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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications.

Réunion de Bâle,2 et 3 septembre 1927.

La Société Mathématique suisse a tenu sa 17me Assemblée annuelle
ordinaire à Bâle, les 2 et 3 septembre 1927, sous la présidence de M. le
professeur F. Gonseth (Berne), en même temps que la 108me session
annuelle de la Société Helvétique des Sciences naturelles.

Le programme très chargé de là réunion comprenait 17 communications,

desquelles 16 ont été effectivement présentées à la séance.
Nous en donnons les résumés plus bas.

1. —* A. Weinstein (Rome). — une extension d'un principe
analytique avec des applications à l'hydrodynamique. — On considère
dans la théorie classique dés fonctions harmoniques trois sortes de
conditions homogènes aux limites. Ce sont les conditions de

Dirichlet:U0

Neumann: dn' /
Fourier : ~ — pU ; < 0

La constante (ou fonction) donnée est essentiellement négative
(tt désignant la normale extérieure), ainsi que l'exige la Théorie de la
Chaleur de Fourier. Si le domaine est borné, on peut affirmer dans
les trois cas que U est identiquement zéro (ou const.).

Le développement récent de l'Hydrodynamique plane, surtout
les travaux qui se rattachent plus ou moins directement aux théories
de M. Levi-Civita, a conduit d'une manière naturelle à l'étude du
cas où p est positif,et il convient de désigner la condition

g=pU; p>0

comme condition de Levi-Civita.
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Le cas d'un domaine non borné présente un intérêt particulier. Les
fonctions correspondantes U ont été étudiées pour la condition de

Dirichlet par Phragmén et Lindelöf en 1908. Pour les conditions
de Neumann, Fourier et Levi-Civita on peut obtenir des résultats
analogues bien que les méthodes de la théorie des fonctions employées
par Phragmén et Lindelöf ne soient plus applicables.

2. —L.-G. Du Pasquier (Neuchâtel). —Sur théorème dé Hurwitz.

— L'auteur a déterminé, dans le corps {tLyzj-des quaternions
hamiltoniens à coordonnées rationnelles, tous les groupes additifs
et multiplicatifs possibles. Il a traité ce problème par deux méthodes,
l'une basée sur la théorie des substitutions, l'autre sur les propriétés
des modules de nombres. L'auteur indique la base du domaine
holoïde le plus général formé à l'aide de quatre quaternions linéairement

indépendants du corps {Hm}. Comme première application,
il démontre que pour arriver au domaine hurwitzien, dont la base est

1 + -j- i0 -f- /3
7 7 7 L_ ~ :?

1 > c2 ' l3 >

9 >

M

savoir à l'ensemble des quaternions hamiltoniens

T + ("T + '">) + (l2 + "'2) + + "'3)

obtenus quand ?n0 mx m2 et m3 parcourent indépendamment l'un
de l'autre toutes les valeurs entières de — oo à + oo il suffit de postuler
dans le module, outre les nombres complexes entiers de Gauss, encore
une unité relative, par exemple i2; c'est la condition nécessaire et
suffisante. Comme deuxième application, l'auteur indique deux
théorèmes relatifs aux groupes contenus dans le corps {Httz}. Il généralise
le théorème d'Hurwitz en remplaçant le dénominateur 2 par un
nombre entier quelconque. La généralisation la plus simple aboutit
au domaine avant comme base

«H

à condition que a et b vérifient l'équation de Fermât

b2 — '2na2— 1

oèi n est un nombre entier. Par exemple,

(t + '"») + (T + mé)i> + (S'"3 +29 ",2)'2 + 5H •

les 77?q m2et m3 ayant la même signification que ci-dessus.
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Une note sur les recherches de l'auteür dans ce domaine a paru
dans les Comptes Rendusdesséances de l'Académie des sciences de

Paris, t. 184, p. 59, séance du 10 janvier 1927.

3. —A. Heyer (St. Gall). —Sur des lieux géométriques se rattachant
aux coniques homofocales. — Dans les énoncés qui suivent A est
toujours un sommet principal de la conique, B un sommet secondaire,
F un foyer, d'excentricité linéaire, p le rayon de courbure. L'origine 0
est au centre de la conique.

I. Considérons un faisceau de coniques homofocales et élevons en
F la perpendiculaire sur l'axe principal; aux points d'intersection de
cette dernière avec les courbes, menons les'tangentes et abaissons les

perpendiculaires de F sur ces tangentes. Le lieu géométrique des pieds
des perpendiculaires est la strophoïde droite

Par chaque point P de la perpendiculaire par F à l'axe principal
passent deux coniques, une ellipse et une hyperbole. Menons la
tangente à chacune de ces coniques au point considéré. De F abaissons
les perpendiculaires FPX et FP2 sur ces deux tangentes. La distance
Px P2 est toujours égale à FP. Au foyer on trouve pour la strophoïde
p — cj2.

II. Dans un faisceau d'ellipses homofocales, menons pour chacune
des courbes la corde issue de B et passant par'F et soit G le second

point d'intersection avec la conique. Par B et G menons les parallèles
aux axes jusqu'en leurs points d'intersection. Le lieu géométrique de
P est donné par l'équation

La courbe a. pour asymptote x 2c. Le point d'inflexion est donné

par x 5c/4. Au foyer on a p=III.Dans un faisceau de coniques homofocales, considérons les
cordes issues du point B et passant par F. Le lieu géométrique du pôle
de ces cordes par rapport au cercle de centre 0 et de rayon a est

L'asymptote est donné par xc. Le minimum correspond à 2c,

y — 2c. Pour le point d'inflexion on a 4c.

Le point le plus rapproché du centre est x 3c/2, y 31/2 c/2.
Au minimum on a p 2c.

x2+ y2xy2/c (courbe de Longchamp).
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IV. Dans un faisceau d'ellipses homofocales, menons, pour chacune
des courbes, la corde BF et le diamètre passant par l'une des extrémités
de l'ordonnée au foyer. Le lieu géométrique du point d'intersection
de ces deux droites est représenté par

(c- — rc)2

y ~ —

L'asymptote a pour équation x — 2. Au foyer on a 2.

V7. Dans un faisceau d'ellipses homofocales, menons les cordes
AB et abaissons du centre la perpendiculaire sur cette corde. Le lieu
géométrique du pied de la perpendiculaire est,
en coordonnées cartésiennes,

(y2 — ar)(x2 -f if)c2x2y2 (1)

et en coordonnées polaires

La courbe a les asymptotes y± xpourle point d'inflexion on
trouve x cl/2/3, y 2c/3. Au centre on a c/2. Le point de
la courbe le plus éloigné de l'origine a son amplitude donnée par

tg5 © — 21g4 o — tg3 o -f tg2 <p + 2 tg o — 1 0

On ne peut utiliser que les racines suivantes:

D O' t » —45° pour le point à l influi

2) tg?» (1 + Vv/4 + V/(l + VÎ7)/8 ?2 64°20'2"

En calculant les points d inflexion on obtient l'équation symétrique

suivante

2lg8<? — tg3ç — <4 tg'4 9 _ (g2ç -j- 2 o

La seule racine utilisable est

tg? V? 54°44'""

La tangente au point d'inflexion est déterminée par

tg® 4 y 2/7

Ce point correspond à l'ellipse pour laquelle ô c.
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4. — J. Kirmse (Schmölln,* Thuringe). — La théorie idéale des
domaines de rationalité quaternionaire Liouvilliens. (Voir le résumé
inséré dans les Actes de la Société Helv. des Se. réunion de Bâley
1927.)

5. — M. Gut (Zurich). — Sur le nombre des classes d'un corps
quadratique. — L'auteur réfère à son travail paru sous le même titre
dans la Vierteljahrsschrift der Naturforsehenden Gesellschaft in Zurich
(72me année, 1927, p. 197). En vertu de l'équation fonctionnelle de
M. Hecke on obtient une expression un peu différente de l'expression
classique pour le nombre des classes d'un corps de nombres algébriques
quelconque. A l'aide d'un théorème sur les séries divergentes de

Dirichlet, on peut en particulier pour les corps quadratiques déterminer
le nombre des classes sans qu'il soit nécessaire de recourir aux sommes
de Gauss. L'auteur ajoute que postérieurement M. Hecke l'a rendu
attentif au fait que E. Landau a évalué déjà une fois, mais d'une
manière différente, les deux séries divergentes dans le cas des corps
quadratiques. (Voir Journal de Crelle,tome 125, année 1903, p. 64
et suiv., spécialement p. 132-137.)

6. — R. Wavre (Genève). — Sur la stratification et les mouvements
internes des planètes. — La recherche des figures d'équilibre relatif
d'une masse fluide hétérogène en rotation autour de son axe polaire
a fait l'objet des mémorables travaux de Clairaut, de Laplace, de
Poincaré. Ces auteurs ont montré qu'en première approximation les
surfaces d'égale densité sont ellipsoïdales pour de petite valeur de la
vitesse angulaire. MM. Liapounoff, Lichtenstein et Véronnet ont
fait connaître aussi d'importants résultats au sujet de l'équilibre
relatif. Un ancien élève M. Dive, qui est aujourd'hui mon collaborateur

dans ce genre de questions et moi-même avons poursuivi l'étude
du mouvement permanent de rotation d'une masse fluide hérétogène
sans supposer a priori qu'elle fut en équilibre relatif. Notre seule

hypothèse est que chaque particule tourne autour de l'axe avec une
vitesse angulaire constante, cette vitesse pouvant varier d'une particule

à une autre.
Je me suis spécialement consacré à l'étude de ces mouvements dans

le cas où il existe un potentiel du champ de la pesanteur; j'ai pu
montrer que la vitesse angulaire ne dépendait que de la distance à

l'axe et que les couches d'égale densité tendent vers la forme
ellipsoïdale quand elles se rapprochent du centre. M. Dive a pu établir
que pour ces mouvements la, stratification ne saurait être ellipsoïdale
dans son ensemble. Il faut en conclure que la planète ne saurait pas
non plus être stratifiée en couches d'égale densité homothétiques. Ces

mouvements que nous appelons mouvements de genre un sont
caractérisés par l'une quelconque des propositions suivantes;
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1° Il existe un potentiel du champ de la pesanteur.
2° Il existe un potentiel des accélérations.
3° Les surfaces d'égale densité sont horizontales.
4° La vitesse angulaire ne dépend que de la distance à l'axe.

Nous avons fait voir également que les mouvements de première
espèce dépendent entièrement de la résolution d'une équation de

Fredholm de première espèce.
M. Dive a démontré l'existence de mouvement de genre deux, où

les surfaces d'égale densité ne sont plus normales au champ de la
pesanteur. La stratification peut alors être ellipsoïdale en toute
rigueur et non seulement en première approximation. En admettant
précisément que les couches d'égale densité soient des ellipsoïdes de

révolution, M. Dive a mis en évidence des inégalités de la vitesse
angulaire quand on se meut de l'équateur au pôle ou de la surface
au centre. Ces inégalités rendent compte merveilleusement de certains
faits géologiques tels que la brisure qui passe par les grands lacs
d'Afrique ou la configuration de certains continents. L'étude de
M. Dive paraît confirmer quelques-unes des vues de M. Wegener.

Nos recherches ont paru aux « Comptes rendus de l'Académie des
Sciences », année 1927, en 6 notes et extenso dans les «Archives des
sciences physiques et naturelles » de Genève, années 1924, 1925,
1926, 1927.

7. — G. Polya (Zurich). — Surune condition à laquelle satisfont
les coefficients des séries entières pr— Désignons par A

un ensemble fermé situé dans le plan des s, par p le rayon du plus
petit cercle de centre 3 0 contenant A et par <7 le rayon du plus petit
cercle de même centre contenant tous les points de condensation de A.
Soit ^n(z) zn + le polynome de degré n s'écartant le moins
possible de zéro dans l'ensemble A et soit zn son écart, c'est-à-dire le
maximum de | ©n(;z) | sur l'ensemble A. Comme on sait, d'après
M. Fekete, la limite

lim '{/-n~

n oc

existe. On a 0>a->t.
Soit p le rayon de convergence de la série

a,
+ Ll

r.2

ce a
—- 4-o \ * *

n

.»+1 f(z) G)

et soit f(z)régulière et uniforme dans l'ensemble complémentaire
de A. Mettons

a

a // + i an-\--2 an+k (k)
11

an+k-l an + h ' an -|- 2 h~ 2
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Supposons que Avarie avec A de manière que

lim % > 0
oo n -j- k

Alors on a

Ü5 1

(2)
k-+ op

Dans le cas particulier n0 (donc 1) c'est le signe d'égalité
qui est valable pour beaucoup de fonctions spéciales f(z) (et peut-être
pour toutes les fonctions) si A est choisi convenablement. Voici un
corollaire de (2): Si les coefficients ax, a2, de la série (1) sont
des nombres entiers et f(z)est une fonction uniforme
l'ensemble des points singuliers de /(£) ft'esZ pas
Chemin faisant on trouve le théorème suivant : Si les ensembles A et
A* sont fermés, A* est contenu dans A, A — A* est dénombrabl.e et
t* est dérivé de A* de la même manière que t est de A, oii a t* t.

^

8. —F. Gonseth (Berne) et G. Juvet (Neuchâtel). —Sur la
relativité à cinq dimensions et la théorie des Voir: G. R. Acad. Sc.,
Paris, t. 185, p. 341, 412, 448 et 535; août-septembre 1927.

\y

9. — S, Bays (Fribourg). — Sur le nombre des systèmes cycliques de

triples de Steiner différents pour N 6^ + 1 premier. — Le problème
de l'obtention des systèmes cycliques de triples de Steiner différents
pour N — 3n+ 1 premier, est actuellement ramené à celui de l'obtention

des systèmes de caractéristiques appartenant à chaque
diviseur d de 3n 1.

La recherche des systèmes de caractéristiques différents appartenant
d n etaux diviseurs den a été ramenée au problème suivant 2:

Obtenir toutes les combinaisons constituées de x triples pris dans
ri —- 2 colonnes cycliques de triples des éléments 0, 1, 2, n — 1;
(a), et de yéléments pris dans la série (a) avec la propriété : +
et qu'en la même combinaison les éléments soient tous différents. Des
combinaisons obtenues, ne retenir que celles qui ne sont pas déductibles

l'une de l'autre par les substitutions du groupe {(012 n — 1)}.
La recherche des systèmes de caractéristiques différents appartenant

au diviseur d quelconque de 3n, est maintenant ramenée au problème
suivant:

1 Voir mes second et troisième mémoires sur ce problème des systèmes cycliques de
triples de Steiner: run est dans le Journ. de math, pures et appliquées, t. 2,1923, fasc. 1,
p. 73 à 98; l'autre est dans les Annales de la Faculté des Sciences de Toulouse, t. XVII,
1925, p. 3 à 41.

2 Voir le troisième mémoire (celui des Annales de Toulouse) aux p. 29 à 41.
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*

Sid estn ou undiviseur de n, on a au plus n — 2 colonnes cycliques
(n — 2 pour cl n) de triples des éléments 0, 1, 2, —1; (/S) ; les

Tï
éléments (ß)représentent chacun ^ des éléments (a). Il faut obtenir

toutes les combinaisons de x triples pris dans ces colonnes cycliques

et de y éléments pris dans la série (a) aine la propriété: —f- y n

et qu'en la même combinaison les éléments (a) représentés ou entrant
effectivement soient tous différents.

Si d est multiple par 3 de n ou cVun diviseur cle n, on a au plus n — i
colonnes cycliques de triples des éléments (ß). Il faut simplement

obtenir toutes les combinaisons de ^ triples pris dans ces colonnes,
o

sans élément répété ou, autrement dit, contenant chacune tous les
éléments (jS).

Dans l'un et l'autre cas, il ne faut retenir que celles des combinaisons
qui ne sont pas déductibles l'une de l'autre par les substitutions du

groupe {(012 cl—i)}.
Avant ce résultat, j'avais pu pousser la recherche des systèmes de

caractéristiques différents et donc celle des systèmes cycliques cle

triples de Steiner différents jusqu'à N 43; je puis maintenant avec
du temps, obtenir les systèmes de caractéristiques différents appartenant

à chaque diviseur cl(excepté 3 lui-même) jusqu'à N 97, et
surtout donner presque immédiatement ceux appartenant aux petits
diviseurs de 3n, au diviseur 3 en, particulier, pour des N 6n + 1

premiers plus grands, même aussi grands que l'on veut, pourvu que
j'en aie une racine primitive.

10. -— S. Bays (Fribourg). — Sur un problème posé par Cayley en
rapport avec leproblème des systèmes cle triples cle Steiner. — Le
problème posé par Cayley, relativement au problème des systèmes de
triples de Steiner, est le suivant. Nous l'énoncerons d'une façon plus
explicite :

Un système de triples de Steiner de N éléments est tel que chaque
couple des N éléments entre une fois et une seule fois dans un de ces

triples. Un système de triples de Steiner contient donc ^
—

g

triples. Pourrait-on répartir les — triples de N éléments

en N — 2 systèmes de triples de Steiner
Cayley a fait remarquer que pour 7 éléments (les systèmes de triples

de Steiner n'existent que- pour les N des formes 6n + 1 et 6n + 3)
cette répartition n'est pas possible; sur les 30 formes différentes que
prend 1 'uniquesystème de triples de Steiner de 7 éléments par les 7
permutations de ces éléments, on peut en trouver deux différentes
par tous leurs triples et pas davantage, alors qu'il en faudrait cinq
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pour contenir les 35 triples de 7 éléments. Il a donné une démonstration,

fausse d'ailleurs (voir ActesTL Lugano, 1919,
IIme partie, p. 74) incitant à croire que pour 15 éléments cette répartition

n'est pas possible non plus. J'ai montré que pour 9 éléments
(Enseignement mathématique,n° 1-2, 19me année, 1917, p. 57-67) la
question de Cayley a deux solutions différentes (ne provenant pas
l'une de l'autre par Une permutation des éléments)* et à l'encontre
de Cayley qui paraît avoir pensé plutôt le contraire, il me semble que
cette répartition de l'ensemble des triples de N éléments en N — 2

systèmes de triples de Steiner doit être possible au moins pour
certains N des formes 6n + 1 et 6+ 3.

Pour les N — 6n + 1 premiers en dessous de 100, je puis donner
maintenant, pour chacun d'eux, un nombre de systèmes cycliques de

triples de Steiner différents par tous leurstriplessupérieur à (N—2)/2,
excepté, comme il vient d'être dit, N 7. Ainsi pour N 61,
j'obtiens avec la plus grande facilité, parce que les systèmes de
caractéristiques appartenant aux petits diviseurs de ou à des diviseurs
que je dirai commodes, me suffisent pour cela, 44 systèmes cycliques
de triples sans un triple commun,alors que la répartition de Cayley en
demanderait 59. Pour N 73, j'en obtiens 56 sur 71 qui seraient
nécessaires.

Il faut remarquer d'ailleurs que je n'opère qu'avec une catégorie
très restreinte de systèmes de triples, les systèmes de triples
si je parvenais à une solution de la question de Cayley par cette
voie, elle serait une solution d'un type particulier aussi, puisque
possédant le groupe cyclique { | x,1 + J j. ; c'est une raison de plus,
me semble-t-il, de penser que, si nous avions à disposition tous les

systèmes de triples de Steiner qui existent pour N éléments, la
répartition de Cayley serait probablement possible.

H. S. White a démontré Transactiof the Amer. Soc.,
vol. XVI, n° 1, 1915) que pour N 31, il y a déjà plus de 37 X 1012

systèmes de triples de Steiner différents (il y a 80 systèmes cycliques
de triples de Steiner différents pour N 31); avec toutes les formes
qu'ils peuvent prendre chacun par les permutations du groupe
symétrique des 31 éléments, on a une idée du nombre excessivement
grand déjà pour N 31, de systèmes de triples à disposition pour
chercher une répartition de Cayley.

11. — Rod. Fueter.—Les lois de réciprocité dans un corps quadratique

imaginaire. — La théorie des fonctions elliptiques et de la
multiplication complexe exposée dans mon livre über
die singulären Moduln und die komplexe Multiplikation der elliptischen
Funktionen (zweiter Teil, Teubner, 1927), permet de déduire des lois
de réciprocité qui correspondent à la célèbre loi de Eisenstein. On
prend seulement pour base, au lieu des nombres rationnels, les nombres
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d'un corps quadratique imaginaire quelconque. L'analogie entre la

fonction exponentielle et la fonction elliptique :

OJn\ - / W3

pUJ--wS (z ; Wl w2) :' C°s W' + 2

p(s ; ojj w2) — J)

est alors parfaite. Connue le nombre des classes est en général plus

grand que un, les déductions doivent se faire dans le corps des classes

du corps quadratique, ou mieux dans le corps des classes 4), qui
correspond aux classes du rayon pour le conducteur 4.

Prenons le cas le plus simple, celui qui conduit à la loi de réciprocité
des restes quadratiques. On a la formule:

ll(VS(i>) — \/%{xl))± nr,
\x)

" **

où TT est un nombre premier primaire, 1) un nombre du corps

k{4), x remplit les conditions:

x x ~1 (mod. 4) ic — ic (mod. -)

et le produit s'étend à un système de restes (mod. n). Cette formule
contient la loi:

7Z | (X
X j

t: et kdeux nombres premiers primaires, suivant qu'on applique la loi
générale de la décomposition des nombres premiers dans les corps de

rayons (mod. 47i), ou qu'on détermine cette décomposition dans le

corps relatif \z/fK- Dans le cas des nombres de Gauss cette loi est

identique avec celle de Gauss.

12. — A. Speiser (Zurich). — Sur les groupes et groupoïdes. — La
théorie des nombres à multiplication non commutative présente un
aspect assez nouveau, comparée avec l'arithmétique des nombres
algébriques. On peut la caractériser par le fait que les notions de

nombre ordinal et nombre cardinal ne s'harmonisent plus entièrement.
Le problème de la construction de tous les idéaux qui appartiennent,

par exemple du côté droit, à un certain domaine d'intégrité (1),
et de la recherche de leurs relations mutuelles, est complètement
résolu. C'est l'équivalent des nombres ordinaux. De même la
transition d'un nombre à un autre dans le sens de l'addition ne présente
aucune difficulté. Par contre la transition d'un idéal (a) à un idéal (t))
dans le sens de la multiplication, c'est-à-dire la formation du quotient
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(b)/(û) ne peut en général être réalisée dans le même système d'idéaux
et il s'en suit que le caractère vectoriel des nombres cardinaux ne peut
pas être maintenu dans les idéaux sans modification. Mais les travaux
de MM. Brandt, Krull, Artin montrent que ces quotients forment
des idéaux dans d'autres domaines d'intégrité et, en partant de ces
résultats, on peut, dans des cas étendus, rétablir le caractère vectoriel
des idéaux en formant la notion de remplacement d'un idéal par un
autre. Ces idéaux remplaçants sont constitués des mêmes classes de
restes prises selon la norme de l'idéal.

13. —1 H. Brandt (Aachen). —De la théorie générale des idéaux. —
L'auteur donne d'abord une théorie générale des modules pour une
algèbre associative1 quelconque 31 contenant une unité principale.
Ici le terme module signifie un système de nombres cde 31 qui contient
avec a, ß,...aussi aoi. + bß + ••• où a, à, sont des nombres
quelconques d'un système de coefficients $ qu'on a choisi au central 3
de 31 comme anneau avec unité principale.

Pour les modules on définit les opérations d'addition, de soustraction,

de multiplication et de division comme Dedekind l'a fait pour
les corps algébriques 2. Quelques modifications sont causées par le
fait que la multiplication n'est pas commutative. Par exemple, en
désignant par a et b deux modules quelconques, on trouve, en général,
le produit a X b différent du produit b x a; aussi peut-on former
deux quotients avec le dénominateur a et le numérateur b qui sont
désignés par les symboles a/b (c'est-à-dire a que b divise) et b\a (c'est-
à-dire b qui divise a).

Chaque module comme a a son ordre droit a\a d0 et son ordre
gauche a/a a0. En formant les quot ents a0/a et a\a°, on, trouvera

toujours le même module qu'on nomme le module réciproque
de a et qu'on désigne par a\a/a a-1. Si on a les égalités
cr* x a a0 et axa"1 — a0, on nomme a module réversible.

La multiplication générale d X b C définit c par a et b, mais
elle ne définit pas a par b et c ou b par a et C. C'est pourquoi l'auteur
a construit le concept de multiplication propre. Ce cas se réalise
quand.on ne peut agrandir ni le système de nombres de a ni le système
de nombres de b sans varier le produit c, et on écrit ab C. Pour les
six ordres a0, a0, b°, b0, C°, C0 on trouve les égalités a0 C°, aö b°,
bo ^ Cq.

Tous les modules qui sont en connexion directe ou indirecte par
une égalité de multiplication propre sont nommés conjoints. Chr a

Nalors le théorème: Tous les modules réversibles conjoints à un ordre
donné, soumis à la multiplication propre, forment un groupoïde infini 3.

*

- t. „ ^

1 L. E. Dickson. Algebras and theirarithmet,Chicago 19.23 ou seconde édition en
allemand, Algebren und ihre Zahlentheorie,Zurich, 1927.

2 DiriChlet-Dédekind. Zahlentheorie, 4. Auflage, p» 493.
s H. Brandt. Ueber eine Verallgemeinerung desGruppenbegriffes. Math. Annalen, 96

(1926), S. 360.
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Si 31 est une algèbre rationnelle de Dedekind (c'est-à-dire une algèbre
rationnelle sans radical) de l'ordre 72, et j est le module des nombres

naturels, le cas intéressant est surtout celui des modules finis qui
possèdent une base de nnombres. Il se peut dans ce cas que tous les

modules conjoints à un ordre donné, soient aussi réversibles. La
condition suffisante et nécessaire pour cela est que complément
de Vordre soit réversible. Cette condition est toujours remplie pour les

ordres maximaux. On nomme idéal chaque module dont l'un (et par
suite aussi l'autre) de ses ordres est maximal.

On a le théorème: Tous les idéaux d'une algèbre de Dedekind,
soumis à la multiplication propre, forment un groupoïde infini.

Chaque idéal a, dont le produit a X a est divisible par a (au sens

admis pour les modules et idéaux) est nommé idéal intégral. Pour les

idéaux intégraux on a ce théorème fondamental: Si Ct est divisible

par b il y a deux idéaux intégraux r et ê tels que a= rbê.
C'est par ce théorème et les recherches de M. Speiser qu'on obtient

toutes les lois de la factorisation des idéaux intégraux.

14. — P. Finsler (Zurich). — Formes quadratiques et variétés

algébriques. — La question de savoir sous quelles conditions une
forme quadratique définie est contenue dans un système linéaire de

formes quadratiques est liée à une classe particulière de variétés
algébriques.

Les variétés algébriques les plus simples appartenant à l'espace
de n dimensions, c'est-à-dire celles qui ne sont pas contenues dans

un espace linéaire plus petit, et qui sont composées de parties irréductibles

de dimensions piet d'ordres qi satisfont à la condition 2 (pi + qi)
'= n + 1. Elles appartiennent en même temps que quelques autres
variétés réductibles, aux « variétés libres », qu'on peut définir de la
manière suivante:

Une variété algébrique G se nomme si la section de G par un
espace linéaire quelconque consiste toujours ou bien en une infinité
de points ou bien seulement en des points linéairement indépendants.

La classification selon l'ordre coriespond alors à la suivante:
Une variété algébrique G est d'un degré de restriction r, si le nombre

des points d'intersection isolés de G avec un espace linéaire quelconque
peut surpasser de r le nombre des points indépendants d'entre eux.

Il y a des théorèmes simples sur les variétés libres, qui sont valables
même pour chaque position particulière. Ainsi par exemple, la section
par un espace linéaire engendre en tout cas une variété libre.

De plus on a le théorème suivant: Une variété libre étant donnée
dans l'espace réel, si elle est située d'un même côté d'une quadrique,
on peut toujours faire passer, par la variété donnée, une autre
quadrique ne touchant pas la première. Ce théorème ne subsiste que pour
les seules variétés libres.
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On en tire le corollaire suivant: Pour qu'une forme définie soit
toujours contenue dans un système linéaire de formes quadratiques
Q + 2 Xi Qi il faut et il suffit que 2 Xi Qi 0 représente le système
de toutes les quadriques contenant une variété libre située entièrement
dans l'un des domaines Q > 0 ou Q < 0.

Il en résulte l'application suivante au calcul des variations:
Les conditions nécessaires et suffisantes, données par M. J.

Hadamard (Bull. Soc. Math, de Franc,30 (1902)), pour un minimum
d'une intégrale rc-uple à m fonctions inconnues sont équivalentes
entre elles pour m —2 ou n ~ 2, mais non plus pour > 2, > 2.

15. —J.-J. Burckhardï (Bâle). — — Pour
étudier la structure d'une algèbre, on la décomposera en une somme
directe, c'est-à-dire une somme de sous-algèbres telles que le produit

de deux quantités quelconques appartenant à des composantes
différentes soit nul. Par ce procédé, nous avons étudié l'algèbre
rationnelle dont les quantités de base se composent selon la structure
du groupe du dièdre. En particulier, nous considérons comme dièdre
le triangle équilatéral. L'algèbre correspondante se décompose en une
somme directe de trois composantes: deux composantes d'ordre 1

(donc équivalentes aux corps des nombres rationnels) et une troisième
d'ordre 4. Puisque chaque quantité de la troisième composante doit
satisfaire à une équation quadratique, on arrive aisément à définir
la norme: y;* — ntn% + n\ ~ (ni —nan. + ni) (nt, nt étant des

nombres rationnels). On peut transformer cette forme quadratique
par une transformation rationnelle dans la forme £-^3 — £2 £4-

appliquant la transformation transposée de. la précédente, aux
quantités de base de la troisième composante, celle-ci se réduit à une
algèbre de matrices.

Dans le cas général du dièdre ayant un nombre impair m d'angles,
pn peut séparer d'abord, d'une manière analogue, deux composantes
d'ordre 1. La partie restante se décompose dans le corps des caractères

(du groupe correspondant) en —l)/2 algèbres, par contre
leur somme se représente rationnellement.

16. — Wolfgang Krull (Fribourg en Br.). — Sur les corps infinis
algébriques. — Il s'agit de généraliser pour le cas d'un corps infini
algébrique le théorème que chaque idéal d'un corps fini algébrique
peut être décomposé en idéaux simples (« Primideale » selon Dedekind).
Voici les résultats:

1. Chaque idéal du domaine général (« HauptOrdnung » selon
Dedekind) d'un corps quelconque algébrique peut être représenté

- comme plus petit commun multiple d'un nombre (fini ou infini)
d'idéaux unitaires, chaque idéal unitaire étant divisible par un seul
idéal simple.
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2. Dans un corps fini algébrique l'ensemble de tous les idéaux

unitaires divisibles par le même idéal simple 2 est égal à 1 ensemble

des puissances de Dans le cas général, ce n'est pas la même chose.

Mais chaque idéal unitaire peut être caractérisé par un nombre réel,
la « valeur », et par un symbole « fini » ou « infini ».

8. Si chaque idéal du corps k n'est divisible que par un nombre

fini d'idéaux simples les résultats indiqués suffisent pour distinguer
si un idéal quelconque est diviseur ou facteur d'un autre ou non.
Dans le cas général il faut se servir de certaines méthodes de la

topologie que nous ne pouvons mentionner ici.

CHRONIQUE

Congrès International de Mathématiques

Bologne,3-10 sept., 1928.

Le Congrès International de mathématiques, qui aura lieu à Bologne
du 3 au 10 septembre 1928, est placé sous le haut Patronage de S. M.
le Roi d'Italie et la présidence d'honneur S. E. Benito Mussolini,
Chef du Gouvernement. Il est organisé sous les auspices du
« Rector Magnificus » de l'Université de Bologne.

La Commission exécutive, présidée par M. le Prof. S. Pincherle,
invite à participer aux travaux du congrès toutes les personnes qui
cultivent les sciences mathématiques pures ou leurs applications.

Le Congrès tiendra des séances plénières et des réunions de sections.
Le programme provisoire prévoit sept sections qui pourront être
subdivisées elles-mêmes en un certain nombre de sous-sections. Les
personnes qui ont l'intention de faire des communications sont priées
de faire connaître le titre et le sujet de leur travail, avant le 31 mai
1928, à l'un des introducteurs de la section correspondante. On en
trouvera la liste ci-après.

Les conférences et les communications effectivement lues au Congrès
seront publiées dans les volumes des Actes du Congrès. Les manuscrits
en langue étrangère (allemand, anglais, espagnol, français) en latin
classique ou en latin sineflexionedoivent être écrits à la machine,
exception faite pour les formules. Chaque congressiste aura droit à un
exemplaire gratuit des Actes du Congrès.

Pendant le congrès, des manuscrits, des estampes et autres docu-
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