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d’un certain argument constant w:
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L’tQuaTioN py? = 2% -+ a.

7. — Soient a et p deux nombres rationnels donnés et soit
(2 ¥o) une solution primitive de I’équation indéterminée

vy? = at + a .
- Cette solution .particuliére peut étre rejetée a linfini par la

transformation homographique

Hy,,

x = x, + — Yy =19y,.Y,

qui transforme ’équation considérée en ’équation suivante de
FERMAT:

(ng)g _ x4 + 4.733X3 + 6y a.zyzx I 4{;.2.7r0y:x —+ [Lsyz .
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Les formules de représentation des solutions au moyen des
fonctions elliptiques sont:

4
& =ap'y,, g =0;
py = — aar§ , P’v = awo((( — ) , ‘

p” ¢ = — —fl;a(arz — 10a.v: -+ a2) ;

‘u —1p’y | I
X—l—x-s:i.J—)——‘pi, Y:—i—ﬂ[})(u-{—v)——Pn].
0 2 pe — pv — XEFh
8. Généralisation de Iéquation de Diophante. — Les résultats

ci-dessus trouvent leur application immédiate dans la résolu-
tion, & partir d’une solution primitive, des équations indéter-
minées du type |

py? = a* 4 2t L ot

¢ €tant un nombre rationnel donné. Par exemple, dans le cas
(. = 3), la solution de
3y? = at 4 =t 4 4

résulte de la connaissance de la solution primitive (1, 1, 1, 1):
en prenant donc

&= 2 g8 — 18 | Vg3:0,~ X, =1, Hy =1 ,
pv:—?, p'v:—?, -P”s':15,
la solution' u = ¢ donne a la limite:
/I‘, ]
X41=20" x_ 1 x =
2 P'v 4 11.
d’ou ‘ o
S28% 4 114 4+ 114 = 3.(3.107)2
on aurait ensuite
17\2 4879
PQV = (-—4—> , p’?v = 1§; , ete. ..
9. L’équation 2y% = x* + 7% 44, — Parmi les équations qui

viennent d’étre traitées d’une manieére genérale, celle qui corres-
pond au cas p = 2 (trouver trois nombres dont la somme des
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bicarrés soit le double d’un carré) est particuliérement intéres-
sante: une solution primitive dépendant d’un paramétre arbi-
traire est en effet connue. Si trois nombres rationnels alge-

briques ont leur somme nulle, la somme de leurs bicarrés est

toujours le double d’un carré; cela résulte de l'identité alge-
brique:
Ayt ()t =20+ wy 90

Si donc b et ¢ sont deux nombres rationnels quelconques,
I’équation | .
29 = a* + b* + ¢t . (@ = b* + ¢*) ,
admet toujours la solution primitive

X, = b 4 ¢, Yy, = b2 4 bec + ¢,
comme le justifient en particulier les égalités:

14 4 14 4 24 = 2,32,
14 4 9% L 3t = 2,72, -ele. ..

Alors '
g, = 4a(b? + be 4 ¢?)*(b* 4 ) g =0,
pr = — (b* 4+ ¢*) (b +¢)? ,
P’v = — 2bc(b + ¢) (b* + ¢* (2/)2' + 3bc + 2¢%) ;

la solution limite pour u = ¢ est en particulier:

X — —

8 4 2 ¢
.xo—}—Saxo——a Y:PZV——PV‘
21’0(174— a) -Xe

Parmi les solutions simples de cette équation, sont & signaler
les suivantes (avec des nombres tels qu’aucun d’eux ne soit
somme des deux autres):

14 34 4 10* = 2,712,

74 4 74 4 124 = 2.1182
234 4 464 + 121* = 2.(10 467)2 ,
264 - 2394 + 2894 = 2,(57.123) ,




	L'équation $\mu y^2 = x^4 + a $.

