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' SOCIETE MATHEMATIQUE SUISSE
Conférences et communications.

Réunion de Bdle, 2 et 3 septembre 1927.

La Société Mathématique suisse a tenu sa 17me Assemblée annuelle

ordinaire a Bile, les 2 et 3 septembre 1927, sous la présidence de M. le =~ |

professeur F. GoNseETH (Berne), en méme temps que la 108me gession
annuelle de la Société Helvétique des Sciences naturelles. :

Le programme trés chargé de la réunion comprenait 17 communi-
cations, desquelles 16 ont été effectivement présentées a la séance.
Nous en donnons les résumés plus bas. '

1. — A. WEINSTEIN (Rome). — Sur une extension d’un principe
analytique avec des applications & Ihydrodynamique. — On considére
dans la théorie classique des fonctions harmoniques trois sortes de
conditions homogénes aux limites. Ce sont les conditions de

" Dirichlet: U = 0,
Neumann : gU_ = O
< dn
-, au : . '
Fourier: EE = pU ;oD <0 -

La constante (ou fonction) donnée p est essentiellement négative
(n désignant la normale extérieure), ainsi que l'exige la Théorie de la
Chaleur de Fourier. Si le domaine est borné, on peut afﬁrmer dans
les trois cas que U est identiquement zéro (ou const.).

Le developpement récent de T'Hydrodynamique plane, surtout
les travaux qui se rattachent plus ou moins directement aux théories
de M. Levi-CiviTa, a conduit d’une maniére naturelle a 1’'étude du
cas ou p est positif, et il convient de désigner la condition ‘

dU _
gy =pPUs  p>0

comme condition de Levi-Civita.
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Le cas d’un domaine non borné présente un intérét particulier. Les
fonctions correspondantes U ont été étudiées pour la condition de
Dirichlet par ParacMin et LinperOr en 1908. Pour les conditions
de NeumanN, Fourier et Levi-Civita on peut obtenir des résultats
analogues bien que les méthodes de la théorie des fonctions employées
par Phragmén et Lindel6f ne soient plus applicables.

2. — L.-G. Du PasqQuiger (Neuchétel). — Sur un théoréme d’ Hurwitz.
— L’auteur a déterminé, dans le corps {Hm} des quaternions
hamiltoniens & coordonnées rationnelles, tous les groupes additifs
et multiplicatifs possibles. 11 a traité ce probléme par deux méthodes,
I'une basée sur la théorie des substitutions, 'autre sur les propriétés
des modules de nombres. L’auteur indique la base du domaine
holoide le plus général formé a 'aide de quatre quaternions linéaire-

ment indépendants du corps {Hm}. Comme premiere application,
il démontre que pour arriver au domaine hurwitzien, dont la base est

LAy oy +
)

P

)

3 )

savoir a lensemble des quaternions hamiltoniens

m m m m
0 [0 ] 0 ' 0 ]
5 <2 \ m]> I, + <_) -+ m:,> 1y -+ <—2— -+ mg> N

obtenus quand my, my , m, et my parcourent indépendamment 1’un
de I'autre toutes les valeurs entiéres de — o0 & + o0 il suffit de postuler
dans le module, outre les nombres complexes entiers de Gauss, encore
une unité relative, par exemple i,; c’est la condition nécessaire et
suffisante. Comme deuxiéme application, Pauteur indique deux théo-
remes relatifs aux groupes contenus dans le corps {Hm} 11 généralise
le théoreme d’Hurwitz en remplacant le dénominateur 2 par un
nombre entier quelconque. La généralisation la plus simple aboutit
au domaine avant comme base

~

1, 1

1

a condition que @ et b vérifient équation de Fermat

b? — 2na® = — 1

b

ou n est un nombre entier. Par exemple,

LA
my o m, . 41 . my
—_— —_ 7 1 - 3 -
5 T Mo + 5 + m )y 4 =g Ms + 29my, )i, + 75l

les mg , my , my et mg ayant la méme signification que ci-dessus.
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Une note sur les recherches de l’éutelir dans ce domaine a‘ paru
dans les Comptes Rendus des séances de ’Académie des scienceés de’
Paris, t. 184, p 59, séance du 10 janvier 1927 |

3. — A. HEYER (St. Gall). — Sur des lieux géométriques se rattachant
aux conigues homofocales. — Dans les énoncés qui suivent A est tou-
jours un sommet principal de la conique, B un sommet secondaire,
F un foyer, ¢ 'excentricité linéaire, p le rayon de courbure. L’origine O
est au centre de la conique. :

I. Considérons un faisceau de coniques homofocales et élevons en
F la perpendiculaire sur ’axe principal; aux points d’intersection de
cette derniére avec les courbes, menons les tangentes et abaissons les
perpendiculaires de F sur ces tangentes Le lieu geometrlque des pleds
des perpendloulalres est la stroph01de droite

y ==L (L——x)\/%ix )

Par chaque point P de la perpendiculaire par F a I’axe principal
passent deux coniques, une ellipse et une hyperbole. Menons la
tangente & chacune de ces coniques au point considéré. De F abaissons
les -perpendiculaires FP; et FP, sur ces deux tangentes. La distance
P, P, est toujours egale a FP. Au foyer on trouve pour la strophoide
p = c/ |
I1. Dans un faisceau d’ellipses homofocales, menons pour chacune
des courbes la corde issue de B et passant par' F et soit C le second
point d’intersection avec la conique. Par B et C menons les paralléles
aux axes jusqu’en leurs points d’intersection. Le lieu géométrique de
P est donné par I’équation

' ' 2(x — ¢)
‘= + —_—
y - C"\/ 2c — z

La courbe a pour asymptote £ = 2¢. Le point d’inflexion est donne
- par z = 5c/4. Au foyer on a p = c. ~

ITI. Dans un faisceau de coniques homofocales, oons1derons les
cordes issues du point B et passant par F. Le lieu geometrlque du pole
de ces cordes par rapport au cercle de centre O et de rayon a est

2+ y? = xyz/c . (courbe de Longchom‘p).

L asymptote est donne parx = <. Le minimum correspond ar=2c,
y = 2¢. Pour le point d’inflexion on a = 4c.

Le pomt le plus rapproché du centre est z = 30/2 y = 3\/2 c/2
Au minimum on a P = 2¢c.
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I'V. Dans un faisceau d’ellipses homofocales, menons, pour chacune
des courbes, la corde BF et le diamétre passant par I'une des extrémités
de Tordonnée au foyer. Le lieu géométrique du point d’intersection

de ces deux droites est représenté par

V= E e —

L’asymptote a pour équation = ¢/2. Au foyer on a p = ¢/2.

V. Dans un faisceau d’ellipses homofocales, menons les cordes
AB et abaissons du centre la perpendiculaire sur cette corde. Le lieu
géométrique du pied de la perpendiculaire est,
en coordonnées cartésiennes,

2,202 (1)
SN 2)

La courbe a les asymptotes ¥ = 4 x; pour le point d’inflexion on

trouve z = c\/‘—Z/3, y = 2¢/3. Au centre on a p = ¢/2. Le point de
la courbe le plus éloigné de l'origine a son amplitude donnée par

g7 — 2igto — 1g%0 + 1g%0 4 21go — 1 = 0 .
On ne peut utiliser que les racines suivantes:
1) tgo, = 1, o, = 45° pour le point a l'infini ,

D tge, = L+ VI)E+ VA + V)8, 6, = 6402007

En calculant les points d’inflexion on obtient Iéquation Symé-
trique suivante

21g8 0 — tgbo — btgte —1g?0 L 2 = 0 .

La seule racine utilisable est

La tangente au point d’inflexion est déterminée par
tgo = 41/2/7

Ce point correspond a Pellipse pour laquelle b = e.
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— J. KIrMsE (Schmélln,” Thuringe). — La théorie Ldeale des
, domames de rationalité quaternionaire Liouvilliens. (V01r le résumé

inséré dans les Actes de la Société Helo. des Sc. nat., réunion de Béle,
1927 )

5. — M. Gut (Zurich). — Sur le nombre des classes d’un corps
quadratique. — L’auteur référe & son travail paru sous le méme titre
dans la Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich
(72me année, 1927, p. 197). En vertu de I’équation fonctionnelle de
M. HeckE on obtient une expression un peu différente de ’expression
classique pour le nombre des classes d’un corps de nombres algébriques
quelconque. A Paide d’un théoréme sur les séries divergerites de
Dirichlet, on peut en particulier pour les corps quadrathues déterminer
le nombre des classes sans qu’il soit nécessaire de recourir aux sommes
de Gauss. L’auteur ajoute que postérieurement M. Hecke I’a rendu
attentif au fait que E. Lanpau a évalué déja une fois, mais d’une
maniére différente, les deux séries divergentes dans le cas des corps
quadrathues (V01r Journal de Crelle, tome 125 année 1903, p. 64
et suiv., spécialement p. 132-137.)

- 6. — R. WavRE (Genéve). — Sur la stratification et les mouvements
internes des planétes. — La recherche des figures d’équilibre relatif
d’une masse fluide hétérogéne en rotation autour de son axe polaire
a fait 'objet des mémorables travaux de Clairaut, de Laplace, de
Poincaré. Ces auteurs ont montré qu’en premiére approximation les
surfaces d’égale densité sont ellipsoidales pour de petite valeur de la
vitesse angulaire. MM. Liapounoff, Lichtenstein et Véronnet ont
fait connaitre aussi d’importants résultats au sujet de 1’équilibre
relatif. Un ancien élsve M. Dive, qui est aujourd’hui mon collabora-
teur dans ce genre de questions et moi-méme avons poursuivi I’étude -
du mouvement permanent de rotation d’une masse fluide hérétogéne
sans supposer a priori qu’elle fut en équilibre relatif. Notre seule
hypothése est que chaque particule tourne autour de ’axe avec une
vitesse angulaire constante, cette vitesse pouvant varier d’une partl-
cule & une autre.
Je me suis spécialement consacré a 1’étude de ces mouvements dans
le cas ou il existe un potentiel du champ de la pesanteur; j’ai pu |
montrer que la vitesse angulaire ne dépendait que de la distance a
‘I’axe et que les couches d’égale densité tendent vers la forme ellip-
soidale quand elles se rapprochent du centre. M. Dive a pu établir
que pour ces mouvements la stratification ne saurait &tre ellipsoidale
dans son ensemble. Il faut en conclure que la planéte ne saurait pas
non plus étre stratifiée en couches d’égale densité homothétiques. Ces
mouvements que nous appelons mouvements de genre un sont carac-
terlses par l'une quelconque des proposﬂ;lons suivantes:
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10 11 existe un potentiel du champ de la pesanteur.

20 ]l existe un potentiel des accélérations.

30 Les surfaces d’égale densité sont horizontales.

40 La vitesse angulaire ne dépend que de la distance a I’axe.

Nous avons fait voir également que les mouvements de premiere
espéce dépendent entiérement de la résolution d’une équation de
Fredholm de premiére espéce.

M. Dive a démontré Pexistence de mouvement de genre deux, ou
les surfaces d’égale densité ne sont plus normales au champ de la
pesanteur. La stratification peut alors étre ellipsoidale en toute
rigueur et non seulement en premiére approximation. En admettant
précisément que les couches d’égale densité soient des ellipsoides de
révolution, M. Dive a mis en évidence des inégalités de la vitesse
angulaire quand on se meut de ’équateur au pdle ou de la surface
au centre. Ces inégalités rendent compte merveilleusement de certains
faits géologiques tels que la brisure qui passe par les grands lacs
d’Afrique ou la configuration de certains continents. L’étude de
M. Dive parait confirmer quelques-unes des vues de M. Wegener.

Nos recherches ont paru aux « Comptes rendus de ’Académie des
Sciences », année 1927, en 6 notes et in exienso dans les « Archives des
sciences physiques et naturelles » de Genéve, années 1924, 1925,
1926, 1927.

— G. PoLva (Zurich). — Sur une condition & laquelle satisfont
Zes coeﬁicw/zts des séries entieres prolongeables. — Désignons par A
un ensemble fermé situé dans le plan des z, par p le rayon du plus
petit cercle de centre = = 0 contenant A et par ¢ le rayon du plus petit
cercle de méme centre contenant tous les points de condensation de A.
Soit Gy (z) = z® + ... le polynome de degré n s'écartant le moins
possible de zéro dans I’ensemble A et soit 7, son écart, ¢’est-a-dire le
maximum de | ®,(z) | sur ensemble A. Comme on sait, d’apres
M. Fekete, la limite :

n  —

lim \/:” = =

n = oC

existe. Ona p > o > =

Soit p le rayon de convergence de la série

N
)
5
-
x
X

a
0 1
= 5+

L1,

,; i

foo e = () (1)

)
P

S|

et soit f(z) réguliere et uniforme dans Pensemble complémentaire
de A. Mettons
an-{—l

"11—}—1 n-4-2 *°

I
| ¢
|
|
|
\

a

n k-1 PN Y an+2]:—2
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Supposons que 7 varie avec k de maniére que

lim

= 2>0.
. g R NN + k / > .‘
Alors on a
‘ 1 ‘
o (r+h-1 R . — % ‘ ' ‘
’:_1:1 lAgIk)l Lol ' (2)

Dans le cas particulier n = 0 (done » = 1) ¢ est le 81gne d’egahte
qui est valable pour beaucoup de fonctions spéciales f(z) (et peut-étre -
‘pour toutes les fonctions) si A est choisi' convenablement. Voici.un
corollaire de (2): Si les coefficients a,, a;, a5, ... de la série (1) sont
des nombres entiers et f(z) est une fonction uniforme transcendante,
I'ensemble des points singuliers de f(z): n’est pas dénombrable.
Chemin faisant on trouve le théoréme suivant: Si les ensembles A et
A* sont fermés, A* est contenu dans A, A — A* est dénombrable et.

* est demve de A* de la méme maniére que 7 est de A, on a t* = r.

8. ——F GonserH (Berne) et G. JUVET‘(Ne’u’chét-el)'. — Sur la rela-
tiité a cing dimensions et la théorie des quanta. Voir: C. R. Acad. Se.,
Paris, t. 185, p. 341, 412, 448 et 535; aolt-septembre 1927.

9. — S. Bays (Fribourg). — Sur le nombre des systémes cycliques de
triples de Steiner différents pour N = 6n -+ 1 premier. — Le probléme
de V’obtention des systémes cycliques de triples de Steiner différents
pour N = 67 + 1 premier, est actuellement ramené & celui de 1’obten-
tion des systémes de caractéristiques différents, appartenant a chaque
diviseur d de 3n !

La recherche des systémes de caracterlsthues différents appartenant
an et aux diviseurs de n a été ramenée au probléme suivant 2:

Obtenir toutes les combinaisons constituées de x triples pris dans
n — 2 colonnes eycllques de trlples des éléments O, 1, 2, ..., n — 1;
(a), et de y éléments pris dans la série («) avec la proprlete 390 +y=n
et qu'en la méme combinaison les éléments soient tous-différents. Des
- combinaisons obtenues, ne retenir que celles qui ne sont pas déduc-

tibles I'une de I’autre par les substitutions du groupe {(012 . — 1)}

La recherche des systémes de caractéristiques différents appartenant
au diviseur d quelconque de 3n, est maintenant ramenée au probléme
sulvant: : »

1 Voir mes second et troisiéme mémoires sur ce probléme des systémes cycliques de
triples de Steiner: 'un est dans le Journ. de math. pures et appliquées, t. 2, 1923, fasc. 1,
p. 73 4 98; Pautre est dans les Annales de la Faculte des Sciences de Toulouse, t. XVII,
1925, p. 3 4 41.

2 Voir le trmsu‘-:me mémoire (celui des Annales de Toulouse) aux p. 29 a 41,
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St d est nou un diviseur de n, on a au plus n — 2 colonnes cycliques
(n — 2 pour d = n) de triples des éléments 0, 1, 2, ..., d —1; (B); les
éléments (f3) représentent chacun dﬁ des éléments («). 11 faut obtenir
toutes les combinaisons de z triples pris dans ces colonnes cycliques

o
oh

et de y éléments pris dans la série () avec la propriété: - ty=n
et qu’en la méme combinaison les éléments («) représentés ou entrant
effectivement soient tous différents.

St d est multiple par 3 de n ou d’un diviseur den, on a au plus n — 1
colonnes cycliques de triples des éléments ((). Il faut simplement

. o d ., . .
obtenir toutes les combinaisons de 3 triples pris dans ces colonnes,

sans ¢lément répété ou, autrement dit, contenant chacune tous les
¢léments (3).

Dans I'un et 'autre cas, il ne faut retenir que celles des combinaisons
qui ne sont pas déductibles 'une de 'autre par les substitutions du
groupe {(012 coe d — I)}-

Avant ce résultat, j’avais pu pousser la recherche des systémes de
caracteéristiques différents et donc celle des systémes cycliques de
triples de Steiner différents jusqu’a N = 43; je puis maintenant avec
du temps, obtenir les systémes de caractéristiques différents appar-
tenant a chaque diviseur d (excepté 3n lui-méme) jusqu'a N = 97, et
surtout donner presque immédiatement ceux appartenant aux petits
diviseurs de 3n, au diviseur 3 en particulier, pour des N = 6n -+ 1
premiers plus grands, méme aussi grands que ’on veut, pourvu que
J'en ale une racine primitive.

10. — 3. Bays (Fribourg). — Sur un probleme posé par Cayley en
rapport avec le probleme des systemes de triples de Steiner. — Le pro-
hléme posé par CAYLEY, relativement au probléme des systémes de
triples de Steiner, est le suivant. Nous I’énoncerons d’une facon plus
explicite:

Un systeme de triples de Steiner de N éléments est tel que chaque
couple des N éléments entre une fois et une seule fois dans un de ces
N(N — 1)

6

triples de N éléments

triples. Un systéme de triples de Steiner contient done

triples. Pourrait-on répartir les N = 16) N—2)
en N — 2 systémes de triples de Steiner ?
Cayley a fait remarquer que pour 7 éléments (les systémes de triples
de Steiner n’existent que pour les N des formes 6n + 1 et 61 - 3)
cette répartition n’est pas possible; sur les 30 formes différentes que
prend Punigue systeme de triples de Steiner de 7 éléments par les 7 !
permutations de ces éléments, on peut en trouver deux différentes
par tous leurs triples et pas davantage, alors qu’il en faudrait cing
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pour contenir les 35 triples de 7 éléments. Il a donné une démonstra-
tion, fausse d’ailleurs (voir Actes de la S. H. S. N., Lugano, 1919,
ITme partie, p. 74) incitant & croire que pour 15 éléments cette répar-
tition n’est pas possible non plus. J’ai montré que pour 9 éléments
(Enseignement mathématique, n° 1-2, 19m€ année, 1917, p. 57-67) la
question de Cayley a deux solutlons d1f’ferentes (ne provenant pas
P’une de l'autre par une permutatlon des éléments); et & I’encontre
de Cayley qui parait avoir pensé plutot le contraire, il me semble que
cette répartition de ensemble des triples de N éléments en N — 2
systémes de triples de Steiner doit étre possible au moius pour
certains N des formes 6n + 1 et 6n + 3.

Pour les N = 6n + 1 premiers en dessous de 100, “je puis donner
maintenant, pour chacun d’eux, un nombre de systemes cychques de
triples de Stemer différents par tous leurs triples supérieur a (N—2)/2,
excepté, comme il vient d’étre dit, pour N = 7. Ainsi pour N = 61,
. jobtiens avec la plus grande facilité, parce que les systémes de carac-
téristiques appartenant aux petits diviseurs de 3n, ou a des diviseurs
que je dirai commodes, me suffisent pour cela, 44 systémes cycliques
de triples sans un triple commun, alors que la répartition de Cayley en
demanderait 59. Pour N = 73, j’en obtiens 56 sur 71 qui seraient
nécessaires.

Il faut remarquer d’ailleurs que je n’ opere qu’avec une catégorie
trés restreinte de systémes de triples, les systémes de triples cycligues ;
si ]e parvenais & une solution de la question de Cayley par cette.
voie, elle serait une solution d’un type partlculler aussl, puisque
possedant le groupe cyclique {|z, 1 + I} ¢’est. une raison de plus,

me semble-t-il, de penser que, si nous avions & disposition fous les
systémes de triples de Steiner qui existent pour N éléments, la
répartition de Cayley serait probablement possible.

H. S. Wuite a démontré (7ransactions of the Amer. Math. Soc.,
vol. XVI, n°o 1, 1915) que pour N = 31, il y a déja plus de 37 x 1012
systémes de triples de Steiner différents (il y a 80 systémes cycliques
de triples de Steiner différents pour N = 31); avec toutes les formes
qu’ils peuvent prendre chacun par les permutations du groupe
symétrique des 31 éléments, on a une idée du nombre excessivement
grand déja pour N = 31, de systémes de triples a disposition pour
chercher une répartition de.Caery. '

11. — Rod. FuETER. — Les lots de réciprocité dans un corps quadra-
‘tique imaginaire. — La théorie des fonctions elliptiques et de la
multiplication complexe exposée dans mon livre Vorlesungen iiber
die singuliren Moduln und die komplexe Multiplikation der elliptischen
Funktionen (zwelter Teil, Teubner, 1927), permet de déduire des lois -
de réciprocité qui correspondent a la célébre loi de EisEnsTEIN. On
prend seulement pour base, au lieu des nombres rationnels, les nombres
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d’un corps quadratique imaginaire quelconque. L’analogie entre la
fonction exponentielle et la fonction elliptique:

] “3

Glz; o, wy) = , Wy = o T Wy
s oo — (%)
est alors parfaite. Comme le nombre des classes est en général plus
grand que un, les déductions doivent se faire dans le corps des classes
du corps quadratique, ou mieux dans le corps des classes £ (4), qui
correspond aux classes du rayon pour le conducteur 4. .
Prenons le cas le plus simple, celui qui conduit & la loi de réciprocite
des restes quadratiques. On a la formule:

HOVEE) =V @) = o W)V, r="001T"Tm0

/" ’
tx) T

ott 7 est un nombre premier primaire, n.(1) un nombre du corps
k(4), x remplit les conditions:

z =z = 1 (mod. 4) , x

— z (mod. =) ,

et le produit s’étend & un systéme de restes (mod. n). Cette formule
contient la loi:

= et » deux nombres premiers primaires, suivant qu’on applique la loi
générale de la décomposition des nombres premiers dans les corps de
rayons (mod. 4m), ou qu'on détermine cette décomposition dans le

corps relatif V'z. Dans le cas des nombres de Gauss cette loi est
identique avec celle de Gauss. ‘

12. — A. SPEISER (Zurich). — Sur les groupes et groupoides. — La
théorie des nombres a multiplication non commutative présente un
aspect assez nouveau, comparée avec l'arithmétique des nombres
algébriques. On peut la caractériser par le fait que les notions de
nombre ordinal et nombre cardinal ne s’harmonisent plus entiérement.

Le probléme de la construction de tous les idéaux qui appartiennent,
par exemple du coté droit, a un certain domaine d’intégrité (1),
et de la recherche de leurs relations mutuelles, est complétement
résolu. CVest 'équivalent des nombres ordinaux. De méme la tran-
sition d’'un nombre & un autre dans le sens de ’addition ne présente
aucune difficulté. Par contre la transition d’un idéal (a) & un idéal (b)
dans le sens de la multiplication, ¢’est-a-dire la formation du quotient
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(B)/(a) ne peut en general étre reahsee dans le méme systéme d’1deaux
et il s’en suit que le caractére vectoriel des nombres cardinaux ne peut
pas &tre maintenu dans les idéaux sans modification. Mais les travaux
de MM. Braxpt, KruLL, ARTIN montrent que ces quotients forment
des idéaux dans d’autres domaines d’intégrité et, en partant de ces
résultats, on peut, dans des cas étendus, rétablir le caractére vectoriel
des idéaux en formant la notion de remplacement d’un idéal par un
autre. Ces idéaux remplagants sont constitués des mémes classes de
restes prlses selon la norme de l’1deal

13. — H. BRANDT' (Aachen). «—— De la théorie générale des idéaux. —

L’auteur donne d’abord une théorie générale des modules pour une
algéhre associative ! quelconque 9 contenant une unité prmmpale
Ici le terme module signifie un systéme de nombres de ¥ qui contient
avec a, 3, ... aussi aa + b8 + ... ou a, b, ... sont des nombres quel- -
conques d’un systeme de coefficients 3 qu’on a choisi au central 3
~ de U comme anneau avec unité principale. -
. Pour les modules on définit les opérations d’addition, de soustrac-
“tion, de multiplication et de division comme Dedekmd Pa fait pour
les corps algébriques 2. Quelques modifications sont causées par le
fait que la multiplication n’est pas commutative. Par exemple, en
désignant par a et b deux modules quelconques, on trouve, en général,
le produit a X b différent du produit b X a; aussi peut on former
deux quotients avec le dénominateur @ et le numerateur b qui sont
désignés par les symboles a,/'b (c’est—é-dire a que b divise) et b\ a (¢’est-
a-dire b qui divise a).

Chaque module comme a a son ordre droit a\a = ao et son ordre
~ gauche a/a = a% En formant les quot ents a,/a et a\a’, on trou-
vera tOllJOUI‘S le méme module qu’or nomme le module réciproque
de a et qu'on désigne par a\a/a = a!. Si on a les égalités .
el x a=aq,eta X al = a’, on nomme @ module réversible.

La multiplication générale @ X b = ¢ définit ¢ par a et b, mais
elle ne définit pas a par b et ¢ ou b par a et ¢. C’est pourquoi Pauteur
a construit le concept de multiplication propre. Ce cas se réalise
~ quand.on ne peut agrandir ni le systeme de nombres de a ni le systéme

de nombres de b sans varier le produit ¢, et on écrit ab = ¢. Pour les
six ordres a°, a,, b°, by, ¢?, ¢, on trouve les egahtes a% = ¢, a5 = b°,
by = ¢,
' Tous les modules qui sont en connexion directe ou 1nd1recte par
une égalité de multiplication propre sont mommés conjoints. On-a
,alors le théoréme: Tous les modules réversibles conjoints & un ordre
donne soumls & la multiplication propre, forment un groupoide infini 3.

1 L. E. DicksonN. Algebras and their amthmetzcs, Chlcago 1923 ou seconde éd1t10n en
, allemand Algebren und ihre Zahlentheorie, Zurich, 1927.

2 DIrICHLET-DEDERIND. Zahlentheorie, 4. Auflage. p. 493.
' 8 H, BRANDT. Ueber eine Verallgememerung des Gruppenbegmffes Math Annalen, 96

(1926), S. 360.
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Si 9 est une algébre rationnelle de Dedekind (c’est-a-dire une algébre
rationnelle sans radical) de I'ordre n, et 3 est le module des nombres
naturels, le cas intéressant est surtout celui des modules finis qui
possédent une base de n nombres. Il se peut dans ce cas que tous les
modules conjoints & un ordre donné, soient aussi réversibles. La
condition suffisante et nécessaire pour cela est que le complément
de Uordre sott réversible. Cette condition est toujours remplie pour les
ordres maximaux. On nomme idéal chaque module dont 'un (et par
suite aussi I’autre) de ses ordres est maximal.

On a le théoréme: Tous les idéaux d’une algébre de Dedekind,
soumis & la multiplication propre, forment un groupoide infini.

Chaque idéal a, dont le produit a X a est divisible par a (au sens
admis pour les modules et idéaux) est nomimné idéal intégral. Pour les
idéaux intégraux on a ce théoréme fondamental: Si a est divisible
par b il y a deux idéaux intégraux t et § tels que a= rbs.

C’est par ce théoréme et les recherches de M. Speiser qu’on obtient
toutes les lois de la factorisation des idéaux intégraux.

14. — P. FINsLER (Zurich). — Formes quadratiques el variélés
algébriques. — La question de savoir sous quelles conditions une
forme quadratique définie est contenue dans un systéme linéaire de
formes quadratiques est liée & une classe particuliére de variétés
algébriques. '

Les variétés algébriques les plus simples appartenant a I'espace
de n dimensions, c’est-a-dire celles qui ne sont pas contenues dans
un espace linéaire plus petit, et qui sont composées de parties irréduc-
tibles de dimensions p; et d’ordres ¢; satisfont a la condition Z(p; + ¢;)
= n + 1. Elles appartiennent en méme temps que quelques autres
variétés réductibles, aux «variétés libres », qu’on peut définir de la
maniére suivante:

Une variété algébrique G se nomme libre, si la section de G par un
espace linéaire quelconque consiste toujours ou bien en une infinité
de points ou bien seulement en des points linéairement indépendants.

La classification selon I'ordre correspond alors & la suivante:

Une variété algébrique G est d’un degré de restriction r, si le nombre
des points d’intersection isolés de G avec un espace linéaire quelconque
peut surpasser de r le nombre des points indépendants d’entre eux.
- I1y a des théorémes simples sur les variétés libres, qui sont valables
méme pour chaque position particuliére. Ainsi par exemple, la section
par un espace linéaire engendre en tout cas une variété libre.

De plus on a le théoréme suivant: Une variété libre étant donnée
dans I’espace réel, si elle est située d’un méme coté d’une quadrique,
on peut toujours faire passer, par la variété donnée, une autre qua-
drique ne touchant pas la premiére. Ce théoréme ne subsiste que pour
les seules variétés libres.
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On en tire le corollaire suivant: Pour qu’une forme définie soit
toujours contenue dans . un systéme linéaire de formes quadratiques
Q + 22;Q; il faut et il suffit que Z2;Q; = 0 représente le systéme:
de toutes les quadriques contenant une variété libre située entiérement
dans 'un des domaines Q > Oou Q < 0.

Il en résulte I’application suivante au calcul des variations:

“Les conditions nécessaires et suffisantes, données par M. J.
HapaMARD (Bull. Soc. Math. de France, 30 (1902)), pour un minimum
d’une intégrale n-uple a m fonctions inconnues sont équivalentes
entre elles pour m = 2 ou n = 2, mais non plus pour m > 2, n > 2.

15. — J.-J. BurckHARDT (Bale). — L’algébre du diédre. — Pour
étudier la structure d’une algébre, on la décomposera en une somme
directe, ¢’est-a-dire une somme de sous-algébres telles que le produit
de deux quantités quelconques appartenant a des composantes
différentes soit nul. Par ce procédé, nous avons étudié I’algébre
rationnelle dont les quantités de base se composent selon la structure
du groupe du diédre. En particulier, nous considérons comme diédre
le triangle équilatéral. L’algébre correspondante se décompose en une
somme directe de trois composantes: deux composantes d’ordre 1
(donc équivalentes aux corps des nombres rationnels) et une troisiéme
d’ordre 4. Puisque chaque quantité de la troisiéme composante doit
‘satisfaire & une équation quadratique, on arrive aisément & définir
la norme: % —un, 0, + 0} — (n) —ngn, + 03) (14, ..., 7, étant des
nombres rationnels). On peut transformer cette forme quadratique
par une transformation rationnelle dans la forme &£,&; — £,&,. En
appliquant la transformation transposée de la précédente aux
quantités de base de la troisiéme composante, celle-ci se réduit a une
algébre de matrices.

Dans le cas général du diédre ayant un nombre impair m d’angles
on peut séparer d’abord, d’une maniére analogue, deux composantes
d’ordre 1. La partie restante se décompose dans le corps des carac-
téres (du groupe correspondant) en (m- — 1)/2 algebres par contre
leur somme se représente rationnellement.

16. — Wolfgang KRULL (Frlbourg en Br.). — Sur les corps infinis -
algébriques. — 11 s’agit de généraliser pour le cas d’un corps infini
algébrique le théoréme que chaque idéal d’un corps fini algébrique
peut étre décomposé en idéaux smlples (« Pr1m1dea1e » selon Dedekind).
Vo101 les résultats: .

1. Chaque idéal du domame general (« Hauptordnung » selon
Dedekind) d’un corps quelconque algébrique peut étre représenté
-comme plus petit commun multiple d’'un nombre (fini ou infini)
d’idéaux unitaires, chaque idéal unitaire étant d1V1s1ble par un seul
idéal simple. C
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9. Dans un corps fini algébrique 'ensemble de tous les idéaux
unitaires divisibles par le méme idéal simple z est égal a Pensemble
des puissances de z. Dans le cas général, ce n’est pas la méme thse.
Mais chaque idéal unitaire peut étre caracterisé par un nombre réel,
la « valeur », et par un symbole «fini» ou «infini».

3. Si chaque idéal du corps k& n’est divisible que par un npmbre
fini d’idéaux simples les résultats indiqués suffisent pour distinguer
si un idéal quelconque est diviseur ou facteur d’un autre ou non.
Dans le cas général il faut se servir de certaines méthodes de la
topologie que nous ne pouvons mentionner ici.

CHRONIQUE

Congrés International de Mathématiques

Bologne, 3-10 sept., 1928.

Le Congreés International de mathématiques, qui aura lieu a Bologne
du 3 au 10 septembre 1928, est placé sous le haut Patronage de S. M.
le Roi d’Italie et la présidence d’honneur S. E. Benito Mussolini,
Chef du Gouvernement. Il est organis¢ sous les auspices du
« Rector Magnificus » de I’'Université de Bologne.

La Commission exécutive, présidée par M. le Prof. S. PINCHERLE,
invite & participer aux travaux du congrés toutes les personnes qui
cultivent les sciences mathématiques pures ou leurs applications.

Le Congreés tiendra des séances pléniéres et des réunions de sections.
Le programme provisoire prévoit sept sections qui pourront étre
subdivisées elles-mémes en un certain nombre de sous-sections. Les
personnes qui ont 'intention de faire des communications sont priées
de faire connaitre le titre et le sujet de leur travail, avant le 31 mai
1928, & I'un des introducteurs de la section correspondante. On en
trouvera la liste ci-apres.

Les conférences et les communications effectivement lues au Congrés
seront publiées dans les volumes des Actes du Congrés. Les manuscrits
en langue étrangere (allemand, anglais, espagnol, francais) en latin
classique ou en latin sine flexione doivent étre écrits & la machine,
exception faite pour les formules. Chaque congressiste aura droit & un
exemplaire gratuit des Actes du Congreés.

Pendant le congres, des manuscrits, des estampes et autres docu-

[’Enscignement mathém., 26¢ année, 1927. 21
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