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UN PROBLEME DE DIOPHANTE

Si -donc nous posons toujours

P’2u — épzt(P2zt — &)

avec la valeur spécifiée ci-dessus de l'invariant g, en fonction
entiere de t4, les formules de correspondance avec le probleme
‘de DiorHANTE sont maintenant:

p’u
—t U:x?——QJ)u,

plt

y:’l—tz,

X
=14 .

Parmi les solutions, celle de DIoPHANTE est

iU e ol B R

442

X = a;

La solution correspondante de I’équation de la fonction de

WEIERSTRASS est:

pu = — 22, P’u = = 2(*—1) ,
g g, (1 + 22
p(u + w,) = §t2'~’ , p’(u + 0,) = + 22 o ) ,
8 4+ 14t 1

84 14t 1 '
P’Qu - T 32—;(14 —-{1-,3 (t1¢ — 36412 — 18612 — 36¢* + 1) ;

a remarquer la présence du facteur octaédrique 8 - 1414 + 1.
Pour ¢ = 2, ces formules donnent g, = 706 = 2 X 353,

A}]u:——S, P’u:GO,

) 481\2 130 111 >< 481
9,y 1Yy, — -
p=t (’120) ’ P =2 28 .3%.58

Lot 1 luti 130111 : o
ou la solution T = 55535 781> y =3, z=>5 antérieurement

donnée.

SUR CERTAINS TRIANGLES ARITHMOGEOMETRIQUES.

6. — La question précédente pose la recherche des triangles
tels que la somme des quatriémes puissances de deux de leurs cétés
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et de la hauteur issue du sommet qu’ils définissent soit un carré
parfait. ’ ' |

Tout arithmotriangle pythagorique est de cette nature. Il en
est de méme de tout arithmotriangle héronien tel que les deux
bissectrices intérieure et extérieure issues d’'un méme sommet

z
2
se construisent simplement au moyen des triangles rectangles.
Ils peuvent étre arithmogéométriquement représentés par les
formules: |

sotent égales. Ces triangles, définis par la condition C — B =

T

A:E-——QO, a = cos 20 ,

B—¢, b = sinf ,
W -

C:—2~—|~—20, ¢ — cosf .

2R = 1, S:§Sll]/t6;

de méme que pour les triangles pythagoriques, cette surface S
ne saurait étre mesurée par un nombre carré parfait. Les deux
bissectrices des angles en A ont pour longueur commune VT sin, 26.
Les bissectrices intérieure et extérieure issues du sommet B

ont pour longueurs respectives

cos 6.cos 20 . cos 6.cos 20
" )

. ’

cos 5 sin 56

| A . . 1 ,
elles peuvent étre mesurées rationnellement (pour tang -6 ra-

tionnel). En aucun cas, il ne peut en étre de méme des bissectrices
égales issues de A ni de celles des angles en C.

La solution du probléme arithmogéométrique posé est difficile;
mais son étude met en évidence une équation intéressante. En
exprimant que b 4 ¢ -+ hg = [], on obtient en effet Péqua-
tion de Fermat:

p .Acos2A2 - 1 — o2
x+2sin2Ax + 4d.cotgA.x + 1 = 4% .

ou encore )
(x® — 1) + 2x cotg A (x cotg A + 2) = ¢ ,
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ol z = % Cette équation admet les solutions évidentes
L %

2 cotg A 1
a
1

cotg A (cotg?A — 2) ,

xr =0, o — 2tang A | 2 cotg?A

quelle que soit la valeur rationnelle de tang A. En outre elle est

satisfaite identiquement pour A :%' (c’est le cas des triangles

rectangles); pour B — C = '23, P == ~£— cotg A est solution (triangle

-

a bissectrices égales, issues de A).
En posant cotg A = 5, équation devient

Yy = (2 — 1)? 4 2vya(yx + 2) ;

elle permet d’étudier les triangles jouissant de la propriété
indiquée que i + kg est le carré d’un nombre rationnel,
pour des valeurs rationnelles de %‘—’ et de tang A. Les formules

de réduction aux fonctions elliptiques sont:

x:i}u j:y:P(u—}—v)—-—PlL:x?—{—S——'ZPu,

Q'Pu—})" ’
1
N = (2
b= 1)
9 N2 1 1 2y?
% =14 33 ==+ a>0,
1

S =~ +2WB+F) = -5 =3y 42084 8) <0,
A== (" =2y Uy 1 16) <0

¢ étant un argument constant défini par les équations concor-
dantes:

o) / I’ 1 3 §
pro==8 pv=vs pv= g —2),
. 1 |
P2 = 5 By" — 124 + 44y® — 32)
1 .
P2 = — vyt — 67 + 28y% — 56y 4 64) |

on obtient les solutions suivantes, relativement simples pour ce
genre de questions, et qui peuvent étre exprimées au moyen
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d’un certain argument constant w:

, 1
pre = 5@ 41,  pw=—y1 4+,

o — 11v% 4 20y* — 20¢2 — .32
P '_ 48 (y2 + 1)2 ’

v 1 v y
p( - 5) =sr+2., P( “‘2-) = P"(w—-—) =1,
19 — 1 9 4 , ¢ " 5
pwTg)=s0=%9. ple+tg)=—y, p=2-1y,
3 Yt b4y 4 24 , vt — 4y? 4 16
p<(v —_— —2—(1) —_ 6‘Y2 9 P == — \"3 .
, ~3ﬂ’ Yt — 2y 4 2042 4 8 , 2yt —3y% - 8
p(“ + 2‘) - 6(y* — 2)° ' 2=
(2((!———;!):—-1_(Y2_|_8) /__13
P 12 S e .
) _—*{4+4Y2-{—12 _YG""2Y4+!*Y2+8
P(?u +v) = 1952 ' p; — T ,
8 6 6t L TRR2
P(['“" — %) = 11¢% + 164% + 564 768y% + 768 ’
486
p(sw —2) = X200+ 0 5yt 4 2097 416
2 6‘Y2 ’ P Y3

L’tQuaTioN py? = 2% -+ a.

7. — Soient a et p deux nombres rationnels donnés et soit
(2 ¥o) une solution primitive de I’équation indéterminée

vy? = at + a .
- Cette solution .particuliére peut étre rejetée a linfini par la

transformation homographique

Hy,,

x = x, + — Yy =19y,.Y,

qui transforme ’équation considérée en ’équation suivante de
FERMAT:

(ng)g _ x4 + 4.733X3 + 6y a.zyzx I 4{;.2.7r0y:x —+ [Lsyz .
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