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d'un certain argument constant
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L'équation yx4 +

7- — Soient aet ydeux nombres rationnels donnés et soit
(•<o I/o) lln(> solution primitive de l'équation indéterminée

[).y2 x* a

Cette solution .particulière peut être rejetée à l'infini par la
transformation homographique

2
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qui transforme l'équation considérée en l'équation suivante de
Fermât:

(YX*)2 X4 + 4.x'8Xs + 6,,>2X + 4|j.2X + ^ •
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Les formules de représentation des solutions au moyen des
fonctions elliptiques sont:

ft av*y* ft, 0 :
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8. Généralisation de Véquation de Diophante. — Les résultats
ci-dessus trouvent leur application immédiate dans la résolution,

à partir d'une solution primitive, des équations indéterminées

du type
py2 x4 + z4 + t4

p. étant un nombre rationnel donné. Par exemple, dans le cas
(y 3), la solution de

3y2 s= X4 -f- Z4 -f- t4

résulte de la connaissance de la solution primitive (1, 1, 1, 1);
en prenant donc

* 2, g2 is .*3 0,.. *0 i, Vo i
pi' — 2 pV __ 2 p'V — 15

la solution u e donne à la limite:

x + i i Z_!_
> x — X ~~2 p'p 4 ' '

d'où
•234 -f 114 -f 114 __ 3 ^3 iQ7)2

on aurait ensuite

9. Uéquation 2y* x* + z* + tL - Parmi les équations quiviennent d etre traitées d'une manière générale, celle qui correspond
au cas ix 2 (trouver trois nombres dont la somme des
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bicarrés soit le double d'un carré) est particulièrement intéressante:

une solution primitive dépendant d'un paramètre
arbitraire est en effet connue. Si trois nombres rationnels
algébriques ont leur somme nulle, la somme de leurs bicarrés est

toujours le double d'un carré; cela résulte de l'identité
algébrique :

'*'4 + y* + {x 4- yY 2 (x2 + xy + y2)2

Si donc b et c sont deux nombres rationnels quelconques,

l'équation
2y2 x4 -j- + c* (a =z b4 -j- c4)

admet toujours la solution primitive

jr0 b + c y0 b2 + bc + c2

comme le justifient en particulier les égalités:

14 _j_ 14 24 z= 2.32

14 _j_ 24 -f- 34 2.72 etc.

Alors :

£2_= U(b2 + bc + + c4) g* 0

pe — (bA + c4) (b + c)2

pV — — 2bc(b -j- c) (fc4 + c4) (2/>2 + 3bc -f 2c2) ;

la solution limite pour u c est en particulier:

#8 -}- 8##4 — a2 p2e — pe
v o

1

o v — £_ £x- s,.' - x2

Parmi les solutions simples de cette équation, sont à signaler

les suivantes (avec des nombres tels qu'aucun d'eux ne soit

somme des deux autres):

i*+ 34 + 104 2.712

-ji_|_74 4- 124 2.1132

234 + 464 + 1214 2. (10 467)2

264 + 2394 -f- 2394 2.(57/l23)2
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