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SOCIÉTÉ MATHÉMATIQUE SUISSE

Conférences et communications

Réunion de Fribourg, 30 août 1926.

La Société Mathématique suisse a tenu sa 16me assemblée ordinaire
annuelle à Fribourg, le 30 août 1926, sous la présidence de M. le
professeur F. Gonseth (Berne), en même temps que la 107me assemblée

- annuelle de la Société Helvétique des Sciences naturelles.
Le programme très fourni de la réunion comprenait 13 communications

dont 12 ont été effectivement présentées à la séance. En voici
les résumés :

L —L.-G. Du Pasquier (Neuchâtel). -— Sur les nombres premiers
dans les progressions Arithmétiques du deuxième ordre. — Soit
7r2(ß, b, c; x) le nombre des nombres premiers <Ç x contenus dans
la progression arithmétique générale du deuxième ordre

f(n) an2 + bn -j- c (1)

où a, b et c sont trois nombres entiers, arbitrairement choisis mais
fixes, tandis que n parcourt la suite illimitée des nombres naturels.
Si l'on pouvait démontrer que

tc2 [a b c ; x) —oc quand x —>- oo (2)

on aurait résolu un problème fameux qui intéresse beaucoup de
mathématiciens. L'auteur montre d'abord les trois conditions auxquelles
a, b et c doivent satisfaire pour que (2) soit possible, puis il indique
pour ce nombre ti:2 la formule asymptotique

C' —
r/(x) 8.—C li ]/x (3)

Va

où Ii z représente le logarithme intégral de z. La formule (3), semblable
à celle de MM. Hardy et Littlewood, entraînerait (2); mais comme
elle n'est pas démontrée en toute rigueur, il y a intérêt à la vérifier
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expérimentalement. C'est ce que l'auteur a fait pour les six cas
suivants :

/j (n)«2 + 1 ; /g (n) 101 + 20 + 1 ;

fs{») "2 + n + 1 ; 122 n2 + 22« -j- 1 ;

/•„(«) 10 001 «2 + 200« + 1 ;

fe{n) g 10 610«2 + 206« + 1

] La factorisation des nombres /j(re) est poussée jusqu'à 225 000 000.
1 Grâce à cette limite élevée, l'auteur a pu constater qu'une présomption
j de Gauss admise depuis plus d'un siècle (n(x) < h (x) était inexacte,
i Après avoir introduit deux nouvelles notions : absolu de la
j progression (1), savoir n2(a,b, c; — n'(x), et l'écart relatif de la
i progression (1), savoir

l'auteur termine sa communication par six propositions relatives aux
nombres premiers contenus dans les progressions arithmétiques du
deuxième ordre et présente plusieurs tableaux se rapportant à ce
sujet.

2- — L. Kollros (Zurich). — Projection centrale et géométrie
réglée. — En projection centrale, la droite est déterminée par sa
trace T sur le tableau net par son point de fuite F. Une surface
réglée est représentée par la courbe-trace t et la ligne de fuite /; les
génératrices établissent une correspondance ponctuelle entre ces deux
courbes; si les tangentes aux points homologues de et de / sont
parallèles, la surface est développable.

Les droites d'une congruence déterminent une transformation
ponctuelle T F de tous les points de n; on voit facilement qu'à une
affinité, une collinéation ou une inversion correspondent respectivement

des congruences (1, 1), (3, 1) ou (2, 2) L
Les droites d'un complexe donnent lieu à une correspondance

point courbe: T ->-/;/ est la ligne de fuite du cône formé par les
droites du complexe issues de T. Pour le complexe / est la
droite de fuite du plan focal de T ; si la droite à l'infini, i, de tt appartient
au complexe, elle passe par les foyers O' du plan à l'infini Q et O"
de n.Les faisceaux de droites O" (dans Ü) et O' (dans tt) sont projectifs
et le complexe linéaire est formé de toutes les droites qui coupentdeux rayons correspondants de ces deux faisceaux. En projetant le

~2 (a b c ; x) — r/(x)
TZ'(X)

~ l" c ; x)
— 1

i Muller-Kruppa: Vorl. ü. darst. Geom. Bd. I: Die lin. Abbildungen.
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faisceau 0"(Q) sur tt, on obtient un faisceau perspectif au faisceau
O'(tt), car la droite i se correspond à elle-même; les rayons homologuer
se coupent donc sur une droite x. Ainsi, les droites d'un complexe
linéaire sont représentées par des paires de points TF situés sur les
rayons correspondants de deux faisceaux perspectifs. Mais, si l'on,
généralise convenablement la méthode de Monge (projections sur deux
plans), on voit qu'un point quelconque de l'espace est aussi déterminé
par une paire de points liée à deux faisceaux perspectifs; cette double
interprétation d'une même paire de points établit une correspondance
entre les points du second espace et les droites d'un complexe linéaire
du premier. On peut alors montrer qu'aux points du premier espace
correspondent, dans le second, les droites qui coupent une conique
de telle sorte que, à des points en ligne droite, correspondent des
génératrices du même système d'un hyperboloïde passant par w ; la conique
« est (avec la ligne de terre x) le lieu des points dont les deux projections

coïncident. Si w était l'ombilicale, cette correspondance ne serait
autre chose que la transformation de Lie (point droite isotrope ;
droite sphère), intéressante par ses applications à la théorie des.
surfaces et à celle des équations aux dérivées partielles.

3. — W. Saxer (Aarau). — Sur la distribution des zéros et des pôles-
des jonctions rationelles d'une suite convergente. — Le travail paraîtra
prochainement dans la Mathematische Zeitschrift, Berlin.

E. Meissner (Zurich). — Sur une équation différentielle
singulière intervenant dans un problème de sismologie. — On considère,

dans un milieu élastique limité par un plan horizontal,, des
ondes élastiques dont l'oscillation s'effectue horizontalement eb
perpendiculairement à leur direction de propagation; telles en outre
que leur intensité diminue en fonction de la profondeur de façon assez,
rapide pour que l'énergie de l'onde par unité de surface reste finie.

Les propriétés élastiques du milieu, considéré étant supposées fonctions

de la profondeur z, les équations classiques de la théorie de
l'élasticité conduisent dans ce cas à une équation différentielle de la
forme:

£(u)+ Xu0 avec £(u)A (p ^) —

les solutions acceptables devant en outre satisfaire aux conditions i
du
~dx ^ pour x — 0

et
00

J* u2dx finie
o
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Ce problème a été traité par M. lé Prof. H. Weyl (Math. Annalen
68, 1909). L'équation précédente appartient au type qu'il y nomme
« à point limité » (Grenzpunkttypus).

Pour les buts de la sismologie, il est essentiel d'en déterminer lu
spectre discontinu des valeurs propres du paramètre de la fréquence
la longueur d'onde étant supposée constante. A chaque point de ce
spectre correspond en effet une loi de dispersion de l'onde, les
différentes courbes ainsi obtenues correspondent à une série de systèmes
d'onde qui diffèrent les uns des autres par le nombre des plans
nodaux. Le spectre du problème comprend en général un spectre
ponctuel (discontinu) et un spectre de bandes, le cas pouvant d'ailleurs
se présenter où l'un ou l'autre de ces spectres manque. Si c'est le cas.
pour le spectre ponctuel, les ondes dont nous parlons n'existent pas
(c'est ce qui se présente par exemple dans un demi-espace homogène).

Il y a par contre des cas où l'on peut affirmer d'avance
l'existence d'un spectre discontinu..Les ondes correspondantes jouent
le rôle principal dans le phénomène dit, en sismologie, des « undse
lungae ».

Outre les deux cas connus jusqu'ici et traités le premier par Love,,
en 1911, et le second par le conférencier en 1920, celui-ci présente une
série de cas nouveaux dont la connaissance serait très profitable pourf investigation de l'écorce terrestre jusqu'à la profondeur de 100 km.
environ.

Chr. Moser (Berne). — Une conclusion qui découle de la loi
de Makeham. Si 1 on classe les nombres de vivants d'un ordre de
survie d'après l'âge x1 on a approximativement pour les adultes la loi
connue de Makeham:

f(x) ksxgcX (1)

où f(x) représente le nombre des personnes d'âge x et où k, s, g et çsont des constantes.
Si e désigne la base des logarithmes népériens et si l'on pose g°x ez

on pourra dériver, sans difficulté, de la formule (1) une multitude de
îeprésentations pour e2, à l'aide de développements appropriés, eu
partant de l'intégrale pour l'espérance de vie d'une personne d'âge x.Nous relevons le développement suivant dans lequel n peut être nui
ou un nombre entier positif:

** ^(' + r^ + 3"£+ '*"£+)• m

Dans cette expression, P(n>ï) désigne un polynome à coefficients
entiers en z de degré n.Pour une valeur entière de s, P,„ z) est en
consequence toujours un nombre entier. On a P(0>z) 1, P(1 ^ 1 +/
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P(2,z) — 1 + 3z -j- z2 de telle sorte que, par exemple, pour n 0,
on a sans autre la série connue pour ez, et pour n — 2, z 1 la série
suivante :

__
1 (* 4 9 16

e - 5Y + IT + Yï + 3!" +

On peut multiplier les exemples à volonté.
Si l'on pose pour abréger:

r — H l)*+V+t
1 f ~~

(» + p) (i + 2P)... (i + (x + i)p)
(A - °*i' 2; •" •

si l'on forme la (n + l)me dérivée par rapport à si ensuite on déter-
mine sa valeur pour p — 0 et que l'on introduise la notation suivante:

dn+i( C \r(«+d _ h V
/. o —

le polynome P(n,Z) peut s'écrire

ry*+ >) — u* m10 ~ ' (p -0)

P, -C(" + ,)7>'
<"'*» o(;o('t + 1) -ÄJ'- " • (3)

* 0

L expression pour P(nj2) pourrait se mettre encore sous une autre
forme et peut .être obtenu, en outre, directement par divisions successives

de 2 séries (de la série entre parenthèses dans l'équation (2) parla série pour n 0).
Pour des valeurs négatives de l'exposant, la loi de formation du

dénominateur P se modifie en ce sens qu'il ne peut plus être exprimé
par un polynome d'un nombre fini de termes, mais par une série
infinie.

L'intérêt essentiel des considérations précédentes réside dans le fait
que la fonction de Makeham, outre ses nombreuses autres jolies
propriétés connues dans la science actuarielle, en possède encore
d'autres qui sont susceptibles de montrer l'étroite dépendance qui
lie, en vertu de l'équation (2), n'importe quel nombre ez avec les
puissances des nombres de la série des nombres naturels.

Si l'on se propose d'introduire uniquement des fractions irréductibles

comme coefficients, on pourra choisir la représentation suivante:

i + +_J__ i! +ps + l 1! a + 2 2!
I ï 7 1

* •

r2 +cr <s(<j -f~ \) a (g -f- 1) (cr -f- 2)

Il est possible de prescrire, à son gré, la plus grande des fractions
irréductibles, à savoir —



CONFÉRENCES ET COMMUNICATIONS 28»

6* Fi- Wavre (Genève). — Sur une classe de fonctionnelles auto-
morphes. — Les fonctions elliptiques, les fuchsiennes et d'une manière
générale les fonctions automorphes prennent la même valeur en un
point du plan complexe et en tous ses itérés par de certaines
substitutions.

Le problème que je me suis proposé consiste en ceci: construire des
fonctions de lignes automorphes, guidé par l'analogie avec les fonctions
automorphes de points.

En termes plus précis, il s'énoncerait comme suit: Etant donné un
procédé itératif faisant passer d'une fonction f0(x) à une fonction
f^x), de cette dernière à une fonction f2(x) et ainsi de suite, on
demande dé construire une fonctionnelle $ | f(x) | qui prenne la même
valeur sur la fonction f0(x) et sur ses itérées f^x), f2(x\ telle donc
que l'on ait :

fF I fo(x) I - *\fn(x) I? (1)

\ oilà le problème. Nous l'avons résolu dans un cas relativement
simple.

Envisageons, en effet, le procédé itératif suivant:

b

=/n(*. y)fn(y)dy
a

et supposons le noyau N (x,y) symétrique.
La théorie des équations intégrales nous apprend que la. fonction

fn[x) peut s'écrire sous la forme

b

fnM f N„ 0 • fo (y) dy
a

où N„(z, y) représente le re'ème noyau itéré) développable en série
de fonctions fondamentales orthogonales et normées

n„(.x-, y) =2— — ;
^ i

de sorte qne si ct représente le coefficient de Fourier de la fonction f0
relatif à la fonction fa,aX^1 représentera le coefficient de la fonction
fn relatif à fa.

On sait que si le noyau N (x,y)est fermé, le système orthogonal
fa(x) est complet et il y a correspondance univoque et réciproque
{à des fonctions définies sur des ensembles de mesure nulle près)entre / (x) et ses coefficients de Fourier ct. Aussi est-ce sur ces
derniers que nous allons opérer. On peut fort bien attribuer à n des

L'Enseignement mathém., 25* année; 1926. 1Q
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valeurs non entières et introduire dans cette théorie la notion
d'itération fractionnaire et d'itération continue.

Imaginons une fonction F des q, qui ne dépende de ceux-ci que par
l'intermédiaire des produits q X, et telle que l'intégrale

'I'I/ÔWI fs> JF(cixr. '

fn=—co

soit convergente quels que soient les coefficients de Fourier q. Il est

clair que si l'on remplace les q par les q X[n cette fonctionnelle <E>

est invariante, elle satisfait à la condition (1) puisque l'intégrale
précédente porte sur toutes les conséquentes et toutes les antécédentes
de /0. Cette intégrale joue ici le rôle des séries de Poincaré; si elle n'est
pas identiquement constante, mais dépend effectivement de la fonction

initiale f0(x), elle sera automorphe.
Indiquons un moyen permettant d'obtenir une classe très générale

de fonctionnelles $.
Soient

^ 2 2 2m V? 2 2 -, -m ~ J A \ -mt =2i H cii' y Vi• ' •••

i i i

des séries (de Dirichlet) convergentes quel que soit m, dans lesquelles
les yi, tji, Zi, sont des paramètres constants. Elles représentent
donc des fonctions des q et de m.

Soit d'autre part y(?/, i, une fonction telle que l'on ait:

| <p(y, 2, | <; | <p(7, 7, |

lorsque les ?/, % et y correspondent à une même valeur de m et telle
de plus que l'intégrale suivante ait un sens:

-f-OCJ\f(y,V. •••) I

0

J'appelle y la fonction régulatrice et cette dernière intégrale l'intégrale

majorante.
Nous supposons, et cela ne restreint pas la généralité, que les

valeurs fondamentales Xi soient toutes, en valeur absolue, supérieures à

l'unité. Lorsque m varie de — go à -f- go y varie bien de 0 à -|- oo

La fonctionnelle
4-oo m= -{-oo

'I* | f{x)| ...)dy— ®(y > z,
(I lit——oo



CONFÉRENCES ET COMMUNICATIONS 283

sera bien automorphe si elle n'est pas identiquement constante,
c'est-à-dire quels que soient les q ou f(x). Dans une note aux Comptes
Rendus de l'Académie des Sciences (t. 182, p. 1317, séance du 31 mai
1926) j'ai donné des fonctionnelles automorphes obtenues au moyen
de la tonction régulatrice et de l'intégrale majorante:

+ 00

f(y, z) ye~~' et J ye~~: dy — 1

o

Ce sont les fonctionnelles
m= + x»

(c) — f*y{c, ni} dy(c m)

fH= 00

dont quelques-unes présentent en elles-mêmes des propriétés
intéressantes.

Prenons en particulier z y et y ^ ^es nombres
i

| a-i | étant bornés supérieurement; la fonctionnelle

+ 00

R(c, <%, y
(>

donne lieu aux relations :

R-((L 0 e^, 0 — cq et, si rj-% — (— »

K (0 c2 0, c4 0, 1 et R (ci » ê, Ce, 0, ...):= — 1

Ces fonctionnelles J (c) sont d'ailleurs continues en chaque point de

la sphère fonctionnelle
•i

Remarquons qu'une fonction f0(x) a toujours une infinité de
conséquentes (ou de descendantes) mais, en vertu du théorème de
M. Picard sur l'équation de Fredholm de première espèce, elle ne possède
pas nécessairement des antécédentes (ou ancêtres). Mais la fonction
aux coefficients de Fourier yi admet des antécédentes de tout ordre,
en vertu du même théorème de M. Picard, puisque la série 2 à* y-

i
converge quel que soit m.

La formation de la série y revient (qu'on me passe cette expression)
à obliger la fonction /0 à épouser une autre fonction aux coefficients y
qui a une infinité d'ancêtres, de manière que /0 les possède également
par alliance.

La dérivée fonctionnelle
I/"(*)> ï|
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n'est pas automorphe, mais on rétablit l'automorphisme en formant
l'expression

Les dérivées fonctionnelles d'ordre supérieur donnent lieu à des
remarques analogues.

Insistons pour terminer sur l'interprétation géométrique de
l'automorphisme de nos fonctionnelles.

On sait que la fonction f(x) peut être représentée par le point ci
de l'espace à une infinité de dimensions. Lorsque m varie de — co à

+ go les coordonnées c.Xsont celles du point représentatif de la
fonction f~m(x). Ce point représentatif décrit donc une courbe T
lorsque les ct restent constants et que m varie seul. Cette courbe T
coupe la sphère fonctionnelle s: c2. — 1 pour la valeur m — 0 (en

supposant les fonctions initiales f0(x) normalisées). Les points de T
intérieurs à la sphère 5 représentent les conséquentes de /0; les points
de T extérieurs à 5 représentent les antécédentes de /0. Nos fonctionnelles,

qui sont représentées par des intégrales curvilignes étendues
à toute 1a. courbe T sont indépendantes du point de départ Cj sur cette
courbe T, mais elles varient quand on passe d'une courbe T à une
autre. Elles sont donc aussi fonctions des lignes T de l'espace
fonctionnel.

L'invariance de la fonctionnelle

le long d'une courbe T implique que sa différentielle pour un déplacement

fait le long de la courbe T soit nulle, ce qui se traduit par l'équation

Il suffira de se donner la fonctionnelle cp sur la sphère s pour la
déterminer dans tout l'espace fonctionnel.

La sphère 5 joue donc le rôle de l'intégrale 0, 2tt d'une fonction
donnée par une série trigonométrique ; ou du parallélogramme des
périodes des fonctions elliptiques; c'est l'espace générateur.

On pourrait introduire la notion de groupe, ce que nous n'avons
pas encore fait.

b

f/"(Ï)*'!/"(*). ç|
a
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Guidé par l'analogie avec les fonctions simplement périodiques,
elliptiques et fuchsiennes on peut espérer pousser très avant cette
étude.

7. — G. Juvet (Neuchâtel). — Sur une généralisation du
théorème de Jacobi. — (Nous renvoyons au Mémoire publié par l'auteur
à la Librairie A. Blanchard ; Thèse de doctorat, Paris, 1926. Voir
plus loin, p. 318, une analyse sommaire de ce Mémoire).

8- H. Krebs (Berne). — Représentation géométrique d'une
transformation déquations aux dérivées partielles. — Nous considérons
l'équation

ö2# 1 log /Ja v) ö.r
x >.

— y ~ à (m v)x — 0 (1)u u o v I àu ô v w

Les suites de Laplace qui correspondent aux équations (1) inté-
grables comprennent un nombre pair d'équations et sont telles quedeux équations situées à égale distance des extrêmes ont les mêmes
invariants à l'ordre près.

Nous considérerons le réseau x déterminé par l'équation (1) et une
congruence yz conjuguée à ce réseau, les foyers de la droite passant
par le point x étant désignés par y et z. Si l'on désigne par x1 une
solution de 1 équation (1), le foyer y de la droite yz est déterminé parla relation

r j j ö x. ö xy / x xdu+ — —i — dv (2)
«/ A ö V Ö V

1 '
Nous poserons

zt fx\du + y*. (3)

Nous définirons un point oo de la droite yz par la relation

z1 tO zlx

La formule (2) nous donne les deux relations

ö x
& u d u x1

'

û; zif0 { 1 x. \ ö x ^
öw ^ \zi

Nous retrouvons les équations de la transformation de M Goursat
intégrales61

C°nStruire toutes les équations (1) intégrables et leurs
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Si l'on élimine successivement w et x entre les équations (5) et que
l'on exprime X en fonction de z1 au moyen de la relation (3), on obtient
deux équations dont la seconde se déduit de la première en remplaçant

1

x par w et z1 par --.
Le second foyer z de la droite yz est donné par une relation que l'on

peut mettre sous la forme

L'élimination de x entre les formules (4) et (6) nous donne la relation

1 ô£ct / 1 n\~ ZiZ +\Zi~\x>Tï)y:
Les relations (6) et (7) nous montrent que le rapport anharmonique

ö x
des points «, x, z et yest égal au rapport des coefficients de — - et

de — — de la transformation de M. Goursat.
ÖF xi

Nous avons donc le théorème:

Si l'on prend pour rapport anharmonique le rapport des coefficients

de — — et de — - de la transformation de M. Goursat, le conjugué
àu xx à i' xx

anharmonique d'un point du réseau défini par l'équation (1) par
rapport aux foyers de la droite passant par ce point d'une congruence
conjuguée à ce réseau décrit un réseau satisfaisant a l'équation obtenue

en remplaçant dans l'équation (1) dans laquelle la fonction v)

est exprimée en fonction de Zj.au moyen de la relation (3), par —

La représentation géométrique de la transformation de M. Goursat

que nous avons obtenue est donc très semblable à celle qu'a donné

M. Kœnigs de la transformation de Moutard.

9. — M. Plancherel (Zurich). — Le rôle de l'intégrale de Fourier
dans l'intégration de quelques problèmes mixtes relatifs à certaines

équations aux dérivées partielles du type hyperbolique ou

Dans un travail trop peu remarqué coordinates in dynamical
systems,Proceedings London Math. Soc., 15 (1916), p. 401-448),

M. T. J. l'A. Bromwich a été amené par une méthode heuristique
des plus intéressantes à formuler sur l'intégration des problèmes
mixtes relatifs à certaines équations aux dérivées partielles du type
hyperbolique ou parabolique quelques propositions dont la démonstration

n'a pas encore été donnée.
Cette démonstration peut être faite à l'aide de la théorie des trans-

forhiations intégrales de Fourier et de quelques théorèmes de la
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théorie des équations intégrales se rapportant aux équations (2) et
(3) ci-dessous.

Un changement de variables conduit facilement de la forme
ordinaire des transformations intégrales de Fourier aux formules d'inversion

suivantes
00 a + ix

.«(>•> f e~af (l)dt,- —feugQ,)dA (1)

0 'î f
(a rr a -f- i 0 — co 6 oo ; 0 t oo

auxquelles on peut toujours donner un sens, pourvu que l'une des deux
intégrales

ce

f U('-)rfM3 • f I I

rj.—lCC 0

soit finie (la finitude de l'une entraîne celle de l'autre), g (A) est très
souvent appelée la transformée de Laplace de f (t).

Soient L(u) et H (u) des expressions différentielles linéaires et
homogènes, relatives aux variables indépendantes x1 y, la première
du second ordre, la seconde du premier ordre. Soit 12 un domaine
plan limité par une courbe fermée simple c. Supposons que L (u) soit
du type elliptique positif dans Q -f C et que le problème

L («) ~ 0 dans Q H (u) — 0 sur C

soit adjoint à lui-même. a(x, ?/), b(x, y), u°(x< y)., u1(x, y), f(x1 y, t),
g(x, ?/, A) désigneront des fonctions données. On supposera en particulier

que a(x, y) et b(x: y) ne sont pas négatives dans Ü -f G et que
a2 + b2 > 0. De plus, f(x, ?/, t) et g(x, y, A) seront reliées par les
formules (1).

Les deux problèmes :

I. Déterminer une fonction u(x, y, t) qui pour t > 0 vérifie dans Û
l'équation

Ö2 U ÜU T / V

a —-s L (u) — fàl2 ^ ht K 1 1

et sur C la condition H (u) 0 et qui, pour t — 0, satisfait aux conditions

initiales

/ A\ n bu(x y, 0)
u(x, y 0) U0 L__Jt—L. ir

II. Déterminer une fonction e(x, y, A) qui, dans Q, vérifie l'équation

(a a2 -f- b A) v — L (r) — .la A -f- b) u° -j- au1 + g (2)
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où 1 est un paramètre et qui, sur C, satisfait à la condition H(c) 0

ont leurs solutions liées entre elles par les formules d'inversion

a+ ioo oo

u[x,y, l) -t f eu v(x.y,À) dX, v{x, fe~uu(x, y, t)dt
Ztz l fj

On suppose, dans la première, que t > 0 et que la partie réelle de a
est plus grande que la borne supérieure des parties réelles des valeurs
fondamentales X du problème

(a a2 -f- bX)v — L (v) — 0 dans O (3)

H (v) 0 sur G

Dans la seconde formule on suppose que la partie réelle de X est

plus grande que cette même borne.

10. — Mœe Gr. Chisholm Young (La Conversion, Vaud). — Pytha-
gore, comment a-i-il trouvé son théorème — (Voir UEnseignement
mathém., t. 25, 1926.)

11, — Mlie H. Staehelin (Fetan). — Représentation du complexe
des tangentes à un cône du second ordre dans Vespace ponctuel à

trois dimensions1. — Par un choix convenable des coordonnées

projectives x0: x±: x2: #3, les équations d'un cône irréductible du
second ordre K2 peuvent s'écrire sous la forme :

X0 — ^00 » X1 -- ' x2 — h ' X?> '2 »

où les paramètres l00: l±: l2 ne peuvent pas être nuls à la fois et sont
homogènes dans ce sens qu'un système de valeurs /00: lx: l2 est
équivalent à p2l00: p l±: pl2\ p ^ 0.

Les génératrices rectilignes ont des équations de la forme :

ai h + a2 l2 0 * W

Si ces coordonnées sont fonctions d'un paramètre t, les coordonnées

de Plùcker d'une tangente à K2, qui ne passe pas par le sommet,

se déduisent de la matrice:

/oo *1 'i h £

/00 ^ h ft h U H~ Ii h ^ ^2 I2

1 H. Staehelin, Die charakteristischen Zahlen analytischer Kurven auf dem Kegel
zweiter Ordnung und ihrer Studyschen Bildkurven. Thèse de doctorat. Bâle, 1924;
Math. Ann., 93; p. 218-19.
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On peut prendre comme paramètres des tangentes, les grandeurs

homogènes:

L, /, [ijt — Vi) >
' 2 '2 Ci '2 — Mil

L, ••>/„„ h — Ij'oo.f'4 2/oo"4 - 's'oo •

Elles satisfont aux relations:

L, : I., /, ; L, Lé - Ls L, 2 /00 (/, /'s - k (2>

On a donc la représentation paramétrique des tangentes:

X01 L, Lg X02 i(L, L4 + L2L3)

X23 L2 \'31 -2L,L2

Si l'on considère les paramètres L, comme les coordonnées homogènes

£0: £2: ?3 d'un point de l'espace, chaque tangente ne passant

pas par le sommet de K2 correspondra à un point. £q* £i* £2* £3

Lx: L2: L3: L4 et inversement.
Pour les génératrices, on a Lx 0 et L2 0; mais d après (1) et»

(2):

Lj : L2 /j ; /2 =r — a2 : oq el Eg : L4 bp : L> — *2 : ai •

Les points qui correspondent aux génératrices ont donc des

coordonnées de la forme :

?0 : 0 : 0 : - «2 : ai avec : m — a2 : ai *

Ces points sont situés sur la directrice d'une congruence parabolique :

-Ol — 0
' -12 -03 — ^ •

On montre facilement qu'un faisceau de tangentes se transforme en

une droite coupant la directrice de cette congruence; cette droite

n'appartient à la congruence que si le sommet du faisceau est un
point régulier du cône.

A chaque droite passant par le sommet de K2 correspondent 2

points de la directrice; ce sont les images des génératrices de contact
des plans tangents au cône menés par la droite; elles ne coïncident

que si la droite est une génératrice. La duplicité qui intervient dans la

représentation du complexe des tangentes à une qua,drique non
dégénérée1 se réduit ici aux tangentes passant par le sommet du cône,

1 E. Study. Ueber Lies Geometrie der Kreise und Kugeln, Math. Ann., 86.

H. Jobin, Sur une généralisation de la transformation de Lie. Thèse E.p.f., Zurich,
1920.

-%3 ^J2 b4
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et qui ne sont pas des génératrices. Si l'on exclut ces tangentes
singulières, il y a correspondance univoque et réciproque entre chaque
tangente et un point de l'espace ponctuel à 3 dimensions.

12. — H. Brandt (Aachen). — Théorie arithmétique des quaternions.

— L'auteur définit le concept d'un corps général de
quaternions et discute en particulier les corps dont la théorie se trouve
en connexion étroite avec la théorie de la composition des foi mes
quadratiques quaternaires. Un corps de cette espèce contient un
nombre infini de domaines maximum d'intégrité e, e', e", qui figurent
en même temps comme idéaux-unités. Pour chaque domaine comme
e, il y a des idéaux gauches et des idéaux droits, c'est-à-dire des
systèmes de quaternions a contenant la somme de tout couple de ses

éléments, et, en désignant par s chaque quaternion de e, également
£a, g«'... dans le premier cas et ae1 as dans le second cas. On

écrit, suivant le cas, l'équation ea a ou ae a, et on nomme e

l'idéal-unité gauche ou droit de a.
En considérant non seulement le domaine d'intégrité e mais encore

tous l'es autres e', e" et en cherchant pour chacun d'eux les idéaux
gauches et droits, on trouve chaque idéal exactement deux fois, une
fois comme idéal gauche et une fois comme idéal droit, mais en général
dans des domaines d'intégrité différents. En d'autres mots, chaque
idéal possède un idéal-unité gauche et un idéal-unité droit, tous deux
univoquement déterminés.

On peut définir pour les idéaux une opération de multiplication,
correspondante à celle des corps algébriques, et qui n'en diffère que

par la présence de certaines conditions indispensables pour l'existence
du produit. En effet, si nous désignons par a et b deux idéaux, on peut
former le produit ab — c lorsque l'idéal-unité droit de a et l'idéal-
unité gauche de b sont identiques. Dans les autres cas le produit
n'existe pas.

Cette multiplication des idéaux ainsi définie n'est pas commutative;

de ce qu'on peut, former ab il ne s'ensuit même pas l'existence
du produit ba. Par contre elle est associative.

L'ensemble de tous les idéaux du corps,, considéré au point de vue
de cette multiplication, constitue un aggrégat d'éléments semblable
mais- non pas identique à un groupe que j'appelle un groupoïde
(Mathematische Annalen, tome 96, p. 360).

De même que pour les corps algébriques, on peut définir la notion
de classes d'idéaux, contenant avec l'idéal a l'ensemble de tous les

idéaux pat7, où p et or désignent des quaternions quelconques. On

trouve alors une composition des classes analogue à celle des idéaux
mais plus simple: elles forment un groupoïde à un nombre fini
d'éléments.
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