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UN PROBLÈME DE DIOPHANTE

Si donc nous posons toujours

p'2a 4pw(p2tt — g2) t

2 03

avec la valeur spécifiée ci-dessus de l'invariant g2 en fonction
entière de J4, les formules de correspondance avec le problème
de Diophante sont maintenant:

y 1 — t2
> z 1 4- t2

Parmi les solutions, celle de Diophante est

La solution correspondante de l'équation de la fonction de

Weierstrass est:

p^ — 212 y a — + 2/(/4 — 1)

à remarquer la présence du facteur octaédrique ts + 14£4 + 1.

Pour t 2, ces formules donnent g2 706 2 X 353,

p" — 3 y u — 60

130 111 X 481

23.33.53

d'où la solution x —

donnée.

130 ni
y — 3, z 5 antérieurement23.3.5.481 '

Sur certains triangles arithmogéométriques.

6. — La question précédente pose la recherche des triangles
tels que la somme des quatrièmes puissances de- deux de leurs côtés
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etde lahauteur issue du sommet qu'ils définissent soit un carré
parfait.

Tout arithmotriangle pythagorique est de cette nature. Il en
est de même de tout arithmotriangle héronien tel que les deux
bissectrices intérieure et extérieure issues d'un même sommet

soient égales. Ces triangles, définis par la condition C — B ^,
se construisent simplement au moyen' des triangles rectangles.
Ils peuvent être arithmogéométriquement représentés par les
formules :

A — — 2 6 a cos 26

B — 6 I» z: sin 6

G — -f- 2 6 c — cos 6

2R 1 S i sin 40 ;
O

de même que pour les triangles pythagoriques, cette surface S
ne saurait être mesurée par un nombre carré parfait. Les deux

bissectrices des angles en A ont pour longueur commune —sin 2ö*

Les bissectrices intérieure et extérieure issues du sommet B
ont pour longueurs respectives

cos6.cos26 cos 6.cos 26
3

et
3

;

cos —6 sin —6

elles peuvent être mesurées rationnellement (pour tangue
rationnel). En aucun cas, il ne peut en être de même des bissectrices
égales issues de A ni de celles des angles en C.

La solution du problème arithmogéométrique posé est difficile ;

mais son étude met en évidence une équation intéressante. En
exprimant que b*+ c+ A* on obtient en effet l'équation

de Fermât:

X*+ 2 Tin'^A + 4-u0,SA-'r + 1

ou encore
(x2 — l)2 -j- 2x cotg A {x cotg A -f- 2) y2



UN PROBLÈME DE 205

où x s= ^. Cette équation admet les solutions évidentes

x 0 00, — 2 tang A i coig A (cotg2 A - 2)

quelle que soit la valeur rationnelle de tang A. En outre elle est

satisfaite identiquement pour A. (c'est le cas des triangles

rectangles); pour B — C x~ cotg A est solution (triangle
à bissectrices égales, issues de A).

En posant cotg A y, l'équation devient

î/2 (x2 — l)2 -f 2yx(y.r + 2) ;

elle permet d'étudier les triangles jouissant de la propriété
indiquée que b-j- c-j-haestle carré d'un nombre rationnel,

pour des valeurs rationnelles de ^ et de tang A. Les formules
de réduction aux fonctions elliptiques sont:

i P'« — p'"* — 2 p« -p,
• ± y + ") - p *2 + - 2F

g-2 —1 4- 3ß2 — ~(t4 _ 2Y2 + 4) > 0

Su('- + 2ß + ß3) — ^ (y6 — 3 y4 + 21 y2 -f 8) <[ 0

A — f(f - 2 y4 + 1.1 y2 + 16) < 0 ;

vétant un argument constant défini par les équations concordantes:

F - ß pv y p'V _ 2)

J>2" ^(3Y6 — 12y4 + 44y2 - 32)

<P'2i' ~~ ~~ 6?8 + 28^4 — 56f + 64)

on obtient les solutions suivantes, relativement simples pour ce
genre de questions, et qui peuvent être exprimées au moyen
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d'un certain argument constant

P2"' |(2T2 + P'2«' - t(1 +

„W 11T6 + 20ï4 - 20T2 ~ 32

f 48 (y2 + l)2

p('" ~i)=i(y2 +2> • p'('" - J) t • ]>"("

p('" + ï) i<>2 ~4> • p'("' + J) - t 2 T2 -

p L—lP)= T4~4T2+ 24 _ 4T2 + 16

1 2 6 y2 ' P - ^5 '

-L
3 .A - r6 - 2T* + 20Y2 + 8 2y4 — 3y2 + 8

'\ 2 / 6(y2 — 2)2 ' P —
(2 — Y

'

P(2"' -<•) - ^(y2 + S),p' iT3
-

p I2w+ «,1 - ~ t+ 4ÎS ±_12 -, _ Y6-2T4 + 4t2 + 8
<rv ^ ' 12Y2 ' P — 4f '

n(4„. _ -2,1
11 y8 + 16r6 + 56Y4 + 768Y2 + 768

y ' 48 y6

t Jhw —l\—T4 + 20y2 + 24 _ &T4 + 20y2 + 16

r\ l) ~ 6y2 ' P —
y3

'

L'équation yx4 +

7- — Soient aet ydeux nombres rationnels donnés et soit
(•<o I/o) lln(> solution primitive de l'équation indéterminée

[).y2 x* a

Cette solution .particulière peut être rejetée à l'infini par la
transformation homographique

2

[j.y
* «« + Y >

qui transforme l'équation considérée en l'équation suivante de
Fermât:

(YX*)2 X4 + 4.x'8Xs + 6,,>2X + 4|j.2X + ^ •
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