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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications

Réunion de Fribourg, 30 aotit 1926.

La Société Mathématique suisse a tenu sa 16™e assemblée ordinaire
annuelle & Fribourg, le 30 aott 1926, sous la présidence de M. le pro-
fesseur F. GonsErH (Berne), en méme temps que la 107me assemblée
annuelle de la Société Helvétique des Sciences naturelles.

Le programme trés fourni de la réunion comprenait 13 communica-
tions dont 12 ont été effectivement présentées a la séance. En voici
les résumés: ‘

I. — L.-G. Du Pasquikr (Neuchatel). — Sur les nombres premiers
dans les progressions arithmétiqgues du deuxiéme ordre. — Soit
my(a, b, ¢; x) le nombre des nombres premiers < x contenus dans
la progression arithmétique générale du deuxiéme ordre

f(n) = an® + bn + ¢ ()

ou a, b et ¢ sont trois nombres entiers, arbitrairement choisis mais
fixes, tandis que n parcourt la suite illimitée des nombres naturels.
Si Pon pouvait démontrer que

Ty{a, b, ¢; x) — o quand x — o« , (2)

on aurait résolu un probléme fameux qui intéresse beaucoup de matheé-
maticiens. I’auteur montre d’abord les trois conditions auxquelles
a, b et ¢ doivent satisfaire pour que (2) soit possible, puis il indique
pour ce nombre m, la formule asymptotique

Cl
Va
ou [t z représente le logarithme intégral de z. La formule (3), semblable

a celle de MM. Hardy et Littlewood, entrainerait (2); mais comme
elle n’est pas démontrée en toute rigueur, il y a intérét a la vérifier

0.

C.liVx , . (3)

=’ (x)

i




CONFERENCES ET COMMUNICATIONS 277

expérimentalement. C’est ce que 'auteur a fait pour les six cas sui-
vants:

fi(n) = n2 41 . fy(n) S 1012 4 20n + 1 ;
fo(n) = n® 4+ n 4 1 3 fo(n) = 12202 4+ 220 4+ 1 ;
fs (n) = 10001 0% 4 200n 4+ 1 ;
fs(n) = 1061002 4 2060 4 1 .

La factorisation des nombres ;(n) est poussée jusqu’a 225 000 000.
Grace a cette limite élevée, 'auteur a pu constater qu’une présomption
de Gauss admise depuis plus d’un siécle (n(z) < li (z)) était inexacte.
Aprés avoir introduit deux nouvelles notions : Pécart absolu de la
progression (1), savoir my(a, b, ¢; ) — n'(x), et Uécart relatif de la
progression (1), savoir V

T(a, b, ¢c; x) — w’(x) m(a, b, c; x)

Pauteur termine sa communication par six propositions relatives aux
. nombres premiers contenus dans les progressions arithmétiques du
deuxiéme ordre et présente plusieurs tableaux se rapportant i ce
sujet. ‘

2. — L. KoirLros (Zurich). — Projection centrale et géoméirie
. réglée. — En projection centrale, la droite est déterminée par sa
~ trace T sur le tableau 7 et par son point de fuite F. Une surface
- réglée est représentée par la courbe-trace ¢ et la ligne de fuite f; les
génératrices établissent une correspondance ponctuelle entre ces deux
courbes; si les tangentes aux points homologues de ¢ et de f sont
paralleles, la surface est développable.

Les droites d’une congruence déterminent une transformation ponc-
tuelle T —=F de tous les points de = on voit facilement qu’a une
affinité, une collinéation ou une inversion correspondent respective-
ment des congruences (1, 1), (3, 1) ou (2, 2) 1.

Les droites d’un complexe donnent lieu & une correspondance
point — courbe: T —> f; f est la ligne de fuite du cone formé par les
droites du complexe issues de T. Pour le complexe linéaire, f est la
droite de fuite du plan focal de T'; sila droite & Pinfini, 7, de 7 appartient
au complexe, elle passe par les foyers O’ du plan 4 linfini Q et O”
de 7. Les faisceaux de droites O” (dans Q) et O’ (dans 7) sont projectifs
et le complexe linéaire est formé de toutes les droites qui coupent,
deux rayons correspondants de ces deux faisceaux. En projetant le

1 MuiLLER-KRUPPA: Vorl. ii. darst. Geom. Bd. I: Die lin. Abbildungen.
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faisceau O"(Q) sur m, on obtient un faisceau perspectif au faisceaw
O’(m), car la droite 7 se correspond 4 elle-méme; les rayons homologues.
se coupent donc sur une droite x. Ainsi, les droites d’un complexe
linéaire sont représentées par des paires de points TF situés sur les
rayons correspondants de deux faisceaux perspectifs. Mais, si I'on
généralise convenablement la méthode de Monge (projections sur deux
plans), on voit qu'un point quelconque de I'espace est aussi déterminé-
par une paire de points liée & deux faisceaux perspectifs; cette double
interprétation d’une méme paire de points établit une correspondance
entre les points du second espace et les droites d’un complexe linéaire
du premier. On peut alors montrer qu’aux points du premier espace
correspondent, dans le second, les droites qui coupent une conique o,
de telle sorte que, a des points en ligne droite, correspondent des géné-
ratrices du méme systéme d’un hyperboloide passant par o la conique-
» est (avec la ligne de terre z) le lieu des points dont les deux projec-
tions coincident. Si o était "ombilicale, cette correspondance ne serait.
autre chose que la transformation de Lie (point —> droite 1sotrope ;.
droite — sphére), intéressante par ses applications a4 la théorie des
surfaces et & celle des équations aux dérivées partielles.

3. — W. SAXER (Aarau). — Sur la distribution des zéros et des poles
des fonctions rationelles d’une suite convergente. — Le travail paraitra
prochainement dans la Mathematische Zeitschrift, Berlin.

4. — E. MeissNEr (Zurich). — Sur une équation différentielle
singuliére intervenant dans un probléme de sismologie. — On consi-
dere, dans un milieu élastique limité par un plan horizontal, des
ondes élastiques dont loscillation s’effectue horizontalement et
perpendiculairement & leur direction de propagation; telles en outre
que leur intensité diminue en fonction de la profondeur de fagon assez
rapide pour que I’énergie de 'onde par unité de surface reste finie.

Les propriétés élastiques du milieu, considéré étant supposées fonc-
tions de la profondeur z, les équations classiques de la théorie de-
Pélasticité conduisent dans ce cas & une équation différentielle de la
forme: |

L(u) 4+ e = 0 avec L(u) = a%(p(x)%) —qg(x).u .

les solutions acceptables devant en outre satisfaire aux conditions:

—:;;—2 =0 pour x =0

et

@w

fuzdx = finie .

0
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Ce probleme a été traité par M. le Prof. H. WeYL (Math. Annalen
68, 1909). L’équation précédente appartient au type qu’il y nomme
« & point limité » (Grenzpunkttypus). -

Pour les buts de la sismologie, il est essentiel d’en déterminer le
spectre discontinu des valeurs propres du paramétre de la fréquence
la longueur d’onde étant supposée constante. A chaque point de ce
spectre correspond en effet une loi de dispersion de Ponde, les diffé-
rentes courbes ainsi obtenues correspondent 4 une série de systémes
d’onde qui différent les uns. des autres par le nombre des plans
nodaux. Le spectre du probléme comprend en général un spectre

ponctuel (discontinu) et un spectre de bandes, le cas pouvant d’ailleurs

se presenter ou 'un ou I'autre de ces spectres manque. Si ¢’est le cas.
pour le spectre ponctuel, les ondes dont nous parlons n’existent pas.
(c’est ce qui se présente par exemple dans un demi-espace homo-
gene). 11 y a par contre des cas ou l'on peut affirmer d’avance
I'existence d’un spectre discontinu. Les ondes eorrespondantes jouent
le role principal dans le phénoméne dit, en sismologie, des «unda
lungee ». '

Outre les deux cas connus jusqu’ici et traités le premier par Love,
en 1911, et le second par le conférencier en 1920, celui-ci présente une
série de cas nouveaux dont la connaissance serait tres profitable pour
Iinvestigation de I'écorce terrestre jusqu’a la profondeur de 100 km.
environ.

5. — Chr. MosEer (Berne). — Une conclusion qui découle de la lov
de Makeham. — Si 'on classe les nombres de vivants d’un ordre de
survie d’aprés I'dge z, on a approximativement pour les adultes la loi
connue de Makeham:

flx) = ks®g™ )

ou f(x) représente le nombre des personnes d’dge xet ou k, s, get ¢
sont des constantes.

Si e désigne la base des logarithmes népériens et sil’on pose g¢* = ¢z _
on pourra dériver, sans difficulté, de la formule (1) une multitude de
représentations pour e, a I’aide de développements appropriés, en
partant de I'intégrale pour 'espérance de vie d’une personne d’age zx.
- Nous relevons le développement suivant dans lequel n peut &tre nul

ou un nombre entier positif: '

b

[ l j n % I,zz 23 )

Dans cette expression, Pz désighe un polynome & coefficients
entiers en z de degré n. Pour une valeur entiére de 2, P4 est en,,
conséquence toujours un nombre entier. On a P,y =1, Py =14z
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Pg,2y =1 + 32+ 2% de telle sorte que, par exemple, pour n =0,
on a sans autre la série connue pour %, et pour n = 2, z = 1 la série
suivante:

1 4 9 16
823(1+TT+72'1'+§T+"'>‘

On peut multiplier les exemples & volonté.
S1 'on pose pour abréger:

. _ (— 1))\+1P7\+1 |
P (e (4 20) . (T (0 1))

sil'on forme la (n + 1)me dérivée par rapport a -, S1 ensuite on déter-
mine sa valeur pour p = 0 et que 'on introduise la notation suivante:

(rx=0,1,2....,n) , .

dn-l—‘l ().(:9)

o _Clntl) — / —
C - dPIl—[—’l ’ (P _ 0)

A0

le polynome Py, , peut s’écrire

r=n

1 A ; K
| : —Z.C('H—])z" ) 3
(n,3) 0o (n 4+ 1) A0 (3)

=0

L’expression pour P, ,) pourrait se mettre encore sous une autre
Torme et peut.étre obtenu, er. outre, directement par divisions succes-
sives de 2 séries (de la série entre parenthéses dans Péquation (2) par
la série pour n = 0). ‘

Pour des valeurs négatives de l'exposant, la loi de formation du
dénominateur P se modifie en ce sens qu’il ne peut plus étre exprimé
par un polynome d’un nombre fini de termes, mais par une série
infinie. , '

L’intérét essentiel des considérations précédentes réside dans le fait
que la fonction de Makeham, outre ses nombreuses autres jolies
propriétés connues dans la science actuarielle, en posséde encore
d’autres qui sont susceptibles de montrer Iétroite dépendance qui
lie, en vertu de I'équation (2), n’importe quel nombre ¢ avee les puis-
sances des nombres de la série des nombres naturels.

Si Pon se propose d’introduire uniquement des fractions irréduc-
tibles comme coefficients, on pourra choisirla représentation suivante:

1 1 z 1 z2
ot — —p—+6+1.i!+6+2.§—!~+-”
o 1 1
g—c(c+1)Z+G(c—|—1)(c+2)zz—

11 est possible de prescrire, 4 son gré, la plus grande des fractions

., . . .1
1rréductibles, a savoir —
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6. — R. WAVRE (Genéve). — Sur une classe de fonctionnelles auto-
morphes. — Les forctions elliptiques, les fuchsiennes et d’une maniére
genérale les fonctions automorphes prennent la méme valeur en un
point du plan complexe et en tous ses itérés par de certaines substi-
tutions. ; '

Le probléme que je me suis proposé consiste en ceci: construire des
fonctions de lignes automorphes, guidé par I'analogie avec les fonections
automorphes de points. ‘ /

En termes plus précis, il s’énoncerait comme suit: Etant donné un
procédé itératif faisant passer d’une fonction fo(x) & une fonction
f1(x), de cette derniére & une fonction fo(z) et ainsi de suite, on de-
mande de construire une fonctionnelle ® |f(x)| qui prenne la méme
valeur sur la fonction f,(z) et sur ses itérées f,(z), f,(2), ..., telle done
que l'on ait:

D|folx)] = Df,(x)] ? | (1)

Voila le probléme. Nous Pavons résolu dans un cas relativement
simple. : ‘
Envisageons, en effet, le procédé itératif suivant:

b
faa(@) = [N(e, y)f, (y) dy

et supposons le noyau N(x, y) symétrique.
Lia théorie des équations intégrales nous apprend que la fonction
In{z) peut s’écrire sous la forme

b
ful®) = f No (2. y)fo (y) dy

ou Nyp(2, y) représente le nitme noyau itéré, développable en série
de fonctions fondamentales orthogonales et normées

< Vi(®) 4 ()
1 T /
Nulz, y) = F———3

n
1 )\1;

de sorte que si ¢; représente le coefficient de Fourier de la tonction fg
relatit a la fonction ¢;, ¢;\;" représentera le coefficient de la fonction
In relatif a ;.

On sait que si le noyau N(z, y) est fermé, le systéme orthogonal
Ji(x) est. complet et il y a correspondance univoque et réciproque
(& des fonctions définies sur des ensembles de mesure nulle preés)
entre f(x) et ses coefficients de Fourier ¢;. Aussi est-ce sur ces der-
niers que nous allons opérer. On peut fort bien attribuer a n des

[’Enseignement mathém., 25¢ année; 1926. 19
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valeurs non entiéres et introduire dans cette théorie la notion d’ité-
ration fractionnaire et d’itération continue. :
Imaginons une fonction F des ¢;, qui ne dépende de ceux-ci que par

Vintermédiaire des produits ¢; A}, et telle que intégrale

m:-}—?c
‘l’lfo )| = Dy, ¢y, ) :/P(clx;", e, M, L) dm

MnN—_——uw0

soit convergente quels que soient les coefficients de Fourier c;. 11 est

clair que si 'on remplace les ¢; par les ¢;1;" cette fonctionnelle @
est invariante, elle satisfait a la condition (1) puisque I'intégrale pré-
cédente porte sur toutes les conséquentes et toutes les antécédentes
de f,. Cette intégrale joue ici le role des séries de Poincaré; sielle n’est
pas identiquement constante, mais dépend efTectlvement de la fonc-
tion initiale f,(x), elle sera automorphc

Indiquons un moven permettant d’obtenir une classe tres générale
de fonctionnelles ®.

Soient

_ 2 2<2m I 2 .2‘2111,
7—2/1 ’Lll ’ 3/—21/1 i 1 ’ Z—Ezm"i 1 e
i i

des séries (de Dirichlet) convergentes quel que soit m, dans lesquelles
les i, yi, i, ... sont des parametres constants. Elles représentent
done des fonctions des c¢; et de m.

Soit d’autre part g(y, z, ...) une fonction telle que 'on ait:

lely, 2, )] S lelys vs o)

lorsque les y, , ... et  correspondent & une méme valeur de m et telle
de plus que l'intégrale suivante ait un sens:

flw 7, o) ldy .

JPappelle ¢ la fonction régulatrice et cette derniére intégrale l'inté-
grale majorante.

Nous supposons, et cela ne restreint pas la généralité, que les va-
leurs fondamentales 2; soient toutes, en valeur absolue, supérieures a
I'unité. Lorsque m varie de — ®© & -- o, y varie bien de 0 & - .

La fonctionnelle

+ o » m=—-4-o d i
O | flx)| = fcp(y, z, ..)dy :fcp(y, Z, ..l) d_zld,“

) Mmm——awo
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sera bien automorphe si elle n’est pas identiquement constante,
¢’est-a-dire quels que soient les ¢; ou f(r). Dans une note aux Comptes
- Rendus de ’Académie des Sciences (t. 182, p. 1317, séance du 31 ma1
1926) j’ai donné des fonctionnelles automorphes obtenues au moyen
de la tonction régulatrice et de I'intégrale majorante:

+
sly, o) = e et fyeTdy=1.
: 0
Ce sont les fonctionnelles
m=-+»
Je) = [y (¢, m) g dy(c, m)
m=—-—awo

dont quelques-unes présentent en elles-mémes des propriétés inté-
ressantes. -

« . . . _' 2 ) 239m
Prenons en particulier z =y et y = Zci a;y” M les nombres
1

| et | étant bornés supérieurement; la fonctionnelle

o A
Re,, ¢, ...) = fye—'fdy
0
donne lieu aux relations:

RO, oy 0,65, 0, o) = o, e, si o = (—1)¢,

R(O. ¢y, 0,¢,,0,..)=1 e R, 0,¢,0,.)=—1".

Ces fonctionnelles J(c) sont d’ailleurs continues en chaque point de
la sphére fonctionnelle 2(‘? = ],
7

Remarquons qu’une fonction f,(2) a toujours uneinfinité de consé-
quentes (ou de descendantes) f,(z); mais, en vertu du théoréme de
M. Picard sur I’équation de Fredholm de premiére espéce, elle ne posséde
pas nécessairement des antécédentes (ou ancétres). Mais la fonction
aux coefficients de Fourier y; ¢; admet des antécédentes de tout ordre,
en vertu du méme théoréme de M. Picard, puisque la série Z ¢y Aim

1
converge quel que soit m.

La formation de la série y revient (qu’on me passe cette expression)
a obliger la fonction f, & épouser une autre fonction aux coeflicients -
qui a une infinité d’ancétres, de maniére que f, les posséde également
par alliance. o |
La dérivée fonctionnelle

‘ 7| [ (=), ¢




284 SOCIETE MATHEMATIQUL SUISSE

n’est pas automorphe, mais on rétablit ’automorphisme en formant
Pexpression

b
[ro e @), tla .

Les dérivées fonctionnelles d’ordre supérieur donnent lieu a des
remarques analogues. ‘

Insistons pour terminer sur I'interprétation géométrique de I'auto-
morphisme de nos fonctionnelles. ,
On sait que la fonction f(x) peut étre représentée par le point ¢;
de Pespace a une infinité de dimensions. Lorsque m varie de — o 2
-+ ®© les coordonnées ¢, A™ sont celles du point représentatif de la

fonction f™(x). Ce point représentatif décrit donc une courbe T
lorsque les ¢; restent constants et que m varie seul. Cette courbe T'

coupe la sphére fonctionnelle s: Z‘Icz = 1 pour la valeur m =0 (en .
7

supposant les fonctions initiales fy(x) normalisées). Les points de T
intérieurs a la sphére s représentent les conséquentes de fo; les points
de I' extérieurs & s représentent les antécédentes de f,. Nos fonction-
nelles, qui sont représentées par des intégrales curvilignes étendues
a toute la courbe T' sont indépendantes du point de départ ¢; sur cette
courbe I', mais elles varient quand on passe d’une courbe I" & une
autre. Elles sont donc aussi fonctions des lignes T' de Iespace fonc-
tionnel.
L’invariance de la fonctionnelle

m—=-ao

[ F e )%, ¢y )", .. ) dm
L2

IN—=—0o

le long d’une courbe 1" implique que sa différentielle pour un déplace-
ment fait le long de la courbe I" soit nulle, ce qui se traduit par I'équa- -
tion

m=—--ow

P‘
0F o wm L Ndm = 0
. DC-)\I-N vt ?'
1 1 1 .

m=——auwo

I suffira de se donner la fonctionnelle ® sur la sphére s pour la
déterminer dans tout I’espace fonctionnel.

La sphére s joue donc le role de 'intégrale 0, 2r d’une fonction
donnée par une série trigonométrique; ou du parallélogramme des
périodes des fonctions elliptiques; c’est 1’espace générateur.

On pourrait introduire la notion de groupe, ce que nous n’avons
pas encore fait. |
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Guidé par lanalogie avec les fonctions simplement périodiques,
elliptiques et fuchsiennes on peut espérer pousser trés avant cette

étude.
7. — G. Juver (Neuchatel). — Sur une généralisation du théo-
réme de Jacobi. — (Nous renvoyons au Mémoire publié par I'auteur

a la Librairie A. Blanchard ; Thése de doctorat, Paris, 1926. Voir
plus loin, p. 318, une analyse sommaire de ce Mémoire).

et A L T T LS

8. — H. Kress (Berne). — Représentation géoméirique d’une
transformation d’équations auz dérivées partielles. — Nous considérons
Péquation

] d2x I dilogna(u, ¢) du .

i : _ L 0logA{ )L——/\(IL,V)J):O. (1)
i QDY 2 du o

i

| Les suites de Laplace qui correspondent aux équations (1) inté-
I grables comprennent un nombre pair d’équations et sont telles que
deux équations situées & égale distance des extrémes ont les mémes
. Invariants & Pordre pres.
| Nous considérerons le réseau z déterminé par I'équation (1) et une
congruence yz conjuguée a ce réseau, les foyers de la droite passant
. par le point z étant désignés par y et z. Si I’on désigne par z; une
. solution de Iéquation (1), le foyer y de la droite yz est déterminé par
la relation

I X, 0.x
y = f.rlwdu + = 2% 2clv . ' (2)

YT
Nous poserons

| ; N2 |

i ' z, = L[xf du %(%) dy . (3)
| _
J

Nous définirons un point @ de la droite yz par la relation

Zl ) . Zl xX

0 zZ,® 0 x
— ._‘ : Zl — — ’
du X, du z,
\ < (5)
0z, w 1 0x;\ 0
T =y ey, — ) —
DR A dv / dv X,

Nous retrouvons les équations de la transformation de M. Goursat -

qui permet de construire toutes les equations (1) intégrables et leurs
intégrales. | :
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Si I'on élimine successivement w et z entre les équations (5) et que
'on exprime A en fonction de z, au moyen de la relation (3), on obtient
deux équations dont la seconde se déduit de la premiére en remplacant

1
 par o et z; par —-.
4

1 .
Le second foyer z de la droite yz est donné par une relation que I'on
peut mettre sous la forme '

. 1 oz, ) .
z_y~7Wx . (b)

1.’élimination de z entre les formules (4) et (6) nous donne la relation

1 oz ' 1 oz N
—)—CZIST}(’):—ZIZ_*_(ZI_—):xl—B—&)y: (/)

Les relations (6) et (7) nous montrent que le rapport anharmonique
des points w, 2, z et y est égal au rapport des coefficients de 6947 xf et
1

0 x| ' .
de = — de la transformation de M. Goursat.
i "
Nous avons donc le théoréme:

Si 'on prend pour rapport anharmonique le rapport des coefficients

0 - : . :

de o xﬁ et de % f— de la transformation de M. Goursat, le conjuguée
| 1 . . , .

anharmonique d’un point du réseau défini par I'équation (1) par rap-

port aux foyers de la droite passant par ce point d’une congruence
conjuguée & ce réseau décrit un réseau satisfaisant a 'équation obtenue
en remplacant dans équation (1) dans laquelle la fonction A(u, ¢)

., . ; 1
est exprimée en fonction de z;.au moyen de la relation (3), z; par —.
' V4

1

La représentation géométrique de la transformation de M. Goursat

que nous avons obtenue est.donc trés semblable & celle qu'a donné
M. Koenigs de la transformation de Moutard. :

9. — M. PrancuHEREL (Zurich). — Le rdle de U'intégrale de Fourier
dans Uintégration de quelques problémes mixtes relatifs & certaines
équations aux dérivées partielles du type hyperbolique ou parabolique. —
Dans un travail trop peu remarqué (Normal coordinates in dynamical
systems, Proceedings London Math. Soc., 15 (1916), p. 401-448),
M. T. J. I’A. Bromwich a été amené par une méthode heuristique
des plus intéressantes & formuler sur I'intégration des problémes
mixtes relatifs a certaines équations aux dérivées partielles du type
- hyperbolique ou parabolique quelques propositions dont la démons-

" tration n’a pas encore été donnée. . '
Cette démonstration peut étre faite & I'aide de la théorie des trans-
~ formations intégrales de Fourier et de quelques théorémes de la
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théorie des équations intégrales se rapportant aux équations (2) et
(3) ci-dessous. ‘

Un changement de variables condnit facilement de la forme ordi-
naire des transformations intégrales de Fourier aux formules d inver-
sion suivantes

o+1i%

a0 ) /1 i . . ‘
g(h) = feu"t/'(‘) di f() = 2‘7—,”/.3'“88'(’9‘“ (1)
0 ’ v—i®
h=a4 i, —w<li<w; 0t x)

auxquelles on peut toujours donner un sens, pourvu que I'une des deux
intégrales

1%

Slgtdany, fle”” )

0—100

soit finie (la finitude de I'une entraine celle de 'antre). g(A) est trés
souvent appelée la transformée de Laplace de f (¢).

Soient L.(u) et H(u) des expressions différentielles linéaires et
homogénes, relatives aux variables indépendantes z, ¥, la premiére
du second ordre, la seconde du premier ordre. Soit Q un domaine
plan limité par une courbe fermée simple c¢. Supposons que L (z) soit
du type elliptique positif dans Q ++ C et que le probléme

L) = 0 dans Q , H(u) = 0 sur C

soit adjoint & lui-méme. a(z, y), b(z, y), u’(z, y), vl (z, v), f(z, y, t),
g(z, y, A) désigneront des fonctions données. On supposera en parti-
culier que a(z, y) et b(z, y) ne sont pas négatives dans Q) -+ C et que
a®+ b2 > 0. De plus, f(x, v, t) et g(z, y, 4) seront reliées par les
tormules (1). ,

Les deux problémes :

I. Déterminer une fonction u(x, %, ¢) qui pour ¢t > 0 vérifie dans Q
Péquation

% u du

aW—I—IW—L(u) =7

et sur C la condition H (1) = 0 et qui, pour ¢ = 0, satisfait aux condi-
tions initiales
oulx, vy, 0)

ulz, y, 0) = u°, 7 -

IT. Déterminer une fonction ¢(x, y, ) qui, dans Q. vérifie I'équa-
tion

(@r® 4 XNy — L(v) = lak + b)u® + au' + g (2)
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ol ) est un paramétre et qui, sur C, satisfait a la condition H(v) = 0
ont leurs solutions liées entre elles par les formules d’inversion

L u410 o
wiz, y, 1) = i-—”fe”v(x. y, Ndh, vz, y ) :fe"“u(x, y, )dt .
7—1% 0

On suppose, dans la premiére, que ¢ > 0 et que la partie réelle de «
est plus grande que la borne supérieure des parties réelles des valeurs
fondamentales A du probléme

(aX® + b))y — L(v) = 0, dans Q, (3)
H ()

1

0, sur C.

Dans la seconde formule on suppose que la partie réelle de 1 est
plus grande que cette méme borne.

10. — Mme Gr. Chisholm Younc (La Conversion, Vaud). — Pytha-
gore, comment a-1-il trouvé son théoréme ? — (Voir L’Enseignement
mathém., t. 25, 1926.)

11. — Mue H. StaeueLin (Fetan). — Représentation du complexe
des tangentes & un céne du second ordre dans Uespace ponctuel a
trois dimensionsl. — Par un choix convenable des coordonnées
projectives z,: 2;: %, 3, les équations d’un coéne irréductible du
second ordre K, peuvent s’écrire sous la forme : ‘

2 2
g, = Iy 3 x, = 1l ; o = by ; 2, = Iy,
ol les parameétres [y,: [, [, ne peuvent pas étre nuls & la fois et sont
homogénes dans ce sens qu’un systéme de valeurs ly,: [;: [, est équi-
valent & p2ly: ply: ply; p £ 0.
Les génératrices rectilignes ont des équations de la forme :

a1+ ogly = 0 . (1)

Si ces coordonnées sont fonctions d’un paramétre ¢, les coordon-
nées de Pliicker d’une tangente & K,, qui ne passe pas par le som-
met, se déduisent de la matrice:

2
e & Ll

! !/

i 2L LhL A LT 200

1 H. STAEHELIN, Die charakteristischen Zahlen énalytischer Kurven auf dem Kegel
zweiter Ordnung und ihrer Studyschen Bildkurven. Thése de doctorat. Bale, 1924;
Math. Ann., 93; p. 218-19.
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On peut prendre comme parametres des tangentes, les grandeurs
homogeénes:
L

/

(A l; — 1,1) ' Ly = L(hh— le;)

1

1

L, = 2l ly — I 1o » L, = 2/pgly — Iy oo -

Elles satisfont aux relations:

’

LoL, — LyLy = 2l (o — LGP (D)

9 ) 1 My

On a donc la représentation paramétrique des tangentes:

02

. 1 -
= IJ.I 143 N .\ jusmet §(L1 [14 + L2L3) 7 ‘\,03 o IJ2 [44 ¥

2
= L.

12 7

— 2L.1 X

41 49

§ 2 <
Ky = L, , Xy =
Si I'on considére les paramétres L; comme les coordonnées homo-
genes £,: £, £y £5 d’un point de-L'espace, chaque tangente ne passant
pas par le sommet de K, correspondra a un point : £q: &1t &ot &5
== L;: Ly: Lg: L, et inversement.
Pour les génératrices, on a L, = 0 et L, = 0; mais d’apres (1) et

(2):

141:1;2:11:/2:—0.2:0(1 et 1,3:L4:L1:[;2::——12:o¢1.

Les points qui correspondent aux génératrices ont donc des coor-
données de la forme:

VY
TN
I

E — 00 — . e .z
2.\.3,___0.0. ty 1 O avec PR -

ot
-1 E

01 g = T % %y

Ces points sont situés sur la directrice d’une congruence parabolique:

ram

Sy — By = 0 .

1]
I
o
I€l

On montre facilement qu’un faisceau de tangentes se transforme en
une droite coupant la directrice de cette congruence; cette droite
n’appartient a la congruence que si le sommet du faisceau est un
point régulier du cone. - ‘ S

A chaque droite passant par le sommet de K, correspondent 2
points de la directrice; ce sont les images des génératrices de contact
des plans tangents au cone menés par la droite; elles ne coincident
que si la droite est une génératrice. La duplicité qui intervient dans la
représentation du complexe des tangentes & une quadrique non
deégénéréel se réduit ici aux tangentes passant par le sommet du cone,

1 B. STupy. Ueber Lies Geometrie der Kreise und Kugeln, Math. Ann., 86.
H. JoBIN, Sur une généralisation de la transformation de Lie. Thése E.p.f., Zurich, -
1920. '
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et qui ne sont pas des génératrices. Si 'on exclut ces tangentes sin-
guliéres, il y a correspondance univoque et réciproque entre chaque
tangente et un point de 'espace ponctuel a 3 dimensions.

12. — H. Branprt (Aachen). — Théorie arithmétique des quater-
nions. — L’auteur définit le concept d’un corps général de qua-
ternions et discute en particulier les corps dont la théorie se trouve
en connexion étroite avec la théorie de la oompos1t10n des foimes
quadratiques quaternaires. Un corps de cette espéce contient un
nombre infini de domaines maximum d’intégrité e, e¢’, ¢”, qui figurent
en méme temps comme idéaux-unités. Pour chaque domaine comme
¢, il v a des idéaux gauches et des idéaux droits, ¢’est-a-dire des sys-
témes de quaternions a contenant la somme de tout couple de ses
éléments, et, en désignant par ¢ chaque quaternion de ¢, également
go, ¢2’ ... dans le premier cas et ae, o’c ... dans le second cas. On
écrit, suivant le cas, I’équation ea = a ou a¢ = a, et on nomme ¢
Iidéal-unité gauche ou droit de a.

En considérant non seulement le domaine d’intégrité ¢ mais encore
tous les autres ¢, ¢” . , et en cherchant pour chacun d’eux les idéaux
gauches et droits, on trouve chaque idéal exactement deux foig, une
fois comme idéal gauche et une fois comme idéal droit, mais en général
dans des domaines d’intégrité différents. En d’autres mots, chaque
idéal posséde un idéal-unité gauche et un idésl-unité droit, tous deux
univoquement déterminés.

On peut définir pour les idéaux une operatlon de multlphcatlon
correspondante A celle des corps algébriques, et qui n’en différe que
par la présence de certaines conditions indispensables pour existence
du produit. En effet, si nous désignons par a et b deux idéaux, on peut
former le produit ab = ¢ lorsque l'idéal-unité droit de a et I'idéal-
unité gauche de b sont identiques. Dans les autres cas le produit
n’existe pas.

Cette multlphcatlon des idéaux ainsi définie n’est pas commu-
tative: de ce qu’on peut former ab il ne s’ensuit méme pas Pexistence
du produit ba. Par contre elle est associative.

L’ensemble de tous les idéaux du corps, considéré au point de vue
de cette multiplication, constitue un aggrégat d’éléments semblable
mais- non pas identique 4 un groupe que j’appelle un groupoide
(Mathemazwche Annalen, tome 96, p. 360).

De méme que pour les corps algébriques, on peut définir la notion
de classes d’idéaux, contenant avec 'idéal a I'ensemble de tous les
1déaux pag, ou p et ¢ désignent des quaternions quelconques. On
trouve alors une composition des classes analogue & celle des idéaux
mais plus simple: elles forment un groupoide & un nombre fin:
d’éléments. :
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