut-on se donner les valeurs li-
mites sans passer expressément par l'intermédiaire des valeurs
réelles ? A cause du numéro précédent, ce probléme peut étre
envisagé comme faisant partie du suivant: |

Etant donné une fonction ¢ (e) additive d’ensemble, existe-t-il
une fonction f (P) a variation bornée a laquelle ¢ (e) corresponde
par le procédé du n° 2 ?

En d’autres termes:

Toute fonction additive d’ensemble ¢ (e) est-elle I'intégrale,
par rapport a une fonction & variation bornée f (P), de la fonction
caractéristique de 1’ensemble e, ou accrmssement total de f (P)
sur e ?

(’est la réciproque généralisée du probléme posé au n° 97 de la
monographie de M. de la Vallée Poussin, qui conduisait ensuite
a I’énoncé rappelé au n° 1 ci-dessus. La réponse est de nouveau
affirmative, et établit I’équivalence compléte entre les fonctions
a variation bornée et les fonctions additives d’ensemble. Les
considérations qui suivent rendent la démonstration immeédiate.

4. — La fonction ¢ (e) additive d’ensemble est la différence de
deux fonctions additives, non négatives. Il suffit donc de consi-
dérer les fonctions additives d’ensemble, non-négatives. Nous
démontrerons précisément: : -

Toute fonction p (e) additive d’ensemble, non-négative, coincide,
dans un domaine borné donné quelconque, avec Uintégrale de la
fonction caractéristique de e par rapport a4 une fonction monotone
g (P) ou accroissement total de f(P) sur e. -

p (e) étant borné, il ne peut exister qu'un nombre ﬁnl de plans
paralleles aux plans de coordonnées a l'intérieur desquels p (e) ait
des valeurs > ¢ > 0; par suite les plans, paralleles aux plans de
coordonnées, & 'intérieur desquels p (e) n’est pas identiquement
nul, sont dénombrables. Il s’ensuit que I’on peut choisir une
nouvelle origine de coordonnées (en maintenant la direction des
" axes) de facon que le domaine donné soit situé dans le quadrant

1 Loec. cit. n°® 1, 3.
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positif de sommet 01 et que p (e) soit identiquement nul & U'in-
térieur de chacun des plans de coordonnées. En définissant g (P)
dans tout le quadrant positif de sommet 0, on 'aura alors, en
particulier, définie dans le domaine donneé.

Cela fait, nous posons g (P) = 0 dans chacun des plans de coor-
données. A cause de 2, les valeurs limites de la fonction g (P) mo-
notone, supposée existante, sont alors déterminées dans les qua-
drants (ouverts) au voisinage de chaque point. Car en prenant,
pour fixer les idées, le cas de deux dimensions, g (P) = g (z, v),
nous avons:

a) L’accroissement total de g (x, y) a l'origine (valeur de

p (e) pour ce point) est nul. A fortiori, puisque g (z, y) doit étre
monotone, les expressions symbohques

g(040, 040)=g (040, 040) — g(0, 0+ 0) — g (040, 0) + g(0, 0) ,
— 8(0—0,0+40)=g(0, 040) —g(0—0, 0+ 0) —g(0, 0) +-5(0 =0, 0) ,
— 8(0+0,0—-0)=g(0+0, 0) —g(0, 0) —g(040,0—0) + (0, 0—0) ,

( )

g(0—0,0—0)=g(0, 0) —g(0—0, 0) — g(0, 0—0) + g(0—0,0—0

II

9

(limites d’accroissements doubles de g (x, y) et par conséquent

non-négatives) dont la somme est égale a 1’accroissement
040,040

total, A(g) , de g (=, ) au point (0, 0), sont nulles séparément.
0—0, 0—0

C'est-a-dire que les valeurs limites de g (x, y) au voisinage de
I’origine sont toutes nulles.
b) De méme, les expressions, ot y a une valeur quelconque

> 0:
g0 +0,yx0) =g(0+0 y=0) —g(0,y*0) — g(040,03x0)
+ 50,0 0) ,
— §0—0,y+0) = 5(0,y>0) — g(0—0,y£0) — g(0, 0F0
+ (0 —0,030),

(limites d’accroissements doubles de g (z, y) et par conséquent
non-négatives) dont la somme, en prenant partout les signes
supérieurs ou partout les signes inférieurs, est l’accroissement
total de g (x, y) sur I'intervalle { 0, 0; 0,y } de Paxe des y— fermé,
au cas des signes supérieurs, ouvert, a celui des signes inférieurs

1 Ensemble des points dont toutes les coordonnées u; sont >0,1=1,2,.., n
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— et par conséquent nulle — sont elles aussi nulles séparément.
C est-a-dire que les valeurs limites de g (x, y) au vmsmage d’un
point de ’axe des y sont toutes nulles. |

Et il en est de méme, pareillement, au voisinage d’un pomb
de I'axe des z. |

¢) 1l en résulte immédiatement qu’on &, en supposant x > O
y > 0:

x—0, y—0
sle—0,y—0 =N\l
040,040

= valeur de p(e) sur l'intervalle ouvert {0, 0; x, y}

x—0,y+0
glxa—0,y+0) — glx—0,y—0) =A(g)
0-+0, y—0
= valeur de p(e) sur lintervalle ouvert {0, y; x, y}

vx-l—O,y—O
glx+0,y—0) —glx—0,y—0) = A(g)

x—0,040
— valeur de p(e) sur l'intervalle ouvert {x, 0; x, y}

glx+0,y4+0) —gx—0,y+0) —gx+0,y—0) 4+ g(x—0, y—0)
x+0,y40

— A(g) — valeur de p(e) sur le point (x, y) .
x—0, y—0

D’ou la détermination des valeurs limites de g (x, y) dans les
quadrants ouverts au voisinage de chaque point x >~ 0, y >~ 0:

g(x — 0,y — 0) = valeur de p(e) sur l'intervalle ouvert {O, 0; x, y}

glx—0,y+0)
— valeur de p(e) sur l'intervalle {O, 0; x, y} ouvert sur le coté {0, x; x, y}

glx+0,y—0)
= valeur de p(e) sur l'intervalle {O 0; x, y} ouvert sur le coté {0 y; X, y}

glx +0,y + O) = valeur de p(e) sur l'intervalle fermé {0, 0;.x, y}

En passant du plan & ’espace & n dimensions, on ne rencontre
qu’une complication un peu plus grande dans les symboles,
a cause du plus grand nombre de coordonnées, qui exige en
outre la considération successive des. « plans» de coordonnées
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des divers ordres, depuis les axes de coordonnées jusqu’aux plans
de coordonnées proprement dits ( & n — 1 dimensions), avant
de conclure pour le point général P.

5. — Je dis que les formules exprimant les valeurs limites de
¢ (P), supposées existantes, comme valeurs de la fonction corres-
pondante p (e), définissent effectivement, lorsque p (e) est donné
a priori quelconque, les valeurs limites d’une fonction monotone
nulle sur les plans de coordonnées.

En effet, la fonction f (P), moyenne entre les 2" valeurs limites
ainsi définies au voisinage de P, est monotone, et a pour valeur
limite & Uintérieur d’un quadrant quelconque au voisinage de P,
la valeur lumite donnée correspondant a ce quadrant.

Si nous prenons de nouveau, pour fixer les idées, le cas n = 2,
nous avons en effet

! .
s(r'y)=;{g(x—-0~y~0> + e +0,y4+0) +3(x+0,y—0
+ glr — 0.y 4 0)},

ou les expressions symboliques & lUintérieur de la parenthese
désignent les valeurs de p (e) sur les intervalles {O, 0; x, y}
ouvert, fermé, ouvert sur le ¢o6té parallele a Ox, ouvert sur le coté
parallele a Oy, passant par (z, y); les deux premiéres de ces va-
leurs de p (e) sont respectivement la plus grande et la plus petite
de toutes; par conséquent:

g (x, v) est comprise entre les valeurs de p (e) sur Uintervalle
ouvert et sur Uintervalle fermé {0, 0; x, y}-

Or, st (', y') = (x,y) de facon monotone en demeurant dans
le quadrant ouvert (+-+), (+ —), (— ), ou (— —) au point
(x, y), ces deux intervalles ont méme limite! — ['intervalle

1 Dans le premier et dernier cas, les suites d’intervalles sont monotones, et la vérification
est immdediate; au 2me et 3me cas, on a recours & la définition générale de la limite d'une
suite d’ensembles (de la Vallée Poussin, p. 9):

1i v, lim
am L’L = (ETL + En+1 + ... En—l—k + )

1
1= o n->oo 1\

Iim . _ lim : n
e E; = o> o0 (En Epgt - Epyp o)

Auw 2me cas, par exemple, y; <y, x; >x, lasomme de tous les intervalles (ouverts ou
Termés), 10,05 41, Unppf POUr k= 1,2, ... est comprise dans Vintervalle {0, 0:xp, v |
vuvert sur le cot¢ paralltle & Ox, -—— qui a pour limite l'intervalle {0, 05 x, y} ouvert sur ce
méme cOté; le produit des mémes intervalles contient Uintervalle fermé 10, 05 2, up b, qui
tend vers le méme intervalle {0, 0; x, ¥} ouvert sur le coté paralléle & 0x.




70 . R. C. YOUNG

{0, 0; @, y}, fermé au premier cas, — ouvert sur le.c6té paralléle
a Oz passant par (z, y), au deuxiéme, — ouvert sur le c6té paral-
lele & Oy passant par (z, y), au troisiéme, — ouvert au quatriéme;
les deux valeurs de p (e), g(x — 0,y — 0) et g(z + 0, y -~ 0),
ont donc méme limite, — g (x + 0, ¥ <+ 0) au premier cas, —
g(x+ 0,y —0), ausecond, — g (x— 0, y + 0), au troisiéme, —
g(x — 0, y — 0), au dernier. Donc g (z, y) a effectivement les
limites voulues & l'intérieur de chaque quadrant.

La démonstration au cas général de n dimensions est absolu-
ment semblable. g (P) est toujours comprise entre les valeurs
de p (e) sur lintervalle ouvert et sur 'intervalle fermé (OP), et
cela suffit pour lui donner les limites voulues au voisinage de P.

Il ne reste plus qu’a vérifier la monotonie de g (P). Cela est
immeédiat. :

a) Ona,aucasn = 2, pour 0 = a < ¢, 0= b < d:

c,d 1 c+6, a0 c+0, d—0 ¢—0,d4-0 c—0, d—0
Ae=7{Al + A + A + A®
a,b . a+0,640 a+0,5—0 a—0,5640 a—0, b—0

c’est-a-dire que l’accroissement de g (x, y) dans un intervalle
7 {a, b; ¢, d} est moyenne entre quatre valeurs déterminées de
p (e); celle sur I'intervalle {a, b; ¢, d} fermé sur les cotés passant
par (¢, d), ouvert sur ceux passant par (a, b), — ou briévement,
intervalle ouvert en (a, b), fermé en (c, d); celle sur ce méme in-
tervalle, ouvert en (e, d), fermé en (a, b); celle sur ce méme in-
tervalle, ouvert en (¢, d), fermé en (a, b); et celle sur ce méme

intervalle, ouvert en (¢, b), fermé en (a, d); p(e) étant toujours
c,d ' '

non-négative, A(s) I'est aussi. L’accroissement double de g (z, y)
a,b : ‘ ,

est donc bien >~ 0.
' b) De plus les accroissements simples

gla,d) — ga, b) = g(a,d) — g(a, b) — g(o, d) + g(o, b)

gle, b) — g(a, b) = g(c, b) — gla, b) — g(c, o) + g(a, o)

sont également des accroissements doubles, dans les intervalles
{0, b; a, d} et {a, 0; ¢, b} respectivement. Les accroissements
simples sont donc eux aussi toujours > 03 c¢’est-a-dire g (x, y) est
monotone dans le domaine donné.
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Au cas général d’'un nombre quelconque de dimensions, on
considére séparément tous les accroissements £tUPle de g (P),
pour k = 1, 2, ..., n. Chacun est en méme temps accroissement
nturle de g (P), et celui-ci est moyenne entre 2" valeurs détermi-
nées de p (e), sur des intervalles ouverts & un sommet, fermes au
sommet opposé (c¢’est-a-dire ouverts sur les « faces » passant par
le premier sommet). Ces valeurs sont non-négatives, il en est
donc de méme des accroissements de g (P).

6. — A la question posée au n° 3 nous pouvons donc répondre
comme suit:

On peut se donner les valeurs limites d’'une fonction a variation
bornée dans un domaine borné sans passer par Uintermédiaire des
valeurs réelles en se donnant une fonction additive d’ensemble
quelconque.

Une telle fonction d’ensemble est, il est vrai, définie le plus
souvent par le procédé inverse, indiqué au n® 2, en partant des
valeurs d’une fonction d’intervalle dite additive, c¢’est-a-dire d’un
accroissement ntupl® de fonction & variation bornée dans I'in-
tervalle (valeurs réelles). Mais ce procédé peut aussi s’appliquer
~en prenant pour point de départ non des intervalles (domaines
rectangles), mais des domaines polygonaux simples d’une famille
convenablement choisie, par exemple des domaines tétraédraux
(triangles, sur le plan). Toute fonction non-négative, du type
additif 1, de ces domaines, définit par le procédé des suites mo-
notones une fonction d’ensemble additive, non-négative, et par la
une fonction monotone.

7. — 1l est clair cependant que si les notions de fonction addi-
tive d’ensemble et de fonction de point & variation bornée peuvent
se dire théoriquement équivalentes,iln’en est pas moins plus simple
de caractériser la position d’un point que de décrire un ensemble
particulier, ainsi que nous avons pu nous rendre compte déja au
cas tres élémentaire des intervalles semi-ouverts. On cherchera
donc & donner aux valeurs limites d’une fonction & variation

L Invariant par subdivision, cf. Mémoire de I'auteur sur les fonctions d’intervalles dans
Pespace & n dimensions présenté & la Math. Zeitschsr. et non encore publié.
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bornée une existence comme valeurs d’une fonction de point
indépendamment des valeurs de p (e) avec lesque]les nous les
avons identifiées.

On opérera, pour atteindre ce but, une sorte de décomposition
sur les points «réels » de notre espace ordinaire, en accordant une
existence a priori aux points fictifs que Uon a déja coutume de faire
figurer, comme arguments symboliques, dans I'expression des valeurs
limites. Le point P de l’espace ordinaire ne figurera plus dans
Iespace nouveau. A sa place se trouveront les 2" points fictifs

correspondant aux 2"-expressions symboliques que lon peut

déduire de
P = (u, uy, ... , u,)

en ajoutant ou retranchant le symbole 0 & chacune des coordon-
nées u;. Les «coordonnées » de ces points auront chacune pour
« valeur » un symbole de la forme

w40 ou u—20

représentant une suite de nombres réels. On passe donc des
nombres réels a ces « valeurs » nouvelles par un procédé tout a
fait analogue & celul qui fait passer des nombres rationnels aux

nombres réels. La décomposition en question reviendra précisé-.

ment & ne considérer comme « valeurs » que les suites monotones
de nombres réels, comme précédemment on aura pris comme
«nombres réels » toutes les suites convergentes de nombres ra-
tionnels. '

8. — Nous posons les définitions suivantes:

Une « valeur » a est définte par! une suite monotone (bornée)
de nombres réels, dont la hmlte unique est le nombre réel cor-
respondant @ a.

oy = oy, si les deux suites définissant a; et «, ont méme
sens et méme limite,

a; > a, ~ si la méme relatjon a lieu entre les deux nombres

ay < ag )’ réels correspondants,

1 Suivant la terminologie habituelle, est .... Ce point de vue est admissible mathémati-
quement, sinon logiquement parlant. Les relations d’inégalité que nous imposons 2 « ne
faisaient évidemment pas partie de notre notion des suites monotones, c’est donc blen en
réalité un concept nouveau.
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oy |>] @y , siles deux suites définissant oy et «, ont meme
limite, mais sens opposés, descendant pour
oy, ascendant pour e,.

ay | <K ay ,  Cgale ay >y

Si o est du type u + 0, il n’y a point de «valeur» [>| a; si
2 est du type u — 0, il n’en est point qui soit | <] «.

Les signes =, >, <, obéissent aux lois élémentaires habituelles
de transitivité. Le signe |>| joue le role d’= avec les signes <
et >, mais avec le signe =, il a prépondérance, comme les signes
d'inégalité. Ainsi

a | >] 2y, ay, > o, entrainent o > ag
ay, | >y, ay < o, entrainent o < a4
ay | > oy @, = a, entrainent o |>] a,

On ne pourra jamais avoir ey |>| «,, ay | > ag simultané-
ment. Mais aq [>] oy, ay|<|a; entrainent oy = o .

Les signes >, |>|, indiquent des relations d’inégaliié de méme
sens; <, |<| indiquent chacun une relation d’inégalité du sens
oppose.

o est dit étre compris enire ay et a, (au sens large) avec oy <,
(<I, ou = ay; — ce que nous écrivons «, |=| oy, si

a, |£] a|=E] oy .

Un «point » €L du nouvel espace a n dimensions est défini par

ses coordonnées

a a

gr Ogy wee O

Chaque « point » (U représente une suite monotone (bornée)?!
de points réels et il lui correspond le point limite de cette suite.
Deux points sont dits homologues (par rapport aux points réels
correspondants) si les suites monotones qu’ils représentent ont
meme Sens.

Un intervalle (CLG3) est Iensemble de tous les «points» du
nouvel espace dont les ®m coordonnées sont comprises entre les

1 Nous sous-entendrons ce qualificatif dans la suite. On convient habituellement, dansles

considérations de cette sorte, de restreindre le domaine d’¢tude & un domaine bhorné donné
A avance.
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fmes goordonnées des deux points donnés @ et 3. Lorsquil y a
égalité entre k des coordonnées de & et les k coordonnées corres-
pondantes de @3, l'intervalle est dit ¢ n — k dimensions. Les
2" points » de (L 3), dont chaque coordonnée égale la coordon-
née correspondante de A ouded, sont appelés les sommets de X 3.

Un quadrant de sommet & est ensemble de tous les «points»
3 tels que les relations d’inégalités entre les iém‘fS coordonnées de
& et de A aient un sens donné pour chaque i.

Les accroissements d’une fonction de « point » dans cet espace
sont définis par les mémes formules, déduites par induction des
cas n = 1, n = 2, ..., que les accroissements d’une fonction de
point ordinaire. L’accroissement Atuple d’une telle fonction de
« point » dans un intervalle donné & % dimensions est la somme
de 2° termes, valeurs de lafonction, affectées de signes déterminés,
aux 2° sommets de Vintervalle.

La fonction sera dite monotone si tous ses accroissements ont
un méme signe invariable.

Une suite de « points »

n’

est dite monotone (et bornee) s la suite des points « réels » corres-
pondants est monotone (et bornée). Elle a pour lLimite, par dé-
finition, le «point » A défini par cette derniére suite de points
réels. | -

Une suite quelconque aura pour limites les limites de ses salteq
partielles monotones, et sera convergente si toutes ses limites
coincident. Une suite monotone est en particulier convergente.

Les valeurs limites d’une fonction & (XX) au voisinage d’'un
« point» A, sont alors les limites de ses valeurs aux points de
suites convergentes, a limite & ;1. La fonection est dite continue
en A, si toutes ses limites au voisinage de &L, coincident. Elle
est dite continue si elle est continue au voisinage de tout point.
- Avec ces conventions, la propriété fondamentale des valeurs
limites de fonotlons monotones ordinaires peut s’énoncer comme
suit:

1 Un «point » ao peut étre limite de suites monotones d’un sens déterminé et unique.
Les suites convergentes a limite &o ‘sont composées de telles suites monotones, ¢ *est-a-
dire se trouvent chacune, & partir d’un certain point, dans un quadrant détermmé de
sommet ao.
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Une fonction de point du nouvel espace, représentant les valeurs
limites d’une fonction monotone de U'espace ordinaire, est une fonc-
t{ton monotone et continue.

Réciproquement, nous aurons maintenant le

TutortME. — Toute fonction de «point», monotone et continue,
du nouvel espace, représente les valeurs limites d’une fonction
monotone ordinaire.

I1 suffit de prendre, comme valeur de f (P), la moyenne des
valeurs de la fonction donnée aux 2" « points» correspondants
a P. Lorsque P’, en restant dans un quadrant donné de sommet
P, décrit une suite monotone a limite P, les 2" « points » corres-
pondants décrivent des suites (monotones) & méme limite, soit
le « point » &, du nouvel espace défini par la suite que décrit P’.
Les valeurs de la fonction donnée & (€L) aux 2" points corres-
pondants & P’ tendent donc vers la méme limite, & (CL); et ilen
est de méme de leur moyenne f (P). & (€L,) est donc la valeur
limite voulue de f (P). D’autre part, un aceroissement quelconque
de 7 (P) est moyenne entre 2" accroissements de la fonction don-
née; ce sont les accroissements de & (€L) dans les 2" intervalles du
nouvel espace dont les (2°) sommets sont chaque fois les points
homologues correspondants aux (2") sommets «réels» de Din-
tervalle considéré dans I'espace ordinaire. Les accroissements de
f (P) ont donc bien tous méme signe, qui est le signe des accrois-
sements de la fonction donnée F (CL).

9. — On comparera la démonstration ci-dessus, simple, directe
et générale, avec la démonstration des n° 5 et 6, qui suit abso-
lument le méme ordre d’idées. On verra combien nos conventions
géometriques simplifient 'exposition et détruisent les ambi-
guités. Les intervalles semi-ouverts qui interviennent au cours
du raisonnement sur p (e) ne sont autre chose que les intervalles
proprement dits (c’est-a-dire fermés) de notre nouvel espace;
un cas tel que, par exemple, un intervalle comprenant toute sa
frontiére sauf au seul point, qui ne se préterait pas & la compa-
raison directe (quoiqu’un tel intervalle soit toujours décompo-
sable en une somme d’intervalles pour lesquels il y a corres-
pondance immédiate), n’a trouvé aucune place explicite dans
notre raisonnement sur p (e); mais faute d’une nomenclature
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appropriée, nous étions obligés de décrire les intervalles semi-
ouverts intervenant, comme de simples sous-ensembles d’inter-
valles fermés, et de prendre le cas n = 2 pour pouvoir préciser
un peu leur définition.

On comprendra aussi le relief pour ainsi dire tangible que notre
mode de représentation ‘donne aux propriétés essentielles des
fonctions monotones avec les considérations inévitablement
abstraites d’une multiplicité de valeurs limites au voisinage de
points de discontinuité plus ou moins bien déterminés. Nous
avons déja remarqué que ce sont ces valeurs limites qui impor-
tent dans la théorie de ces fonctions. Il apparaitra donc, en fin
de compte, que les points « réels » auxquels nous avons coutume
de rattacher notre théorie des fonctions ont beaucoup moins
de «réalité » que les points «fictifs » que nous leur avons subs-
titués pour commodité de représentation.

L’espace «réel » est un échafaudage indispensable a la cons-
truction de notre espace, comme le systeme des nombres frac-
tionnaires & la construction du systéme réel. Une fois le nouveau
systéme, le nouvel espace, rendu existant, celui qui a servia son
évolution, perd de sa réalité. (Dés lors, on pourra commencer
par définir directement les valeurs «a» en partant des nombres
rationnels, soit comme suites monotones (ce qui représente la
moitié du nombre réel défini comme suite d’intervalles rationnels
encastrés), soit comme ensemble des nombres rationnels d’un
coté d’une section de Dedekind, mais en utilisant la dissymétrie
que I'on néglige lorsqu’on définit le nombre réel de la sorte.)
Nous «retrouvons» les nombres rationnels parmi les nombres
réels; mais ¢’est par une identification axiomatique et purement
conventionnelle, d’un. type tel que la science mathématique
semble pouvoir admettre le plus souvent sans inconvénients,
‘tandis que la logique pure, en I'imitant, rencontre des obsta-
cles et contradictions sans fin. Le caractere particulier -de la
généralisation que nous voulions souligner (car elle existe, bien
qu’incomplétement dégagée, du moment ou les fonctions dis-
continues entrent en ligne de compte), c’est que les points
réels se «retrouvent» aussi dans l’espace décomposé, mais
non plus comme « points » au sens nouveau; chaque groupe de
2" «points » correspondant au méme point réel de I'espace
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primitif 1 peut étre envisagé comme constituant ce point méme,
ou du moins le concept qui va le remplacer entierement. Une fonc-
tion de point de I’espace ordinaire devient une fonction de ce
groupe de «points» et, comme telle, peut étre envisagée directement
en son milieu nouveau. _

L’idée de procéder, pour la considération spéciale des fonctions
monotones, & une modification de structure de notre espace,
m’est apparue sous la forme ci-dessus incidemment au prin-
temps 1926 (et fut alors communiquée au Professeur Hobson
a Cambridge), en méme temps que le probléme général de
simplifier la manipulation de fonctions données, et celles de
limites dites indéterminées, en élevant le degré d’abstraction
des notions sous-jacentes.

On songera naturellement a la simplification résultant; d’une
facon tout a fait analogue, dans le traitement des fonctions
algébriques, par I'introduction des surfaces de Riemann. Outre
I’application que nous en faisons dans la présente note et dans
un travail, en cours de préparation, sur les fonctions & limites
unilatérales uniques, I'idée en question servira assurément &
d’autres buts et dans d’autres domaines, dans la suite.

1 QOu encore, leur moyenne, au sens de Grassmann.
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