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s R AT i T 2 PO e A FR

PROPRIETES ARITHMOFOCALES DE LA CGUBIQUE
DE WEIERSTRASS

PAR

‘E. Turritre (Montpellier).

1. — Soit une courbe quelconque (C), plane ou gauche; les
coordonnées (z, y, z) d’un point M de cette courbe sont des
fonctions d’un parameétre u. Soit I un des points de contact des
tangentes isotropes de la ‘courbe (coordonnées de I: z,, y,, %,
parametre u,). '

Sur la tangente isotrope considérée est pris un point F de
coordonnées xy, Yy, 2 '

’
x, = x, -+ )\JJO , ele.

La distance MF du point courant M de la courbe & ce point
F est une fonction de u définie par I’équation:

MF" = S(x — x,)? + QXSa:;(x — X,) 3

elle satisfait aux conditions:

MF =0 , %(ﬁFZ):O,

. . EVE L .
pour u = u,. L’équation MF = 0 admet u = u, comme racine
double.

Si d’autre part MP désigne la distance du méme point cou-
rant M & un plan ou une droite issue du point I, I’équation
MP = 0 admet u = u, comme racine simple.

MF\2 - . :
Le rapport <M—P> est donc, en général, une fonction de la

vartable u qui n’admet plus u, ni comme zéro, ni comme nfini.
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En particulier, en géométrie plane, un couple de point F et
de droite D issue de I est tout indiqué: le point réel F de la
tangente isotrope et la droite réelle D passant par le point
" imaginaire 1. Ce couple (F, D) généralise la notion de foyer
pliickérien, pour une courbe quelconque réelle ou 1maginaire,
algébrique ou transcendante. ‘

2. — Lorsque la courbe (CG), plane, est définie au moyen du

paramétre uzf%, par des formules r=f(u), y=1f(w,

au moyen d’une fonction f(u) et de sa dérivée, le point 1 est
donné par ’équation:
9 ”g

f.-o + f,o =0 ;
la tangente en ce point rencontre I'axe Oz au point d’abscisse:
X=Ff+f.

Si done ce point sur Oz est pris pour point F, avec la droite
associée D perpendiculaire menée de I sur Ox(z = f,), la fone-
tion considérée prend la forme suivante:

MEN: = =2 — )
<M‘f‘) n AR ’

sa limite, lorsque M tend vers I, est 1 -} (?) .

’
"Que I'on particularise alors la fonction f(u) en la prenant
égale a
flu) = cos mu ch mu |, au® 4+ 2bu + ¢ etc.,

et I'on retrouve par cette voie les propriétés focales des coniques
et autres courbes simples.

3. — Supposons maintenant que la fonction f(u) soit la -
fonction elliptique de WEIERSTRASS. . Les arguments u, des
points de contact de tangentes isotropes sont déterminés par
une équation du quatriéme degré seulement (il s’agit en effet
de mener des tangentes a la cubique de genre un par un point
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du plan, situé sur une tangente inflexionnelle: position qui
abaisse de deux unités le degré de I’équation). Cette équation est:

1 2
<6 12‘—"”2‘6’2) + 4Pi_g2pu—g3:0.

Par exemple, l’hypothéSe g, = —4, g5 = 16, donne les solu-
flons pu = =i, et les racines

— 1+ Y109
Pu = =

2 )
P’u =+ = \/1091 , P”u — zp’u ,
(3] - )

de - I'équation 9p> +p — 3 = 0." Aux racines réelles corres--
pondent deux droites D réelles perpendiculaires a l’axe de
symétrie et deux foyers F réels, situés sur cet axe, et d’abscisses
dépendant de Virrationnelle V/109. A la racine Puy=1,p uy = 41,
P uy = tpu,, correspondent le point F réel de coordonnées
(x = —4,y = 1) et la droite D d’équation y = 4x; cette droite
est déterminée par I’origine O et 1’arithmopoint (x =4, y = 16)
de la cubique de WerersTrAss. En combinant les signes dans
Puy = =1 et p'u, = = 4i, on trouve cette solution (F, D) et
sa symétrique par rapport & Oz. Pour le rapport

’

MF\' o p A (pr— 1)
(M—P> = (4p —p')?

il est nécessaire de multiplier les deux termes par (4p + p')2
Apres la suppression du facteur commun (p?u + 1)%, ce rapport
devient : ,
" /MF I 4P2u - 17pu — 4 8})’11

(W) % (pu-—4)° )

A un facteur constant. prés, cette expression est de la forme
P(¥ + a), o0t « est un argument constant.

Au point (4, — 16), symétrique, par rapport & I’axe, du point ‘
d’intersection de la cubique de WEeIERSTRASS avee la droite D,
cette fonction se présente, il est vrai, sous forme indéterminée.
Mais il est facile de trouver la vraie valeur soit analytiquement,
soit géométriquement.

4. — Reprenons I'étude de Péquation du quatriéme degré. La
parabole polaire d’un point & Pinfini dens la direction de coeffi-
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cient angulaire m, parabole d’équation 2my = 1242 — 82, coupe

la courbe du troisiéme degré en quatre points autres que le point

d’inflexion & l'infini. Soient u,, u,, ug, u, les arguments de ces

quatre.-points. Tout d’abord leur somme est nulle: 4 une période

preés:
111—{—u2+ug—|—u4:().

Avec de tels arguments la formule d’addition donne, si u; 7= u,,

P(ul + u,) = (Pul -+ Puz) [% (‘pu.r1 + puy) — ’1] .

et dans le cas de duplication d’argument:
l
P2“1 =~ QPul ,

1 m? 1
’ — 2 2 e . .
p 2u1. = — (hp u, 3m pu + : 5 ,,.2) .

En écrivant p(u, + u,) = p(uy + u,), par exemple, on obtient:

2

Pt -+~ pus -+ Pis -+ pta = _m(j )

condition satisfaite identiquement par les racines de I’équation
du quatriéme degré: remarque qui permet de vérifier I’égalité
u; + uy + ug + u, = 0. |

Dans le cas étudié dans ce travail, m =1, les formules de-
viennent :

P(u1 + uy) = — '(pul - P"2) [9 (Pu.1 -k pué) + 1], ' (v, £ u,)

: 1
P2u1 = - <2Pul -+ Z) )
, ‘ 1 1
P'Qul = l(ﬁ}ﬁu1 + 3})({1 + T :)—0) a

Les arguments —u;, —u, —us, —u, définissent alors les
quatre points de contact des tangentes de coefficient angulaire
— i, solutions de ’équation p”u -+ ip'u = 0.

Cela étant, si u, est une solution correspondant 4 une racine
réelle pu, de P’équation du quatriéme degré, celle-ci aura néces-
‘sairement une autre racine réelle puy; soit u, I’argument corres-
pondant. Les tangentes aux points u, et —u, passent respec-

o A SO R




(3]
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tivement par chacun des ombilics du plan; elles se coupent en
un point réel F; de ’axe de symétrie. La droite D, qui joint ces
points u, et —u, est réelle, perpendiculaire a l’axe. Dans ce
cas, 1l existe donc deux couples (F, D,), (F,D,) de foyers réels
et directrices réelles. Si les racines pu, et pu, sont réelles, la
courbe aura donc quatre foyers réels sur ’axe, associés & quatre
directrices réelles et perpendiculaires & I'axe et douze autres
couples imaginaires.

Pour un des ces couples réels correspondant & un argument
Uy, la formule générale donnant I’abscisse du foyer F devient
X = pu, + p"uy. La distance MF se présente sous la forme

? = (pu — Puo)“’ [apu + 8pu, + 1] ,

¢’est-a-dire
MF 2 .
<m) = 4(})11, —_ P?lao) :

ce rapport s’annule pour u = —2u,, point d’intersection de la
tangente isotrope en u, avec la cubique, pour une raison évi-
dente géométriquement. Cette formule s’écrit encore

F2 = MP2(4MP + 12pu, 4 1)

en mettant en évidence le cas pu, = —%, pour lequel elle se’
réduit a

MF®

(e

L’équation du quatriéme degré admet alors une racine double.

"y " 5. ¥ MF\2 , .
5. — Il a été noté précédemment que le rapport <iv—]§> était

une fonction de u n’admettant plus, en général, u = u, ni
comme pole ni comme zéro. Cela est vrai tant que ’équation
f, + ]‘m =0 n ‘est pas satisfaite par u = u,, devenue racine
triple de MF' = 0. Dans le cas des fonctions elliptiques, cette
équation,

P’u -+ P”’u = 0,

L 4 /.l .
est vérifiée par pu = — 13- 1 donc u, est un argument donnant
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cette valeur a la foncmon pu, avec p'u, = —I— z,p uy, le rapport
devient simplement:

Pour que cette circonstance se produise, il faut que, 'invariant
g, restant quelconque, I'invariant g, prenne la valeur:

I VRN 1
83 — Z<32 o ﬁ) ~ 9716 -
Alors:
' ] 1/1
Pito = — TR p”uo = ~2—(1—2 m—e 3‘2> ,

1 1
P"o -|~— P”uo - — E—(gz 4 1—2> .

L’équation du quatriéme degré, en outre de cette racine double,
admet deux autres racines dépendant de Péquation du second
degré: |

1 — J3g,

2__._._ S T /en
pru Pu+27><16_0'

Si donc ¢ désigne un nombre rationnel quelconque, les expres-
sions suivantes-des invariants

1 1
o e 42 — AT
= 62 4 105 = 6T + 5,

o2

5 1 1 .
o — 94 L D — o2 L Ly L
§o =Wt gl —gm =9+ 3T+ o,
A = — 27T3(8IT - 1) = 31,27

: , : - 1
ou T désigne pour abréger les calculs I’expression T = 2 — T

assurent Dexistence de racines simples et rationnelles. Il suffit
de prendre:
S t
P“3=t+§'€;’ p”u3:§(1—|—9t);

4 1 A
X3:3t2+—3—t+§—6, 1—!—12})113:;%(1..*_95),
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pour avoir les solutions u, = u, = u,, u, et u,, avec des arithmo-
foyers et arithmodirectrices. |
s ' 1 . . ] .
La racine pu, = — ;5 peut d’ailleurs “devenir triple, avec

: 1 . C s
T = 0; 1l suffit de prendre ¢t = o+ La cubique dégénére alors

en une cubique unicursale.

6. — Application au probléme des arithmodistances. — J'ai
autrefols, dans mes publications sur les Notions d’arithmo-
géométriel, défini le probléme des arithmodistances pour une
courbe (C) unicursale donnée et pour un arithmopoint F donné:
il s’agit de déterminer, par une équation de 1’analyse indéter-
minée, ceux des arithmopoints M de la courbe (C) qui sont situés
a une distance rationnelle MF du point F.

Les formules ci-dessus vont maintenant permettre de
traiter le cas ou la courbe est la cubique de WEIERSTRASS de
genre un. Si, en effet, 'arithmopoint imposé F est un foyer
réel, pris sur axe de symétrie Oz, et associé aux tangentes
1sotropes aux points d’argument u, et —u,, le probléme des
arithmodistances se réduit & ’étude de’équation pu — p2u,=[].
Il parait & premiére vue compliqué, et devant conduire & une
équation de FERMAT unique mais du sixiéme degré. En fait,
c’est ainsi que se pose la question en toute rigueur. Mais par
suite de circonstances spéciales et comme conséquence d’une
propriété des fonctions elliptiques, il est possible de donner de
la question une solution trés simple, présentant d’autre part une
généralité exceptionnelle pour ce genre de problémes de ’ana-
lyse indéterminée. _

Tout d’abord si ¢ est une racine de équation p'u = 0, avec
¢ = pw, » ctant une demi-période, la condition pour que la
quantité — 2pu, ——% soit égale a e se traduit (apres I’élimination
de g;) par une équation entre e et g,, qui est du second degré
en g,, dont le discriminant est identiquement nul. C’est qu’alors
la solution u, correspond a I’hypothése P'2uy, = 0; d’aprés
Pexpression générale de p'2u,, il vient:

I 2 . 1. ., 3 ]
-02—12P“0+6P"0+§—3e —é—e—m,

1 L’Enseignement mathématique, X VIITe année, 1916, p. 107 et 400; XIXe année,
1917, p. 170 et p. 252; XXeannée, 1919, p. 161. ’
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puis (A étant le discriminant de la fonction elliptique):

3 1 1/, 1 1\*
0  — 2 e . _— — _
Dg_e(e +2.e+16>, & = 2(3e+8><3e—|—4>,
avec A |
e :p?uo = — QPuO—/— X -
t
' 1 e 14 7 b & r 14
Pour ¢ = —z, A =0 et la cubique dégénére comme il a ét6
dit. De méme la valeur e = — 57 conduit & une cubique unicursale

avec g, = 3e?, g; = ¢€3. Il suffit donc de prendre e arbitrairement

e v L. o 1 1
égal & un nombre rationnel quelconque, autre que —gr et —55, .

pour que les formules ci-dessus définissent une cubique de
genre un, admettant le sommet (z = e, y = 0) pour foyer F,
associé & la tangente au sommet comme directrice. La relation

focale devient
MF\2 '

St donc ¢ désigne 'argument d’un arithmopoint quelconque
de cette cubique, I’expression \/p20——— e est rationnelle et, par
suite, le probléme des arithmodistances pour cette cubique de
WEIERSTRASS et pour son sommet-foyer ¥ est résolu en prenant
u égal a tout multiple entier de largument 2v.

En outre, comme pu, est rationnel pour un argument u, égal
a un quart de période, la constante a de la formule d’addition
d’une demi-période,

[ple + o) —e].[pu — €] = a = 3¢’ —7; ;
est nécessairement le carré d’un nombre rationnel:
— 1 1
Vo = (puo — €) :i§(3e+—4—> :

Par suite, si pu—pw est carré parfait, il en est de méme de
P(u + w) — pw, avec ce choix spécial d’invariants. Si M est
alors un arithmopoint de la courbe, solution du probléme des
arithmodistances, la droite FM rencontre la courbe en un nou-
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veau point M’ également solution du probléme. Entre ces deux

.solutions existe la relation:

MF  M'F 1
MP MNP 6.<e + E‘z‘) ‘

Siu et ¢ sont deux solutions du probléme des arithmodistances,
il en est de méme de la somme ou de la différence u =+ ¢, comme
conséquence de la formule d’addition mise sous la forme:

- Vi u—e)(pv—e,)( «'—93)—-—\/( v—e ) u—eé)( “w—e,)
Vi e = R Vel

7.— La formule focale trouvée étant de la forme f(MF, MP) =0

entraine des conséquences géométriques. Elle permet de cons-
truire géométriquement la normale a la cubique de WEeIER-
STRASS, puisqu’elle rentre dans la classe des équations en coor-
données bipolaires.

A ce propos, la trace de la normale du point u sur I’axe ayant
pour abscisse pu 4+ p”u, parmi les normales issues d’un foyer F
se trouvent les droites isotropes. Les deux autres normales,
issues de F, sont définies par équation pu = —pu, ——é

St (F, D) et (F'D’) représentent deux couples de foyers sur
'axe et de directrices droites, la relation entre MF et MD en-

traine la relation
MF\?2 MF”\2
W —_ M—P7> — const{ .

Je n’insiste pas sur ces questions relatives aux propriétés

“des deux ou quatre foyers réels sur ’axe et de leurs directrices

associées.

Les foyers en dehors de ’axe et les directrices obliques don-
nent lieu & des formules analogues, qu’il est possible de déduire
aisément de la théorie des fonctions doublement périodiques et
de leur décomposition en produits de facteurs g(u—a). Je
reviendrai prochainement sur cette question.

I’Enseignement mathém., 25e année; 1926,
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