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ADDENDUM

1° La démonstration complète des propriétés énoncées dans

le présent article prouvera sans doute par elle-même que toute
fonction satisfaisant à l'équation (L), ne rentrant pas dans

la catégorie particulière du théorème VI, est une fonction

analytique de x,y,z, t.
2° L'expression

öXöX&YöY öXöYöXöY öXöYöXöY öY^YöXöX'

dont il a été question au sujet du théorème VI, jouit de la
même invariance que AA u par rapport aux transformations
analytiques de X et Y. Son annulation a la signification
suivante: par tout point (X, Y) il passe une courbe analytique
sur laquelle uest constant. Ce^ courbes dépendent de deux

paramètres réels, mais non d'un paramètre complexe si AA
n'est pas nul.

LES FONCTIONS ADDITIVES D'ENSEMBLE,
LES FONCTIONS DE POINT A VARIATION BORNÉE

ET LA GÉNÉRALISATION DE LA NOTION D'ESPACE
A n DIMENSIONS

PAR

R. C. Young (Cambridge).

1. — A la fin du Chapitre VI de sa monographie: « Intégrales
de Lebesgue, fonctions d'ensemble, classes de Baire », M. de la
Vallée Poussin établit la proposition suivante, sous l'hypothèse
d'un nombre quelconque, soit n, de dimensions:

Toute fonction de point / (P), qui est continue et à variation
bornée, définit une fonction p (e), continue et additive, d'en-
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semble (normal *). Cette fonction est égale, pour chaque intervalle

à ndimensions («domaine rectangle») à l'accroissement
(n tuple) de / (P) dans cet intervalle 2. Remarquons tout d'abord
que la « continuité » de p (e)définie au n° 82 de la dite monographie

comme propriété de tendre vers zéro avec le diamètre de e,

prend ici un caractère plus précis : p {é) tend vers zéro avec le

diamètre de la projection de esur l'un des axes, ou, ce qui revient
au même, s'annulle identiquement dans chaque « plan » (à (n — 1)

dimensions) parallèle à l'un des plans de coordonnées. C'est ce

caractère que nous pourrons, avantageusement, prendre comme
définissant la continuité d'une fonction additive d'ensemble, au
lieu du caractère moins précis, qui coincide du reste avec celui-là
au cas de l'espace linéaire. Nous pouvons remarquer de plus que
la définition d'une fonction à variation bornée du n° 104 de la

monographie fait coincider une telle fonction quelconque avec
la différence de deux fonctions quelconques à accroissements
^tuples toujours positifs ou nuls (mais bornés). Or une fonction à

accroissement 7ituple borné et de signe invariable, définie dans

un domaine rectangle quelconque, ne diffère d'une fonction
monotone que par une somme de fonctions dépendant chacune
de {n— 1) coordonnées au plus3 — et ne contribuant en rien à la
valeur de l'accroissement fttuple, c'est-à-dire à la fonction p (e).

Nous aurons donc avantage également à interprêter la désignation

de fonction à variation bornée comme signifiant la différence
de deux fonctions monotones, au sens défini dans notre précédente

note, c'est-à-dire de fonctions dont tous les accroissements^

ont un même signe invariable 4. Une fonction de n variables à

variation bornée est alors à variation bornée par rapport à

chaque groupe de kvariables et pour chaque valeur des (n — k)
autres variables, maintenus fixes, k 1, 2, Avec ces

1 Nous allons omettre le qualificatif de «normal». On sait que les ensembles
«normaux» (relativement à une fonction additive) comprennent tous les ensembles
mesurables B (voir au n° 80 de la monographie citée), les seuls qui possèdent une
individualité définie par rapport à des considérations du genre qui vont suivre.
Dans la présente note,lesymbole e et le moj ensemble toujours un
ensemble mesurable B.

2 Définitions au nos 2, 3 de ma note de l'Enseignement 1924-5, p. 79

et suivantes : «Les fonctions monotones et l'intégration dans l'espace à n dimensions».
3 Valeurs de la fonction, affectées du signe + ou —, aux projections de P sur les

côtés et «faces» de tous ordres du domaine rectangle.
4 Loc. cit. n° 3.
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conventions, la continuité de pe)résulterade la continuité de la

fonction à variation bornée dont elle est déduite par l'intermédiaire
de la propriété immédiate :

Toute fonction continue à variation bornée a son accroissement

ntupie nui ^ l'intérieur de chaque intervalle k < n dimensions

et en chaque point1.

2. — Les restrictions que M. de la Vallée Poussin faisait entrevoir,

en terminant le chapitre cité, pour la généralisation aux
fonctions discontinues à variation bornée ne subsistent pas à

l'examen détaillé. On sait aujourd'hui que l'énoncé rappelé ci-
dessus demeure vrai lorsqu'on y omet le terme c'est-à-
dire :

Toute fonction de point f(P) à variation bornée définit une fonction

p (e) additive d1 ensemble.

p(e) est défini d'abord pour chaque intervalle ouvert à n

dimensions, comme limite des accroissements ^tuples de j (P)
dans les intervalles d'une suite croissante tendant vers l'intervalle

ouvert; en d'autres mots, on égale p (e) sur les intervalles
ouverts aux accroissements ?ituples de /(P) à l'intérieur de ces

intervalles; de là p (e) se définit d'une façon unique et toujours
possible sur chaque ensemble c, par une répétition finie ou transfinie

de passages à la limite, identique à celle qui définit la mesure
de l'ensemble en partant de la mesure des intervalles (méthode
des suites monotones). La fonction p (e) est donc, précisément,
Vintégrale par rapport à f (P) de la fonction caractéristique de

Vensemble e (égale à l'unité aux points de e et nulle ailleurs). En
particulier, sur un intervalle ouvert à moins de n dimensions,
p (e) a pour valeur l'accroissement ^tuple de / (P) à l'intérieur de

cet intervalle et sa valeur sur un point unique est l'accroissement
Toupie de / (P) en ce point. On appelle aussi p (e)

total de f sur V ensemblee.

3. — L'accroissement total d'une fonction / (P), discontinue
et à variation bornée, sur les intervalles ouverts, et par là sur
tout ensemble, — est entièrement défini par les valeurs limites

i Loc. cit. pp. 83, 84.

L'Enseignement mathém., 26e année; 1927. 5
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de f(P)dans les quadrants ouverts en chaque point1; la valeur
réelle de / (P) n'intervient que pour la définition de ces valeurs
limites. La question se pose: Peut-on se donner les valeurs
limites sans passer expressément par l'intermédiaire des valeurs
réelles A cause du numéro précédent, ce problème peut être
envisagé comme faisant partie du suivant:

Etant donné une fonction 9 (e)additive d'ensemble, existe-t-il
une fonction / (P) à variation bornée à laquelle 9 corresponde
par le procédé du n° 2

En d'autres termes :

Toute fonction additive d'ensemble 9 (e) est-elle l'intégrale,
par rapport à une fonction à variation bornée / (P), de la fonction
caractéristique de l'ensemble c, ou accroissement total de / (P)
sur e

C'est la réciproque généralisée du problème posé au n° 97 de la
monographie de M. de la Vallée Poussin, qui conduisait ensuite
à l'énoncé rappelé au n° 1 ci-dessus. La réponse est de nouveau
affirmative, et établit l'équivalence complète entre les fonctions
à variation bornée et les fonctions additives d'ensemble. Les
considérations qui suivent rendent la démonstration immédiate.

4. — La fonction 9 (e) additive d'ensemble est la différence de

deux fonctions additives, non négatives. Il suffit donc de considérer

les fonctions additives d'ensemble, non-négatives. Nous
démontrerons précisément:

Toute fonction p (e) additive d'ensemble, non-négative, coïncide,
dans un domaine borné donné quelconque, avec l'intégrale de la

fonction caractéristique de e par rapport à une fonction monotone

g (P) ou accroissement total de / (P) sur e.

p e)étant borné, il ne peut exister qu'un nombre fini de plans
parallèles aux plans de coordonnées à l'intérieur desquels p(e) ait
des valeurs ^ s>0; par suite les plans, parallèles aux plans de

coordonnées, à l'intérieur desquels p (e) n'est pas identiquement
nul, sont dénombrables. Il s'ensuit que l'on peut choisir une
nouvelle origine de coordonnées (en maintenant la direction des

axes) de façon qtfe le domaine donné soit situé dans le quadrant

1 Loc. cit. nos 1, 3.
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positif de sommet 01 et que p(esoitidentiquement nul à

l'intérieur de chacun des plans de coordonnées. En définissant g(P)
dans tout le quadrant positif de sommet 0, on l'aura alors, en

particulier, définie dans le domaine donné.
Cela fait, nous posons g(P) 0 dans chacun des plans de

coordonnées. A cause de 2, les valeurs limites de la fonction g (P)

notone, supposée existante,sont alors déterminées dans les

quadrants (ouverts) au voisinage de chaque point. Car en prenant,
pour fixer les idées, le cas de deux dimensions, g (P) g (x, y),
nous avons:

a) L'accroissement total de g y) à l'origine (valeur de

p e)pour ce point) est nul. A fortiori, puisque g (x, y) doit être

monotone, les expressions symboliques

*(0 + 0, 0 + 0) *(0 + 0, 0 + 0)—*(0, 0 + 0)-*(0 + 0, 0) +*(0, 0)

-*(0-0, 0 + 0) *(0, 0 + 0)—*(0-0, 0 + 0) — *(0, 0) + *(0 — 0, 0)

_ *(0 + 0, 0 — 0) g (0 + 0, 0) — * (0, 0) — * (0 + 0, 0-0) +*(0, 0-0)
*(0-0, 0 — 0) *(0, 0) -*(0-0, 0) — *(0, 0-0) +*(0-0, 0-0)

(limites d'accroissements doubles de g (x, y) et par conséquent
non-négatives) dont la somme est égale à l'accroissement

0 +0,0 + 0

total, V (*) de g (x, y) au point (0, 0), sont nulles séparément.
0—0,0—0

C'est-à-dire que les valeurs limites de g (x, y) au voisinage de

l'origine sont toutes nulles.
b) De même, les expressions, où y a une valeur quelconque

> 0:

*(0 + 0, y ± 0) *(0 + 0, y±0) - *(0, ± 0) - *(0 + 0,0 + 0)

+ *(0, 0 + 0)

— *(0 — 0, y±0) *(0, y±0) — *(0 — 0, ± 0) — *(0, 0 + 0

+ *(0 - 0, 0 + 0)

(limites d'accroissements doubles de g y) et par conséquent
non-négatives) dont la somme, en prenant partout les signes
supérieurs ou partout les signes inférieurs, est l'accroissement
total de g (x, y) sur l'intervalle { 0, 0 ; 0, } de l'axe des y— fermé,
au cas des signes supérieurs, ouvert, à celui des signes inférieurs

i Ensemble des points dont toutes les coordonnées sont ^0, i 1,2,,.., n.
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— et par conséquent nulle — sont elles aussi nulles séparément.
C'est-à-dire que les valeurs limites de y) au voisinage d'un
point de l'axe des y sont toutes nulles.

Et il en est de même, pareillement, au voisinage d'un point
de l'axe des x

c)Il en résulte immédiatement qu'on a, en supposant 0,

y>0:
x—0, y—0

*(* — <>, y— 0) ^(g)
0+0,0 + 0

valeur de p(e) sur l'intervalle ouvert -j^O, 0; |
.r-0 ,y+ô

g(x— 0, y+ 0) — g(x— 0,2/ — 0)

0+0, y—0

valeur de p (e)sur l'intervalle ouvert ji), j
x+ 0, 0

g(x + 0, y —0) — g(x— 0, y —0) ^(g)
0 + 0

valeur de p'(e) sur l'intervalle ouvert ^x, 0; x, t/j-

g{x+ 0, y+0) — g(x —0, y+ 0) — g(x+ 0, y—0) + g(x — 0, — 0)

x+0,y+0
va^eur )sur p°int (x* y) '

x—0, y—0

D'où la détermination des valeurs limites de g y) dans les

quadrants ouverts au voisinage de chaque point ^ 0, ^ 0:

g[x — 0 y— 0) valeur de p(e)surl'intervalle ouvert |0, 0; x, y\

^g(x —0 y+ 0)

valeur de p(e) sur l'intervalle |0, 0; x,ouvert sur le côté |0, |
g[x-b0, y— 0)

— valeur de p(e) sur l'intervalle |0, 0; x,ouvert sur le côté -^0, y, x, J»

g [x -f- 0, y-f- 0) valeur de p(e)surl'intervalle fermé £(), 0; |

En passant du plan à l'espace à n dimensions, on ne rencontre
qu'une complication un peu plus grande dans les symboles,
à cause du plus grand nombre de coordonnées, qui exige en
outre la considération successive des. « plans » de coordonnées
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dos divers ordres, depuis les axes de coordonnées jusqu'aux plans

de coordonnées proprement dits à — 1 dimensions), avant
de conclure pour le point général P.

5. — Je dis que les formules exprimant les valeurs limites de

g (P), supposées existantes, comme valeurs de la fonction
correspondante p(e), définissent effectivement, lorsque p (e) est donné

a priori quelconque, les valeurs limites d'une fonction monotone
nulle sur les plans de coordonnées.

En effet, la jonction f (P), moyenne entre les 2n valeurs limites

ainsi définies au voisinage de P, est et a pour valeur

limite à V intérieurd'un quadrant quelconque au voisinage de P,

la valeur limitedonnée correspondant à ce quadrant.
Si nous prenons de nouveau, pour fixer les idées, le cas n — 2,

nous avons en effet

g (X, y)=z J fo- (x— 0 y — 0) -f g (*0 -f 0) -f g(x + 0 — 0)
2i ^

H- g(x — °> y+ °)},

où les expressions symboliques à l'intérieur de la parenthèse
désignent les valeurs de p (e) sur les intervalles {0, 0; x, y}
ouvert, fermé, ouvert sur le côté parallèle à O#, ouvert sur le côté

parallèle à Oy, passant par (x, y); les deux premières de ces
valeurs de p (e) sont respectivement la plus grande et la plus petite
de toutes ; par conséquent :

g (x, y) est comprise entre les valeurs de p (e) Vintervalle
ouvert et sur Vintervalle fermé {0, 0 ; y}-

Or, si (xf y') —(x, y) de façon monotone en demeurant dans
le quadrant ouvert ++ (+ —), (— +), ou au point
(x, y), ces deux intervalles ont même limite 1 — l'intervalle

i Dans le premier et dernier cas. les suites d'intervalles sont monotones, et la vérification
est immédiate; au 2me et 3me cas, on a recours à la définition générale de la limite d'une
suite d'ensembles (de la Vallée Poussin, p. 9):

n"® (E + E«+l + - + En+k + -)
^nco(En En+l -En+ft...)

Au 2me cas, par exemple, la somme de tous les intervalles (ouverts ou
fermés), j 0, 0; xn+h'Vn+ k\ P°ur k ~ 1, 2,est comprise dans l'intervalle { 0, 0 ; xn, y }

ouvert sur le côté parallèle à Ox, — qui a pour limite l'intervalle j 0, 0; x, y} ouvert sur ce
même côté; le produit des mômes intervalles contient l'intervalle fermé {0, 0; lln\; qui
tend vers le même intervalle j 0, 0; x, y} ouvert sur le côté parallèle à Ox.
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{0, 0; x, y},fermé au premier cas, — ouvert sur le côté parallèle
à Ox passant par (#, y), au deuxième, — ouvert sur le côté parallèle

à 0 ypassant par (#, y), au troisième, — ouvert au quatrième;
les deux valeurs de p(c), g (x — 0, y — 0) et + 0, + 0),
ont donc même limite, — g (x+ 0, + 0) au premier cas, —
g (x+ 0, y— 0), au second, — g (x— 0, + 0), au troisième, —
g (x — 0, y — 0), au dernier. Donc g (x, y) a effectivement les
limites voulues à l'intérieur de chaque quadrant.

La démonstration au cas général de dimensions est absolument

semblable, g (P) est toujours comprise entre les valeurs
de p (e)sur l'intervalle ouvert et sur l'intervalle fermé (OP), et
cela suffit pour lui donner les limites voulues au voisinage de P.

Il ne reste plus qu'à vérifier la monotonie de g (P). Cela est
immédiat.

a) On a, au cas n2, pour 0 ^ a c, 0

c,d l c + 0, d+0 c+0, d0 0,d+0 c—0,d—0\

— j \ + \(s) + \(g) + \(g) [
L)b cl-j-0j J"f-0 a-f~0j b—0 cl—0>è"-j-0 cl—Oj b—0 /

c'est-à-dire que l'accroissement de g y) dans un intervalle
{a, b\ c, d)est moyenne entre quatre valeurs déterminées de

p e);celle sur l'intervalle {a, b; c, fermé sur les côtés passant

par (c, rf), ouvert sur ceux passant par (a, à), — ou brièvement,
l'intervalle ouvert en (a, è), fermé en (c, ); celle sur ce même

intervalle, ouvert en (e, rf), fermé en (a, ); celle sur ce même

intervalle, ouvert en (c, d), fermé en (a, ); et celle sur ce même

intervalle, ouvert en (c, à), fermé en (a, d); p{e) étant* toujours
c, d

non-négative, \{g)l'estaussi. L'accroissement double de g (#, y)
a,b

est donc bien ^ 0.

b) De plus les accroissements simples

g(a, d)— g(a,b) g(a, d) — b) — g(o, d) + b)

g(c, h) — g (a, b) g(ct b) — g(a, b) — + 'g (a,

sont également des accroissements doubles, dans les intervalles
{0, à; a, d} et {a, 0; c, b}respectivement.Les accroissements

simples sont donc eux aussi toujours ^ 0; c'est-à-dire g (#, y) est

monotone dans le domaine donné.
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Au cas général d'un nombre quelconque de dimensions, on

considère séparément tous les accroissements A:tuple de (P),

pour k 1, 2, ft. Chacun est en même temps accroissement

fttup]e (je g celui-ci est moyenne entre 2" valeurs déterminées

de p(e), sur des intervalles ouverts à un sommet, fermés au

sommet opposé (c'est-à-dire ouverts sur les « faces » passant par
le premier sommet). Ces valeurs sont non-négatives, il en est

donc de même des accroissements de g (P).

6. — A la question posée au n° 3 nous pouvons donc répondre
comme suit:

On peut se donner les valeurs limites fonction à variation
bornée dans un domaine borné sans passer par V intermédiaire des

valeurs réelles en se donnant une fonction additive densemble

quelconque.
Une telle fonction d'ensemble est, il est vrai, définie le plus

souvent par le procédé inverse, indiqué au n° 2, en partant des

valeur« d'une fonction d intervalle dite additive, c'est-à-dire d'un
accroissement fttuPle de fonction à variation bornée dans
l'intervalle (valeurs réelles). Mais ce procédé peut aussi s'appliquer
en prenant pour point de départ non des intervalles (domaines
rectangles), mais des domaines polygonaux simples d'une famille
convenablement choisie, par exemple des domaines tétraédraux
(triangles, sur le plan). Toute fonction non-négative, du type
additif1, de ces domaines, définit par le procédé des suites
monotones une fonction d'ensemble additive, non-négative, et par là
une fonction monotone.

7. — 11 est clair cependant que si les notions de fonction additive

d'ensemble et de fonction de point à variation bornée peuvent
se dire théoriquement équivalentes, il n'en est pas moins plus simple
de caractériser la position d'un point que de décrire un ensemble
particulier, ainsi que nous avons pu nous rendre compte déjà au
cas très élémentaire des intervalles semi-ouverts. On cherchera
donc à donner aux valeurs limites d'une fonction à variation

i Invariant par subdivision, cf. Mémoire de l'auteur sur les fonctions d'intervalles dans
l'espace à n dimensions présenté à la Math. Zeitschsr. et non encore publié.
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bornée une existence comme valeurs d'une fonction de point
indépendamment des valeurs de p (e) avec lesquelles nous les

avons identifiées.
On opérera, pour atteindre ce but, une sorte de décomposition

sur les points « réels » de notre espace ordinaire, en accordant une
existence a priori aux points fictifs que Von a déjà coutume de faire
figurer, comme arguments symboliques,dans des valeurs
limites. Le point P de l'espace ordinaire ne figurera plus dans
l'espace nouveau. A sa place se trouveront les points fictifs
correspondant aux 2n expressions symboliques que l'on peut
déduire de

P (ux, «2, un)

en ajoutant ou retranchant le symbole 0 à chacune des coordonnées

Ui. Les « coordonnées » de ces points auront chacune pour
« valeur » un symbole de la forme

u-f~ 0 ou u — 0

représentant une suite de nombres On passe donc des

nombres réels à ces « valeurs » nouvelles par un procédé tout à

fait analogue à celui qui fait passer des nombres rationnels aux
nombres réels.La décomposition en question reviendra précisément

à ne considérer comme « valeurs » que les suites monotones
de nombres réels, comme précédemment on aura pris comme
« nombres réels » toutes les suites convergentes de nombres
rationnels.

8. — Nous posons les définitions suivantes:
Une « valeur » aest définie par1 une suite monotone (bornée)

de nombres réels, dont la limite unique est le nombre réel -
respondant à a.

ocx a2,si les deux suites définissant ax et «2 ont même

sens et même limite,

Äi > a2 si la même relation a lieu entre les deux nombres
ai<C Ä2 i ' r^s correspondants,

i Suivant la terminologie habituelle, est....Ce point de vue est admissible mathématiquement,

sinon logiquement parlant. Les relations d'inégalité que nous imposons à a ne
faisaient évidemment pas partie de notre notion des suites monotones, c'est donc bien en
réalité un concept nouveau.
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«1 |> I «2 7
si les deux suites définissant et a2 ont même

limite, mais sens opposés, descendant pour

a1? ascendant pour #2.

ail<Cla2 égale a2 |>l «î •

Si a est du type u+ 0, il n'y a point de « valeur » |> | a; si

a est du type u— 0, il n'en est point qui soit |<| a.
Les signes obéissent aux lois élémentaires habituelles

de transitivité. Le signe |>| joue le rôle d'= avec les signes

et mais avec le signe il a prépondérance, comme les signes

d'inégalité. Ainsi

ai M a2 > a2 > a3 entraînent clx> a3

ax |>! a2 a2 < a3 entraînent <[ a3

ai IXI a2 » a2 — a3 entraînent |>| a3

On ne pourra jamais avoir a1| > | a2, a2 \ > I simultanément.

Mais ai |]> ', «2 a2 Kl a3 entraînent
Les signes >, |>|, indiquent des relations de même

sens; <, |<| indiquent chacun une relation d'inégalité du sens

opposé.
c/,est dit être compris entre ax et(nu sens large) avec a2 <L

|<l, ou a1 — ce que nous écrivons «2 K| si

ai I —I a I —I a2 *

Un « point » CX du nouvel espace à n dimensions est défini par
ses coordonnées

ai'a2'••• a„ *

Chaque « point » CX représente une suite monotone (bornée)1
de points réels et il lui correspond le point limite de cette suite.
Deux points sont dits homologues (par rapport aux points réels

correspondants) si les suites monotones qu'ils représentent ont
même sens.

Un intervalle (&L6h)est l'ensemble de tous les «points)) du
nouvel espace dont les ïèmes coordonnées sont comprises entre les

1 Nous sous-cntendrons ce qualificatif dans la suite. On convient habituellement, dans les
considérations de cette sorte, de restreindre le domaine d'étude à un domaine horné donné
à l'avance.
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fimes coordonnées des deux points donnés" (ftet Lorsqu'il y a

égalité entre kdes coordonnées de (St et les k coordonnées
correspondantes de 6h,l'intervalle est dit n — k dimensions. Les
2 ~

« points » de ((ft 03), dont chaque coordonnée égale la coordonnée

correspondante de (ft oudeßh,sont appelés les sommets de (ft
Un quadrant de sommet (ft est l'ensemble de tous les «points»

Ûh tels que les relations d'inégalités entre les ièmes coordonnées de
6h et de (ft aient un sens donné pour chaque i.

Les accroissements d'une fonction de « point » dans cet espace
sont définis par les mêmes formules, déduites par induction des

cas n1, n2, que les accroissements d'une fonction de

point ordinaire. L'accroissement fttuple d'une telle fonction de
« point » dans un intervalle donné à k dimensions est la somme
de 2ktermes, valeurs de la fonction, affectées de signes déterminés,
aux 2ksommets de l'intervalle.

La fonction sera dite monotone si tous ses accroissements ont
un même signe invariable.

Une suite de « points »

<xlt alf...,an,
est dite monotone (et bornée) si la suite des points « réels »

correspondants est monotone (et bornée). Elle a pour par
définition, le « point » (ft défini par cette dernière suite de points
réels.

Une suite quelconque aura pour limites les limites de ses suites

partielles monotones, et sera convergente si toutes ses limites
coïncident. Une suite monotone est en particulier convergente.

Les valeurs limites d'une fonction ((ft) voisinage d'un
« point» (ft0 sont alors les limites de ses valeurs aux points de

suites convergentes, à limite (fto1. La fonction est dite continue

en (ft0 si toutes ses limites au voisinage de (ft 0 coïncident. Elle
est dite continue si elle est continue au voisinage de tout point.

Avec ces conventions, la propriété fondamentale des valeurs
limites de fonctions monotones ordinaires peut s'énoncer comme
suit:

i Un « point » (fto peut être limite de suites monotones d'un sens déterminé et unique.
Les suites convergentes à limite (fto sont composées de telles suites monotones, c'est-à-
dire se trouvent chacune, à partir d'un certain point, dans un quadrant déterminé de

sommet <su
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Une fonction de point du nouvel représentant les valeurs

limites Tunefonction monotone de Vespace est une fonction

monotone et continue.

Réciproquement, nous aurons maintenant le

Théorème. — Toute fonction de «», monotone et

du nouvel espace,représente les valeurs limites Tune fonction
monotone ordinaire.

Il suffît de prendre, comme valeur de / (P), la moyenne des

valeurs de la fonction donnée aux
n

« points » correspondants
à P. Lorsque P', en restant dans un quadrant donné de sommet
P, décrit une suite monotone à limite P, les « points »

correspondants décrivent des suites (monotones) à même limite, soit
le « point » 6Lq du nouvel espace défini par la suite que décrit P'.
Les valeurs de la fonction donnée (CX) aux 2" points
correspondants à P' tendent donc vers la même limite, êP((5L0) ; et il en
est de même de leur moyenne f(P).(CT0) est donc la valeur
limite voulue de / (P). D'autre part, un accroissement quelconque
de / (P) est moyenne entre 2naccroissements de la fonction donnée;

ce sont les accroissements de (CT) dans les 2" intervalles du
nouvel espace dont les (2*) sommets sont chaque fois les points
homologues correspondants aux (2k) sommets « réels » de
l'intervalle considéré dans l'espace ordinaire. Les accroissements de

/ (P) ont donc bien tous même signe, qui est le signe des

accroissements de la fonction donnée êP(CT).
9. — On comparera la démonstration ci-dessus, simple, directe

et générale, avec la démonstration des nos 5 et 6, qui suit
absolument le même ordre d'idées. On verra combien nos conventions
géométriques simplifient l'exposition et détruisent les

ambiguïtés. Les intervalles semi-ouverts qui interviennent au cours
du raisonnement sur p (e) ne sont autre chose que les intervalles
proprement dits (c'est-à-dire fermés) de notre nouvel espace;
un cas tel que, par exemple, un intervalle comprenant toute sa
frontière sauf au seul point, qui ne se prêterait pas à la comparaison

directe (quoiqu'un tel intervalle soit toujours décompo-
sable en une somme d'intervalles pour lesquels il y a
correspondance immédiate), n'a trouvé aucune place explicite dans
notre raisonnement sur p (e); mais faute d'une nomenclature
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appropriée, nous étions obligés de décrire les intervalles semi-
ouverts intervenant, comme de simples sous-ensembles d'intervalles

fermés, et de prendre le cas 2 pour pouvoir préciser
un peu leur définition.

On comprendra aussi le relief pour ainsi dire tangible que notre
mode de représentation 'donne aux propriétés essentielles des

fonctions monotones avec les considérations inévitablement
abstraites d'une multiplicité de valeurs limites au voisinage de

points de discontinuité plus ou moins bien déterminés. Nous

avons déjà remarqué que ce sont ces valeurs limites qui importent

dans la théorie de ces fonctions. Il apparaîtra donc, en fin
de compte, que les points« réels » auxquels nous avons coutume
de rattacher notre théorie des fonctions ont beaucoup moins
de « réalité » que les points « fictifs » que nous leur avons
substitués pour commodité de représentation.

L'espace « réel » est un échafaudage indispensable à la
construction de notre espace, comme le système des nombres
fractionnaires à la construction du système réel. Une fois le nouveau
système, le nouvel espace, rendu celui qui a servi à son
évolution, perd de sa réalité. (Dès lors, on pourra commencer

par définir directement les valeurs «a.» en partant des nombres
rationnels, soit comme suites monotones (ce qui représente la
moitié du nombre réel défini comme suite d'intervalles rationnels
encastrés), soit comme ensemble des nombres rationnels d'un
côté d'une section de Dedekind, mais en utilisant la dissymétrie

que l'on néglige lorsqu'on définit le nombre réel de la sorte.)
Nous «retrouvons» les nombres rationnels parmi les nombres
réels ; mais c'est par une identification axiomatique et purement
conventionnelle, d'un type tel que la science mathématique
semble pouvoir admettre le plus souvent sans inconvénients,
tandis que la logique pure, en l'imitant, rencontre des obstacles

et contradictions sans fin. Le caractère particulier de la
généralisation que nous voulions souligner (car elle existe, bien

qu'incomplètement dégagée, du moment où les fonctions
discontinues entrent en ligné de compte), c'est que les points
réels se « retrouvent » aussi dans l'espace décomposé, mais

non plus comme « points » au sens nouveau ; chaque groupe de

2n « points » correspondant au même point réel de l'espace
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primitif1 peut être envisagé comme constituant ce point même,

ou du moins le concept qui va le remplacer entièrement. Une fonction

de point de l'espace ordinaire devient une fonction de ce

groupe de « points » et, comme telle, peut être envisagée directement
en son milieu nouveau.

ff

L'idée de procéder, pour la considération spéciale des fonctions
monotones, à une modification de structure de notre espace,
m'est apparue sous la forme ci-dessus incidemment au
printemps 1926 (et fut alors communiquée au Professeur Hobson
à Cambridge), en même temps que le problème général de

simplifier la manipulation de fonctions données, et celles de
limites dites indéterminées, en élevant le degré d'abstraction
des notions sous-jacentes.

On songera naturellement à la simplification résultant* d'une
façon tout à fait analogue, dans le traitement des fonctions
algébriques, par l'introduction des surfaces de Riemann. Outre
l'application que nous en faisons dans la présente note et dans

un travail, en cours de préparation, sur les fonctions à limites
unilatérales uniques, l'idée en question servira assurément à

d'autres buts et dans d'autres domaines, dans la suite.

3 Ou encore, leur moyenne, au sens de Grassmann.
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