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202 "E. TURRIERE

En prenant maintenant r de la forme spéciale r = sin 6 cos ¢
(avec tangéa rationnel), 'invariant g, est précisément égal &
sinfe -+ cost6 et les formules précédentes s’appliquent au
premier cas qui se pose dans ’étude générale du probléme de
Diophante, sous le point de vue méine qui a été exposé sur des
exemples numériques. |
9
contient la solution d’un probléme célébre. Ce cas ne rentre
pas dans celui des équations associées au probléme de Dio-
PHANTE, car la relation 2 sins cos ¢ = 1 exprime que Daire de
Parithmotriangle pythagorique est carré parfait, ce qui est

Ce méme type d’équation, mais avec I’hypothése r — .

impossible (FErmaT). Mais alors I’équation avec gs :% 3 =0,

n’est autre que celle des triangles pythagoriques dont U hypoténuse
est carré parfait, ainsi que la somme ou la différence des cétés de
Pangle droit et des diverses équations indéterminées qui ont
eté rattachées par EULER, LAGRANGE, etc., & ce probléme (voir
Les orvgines d’un probléme inédit de E. Torricelli, dans I’ Enseigne-
ment mathématique de juin 1919, t. XX, p. 245-268) 1,

ForMULES PoUR g, = 2(88 + 614+ 1), g5 = O.

5. — Un second cas & traiter est celui ou g, est égal a
8y = sin®f 4 sin*6 cos ou cos*f -4 sint cos 46 ;
par une transformation immeédiate, il est réductible a
‘ g, = 1 + cos*f ou 1 4 sin*§ .

Nous prendrons:
S =1 — P+ (1 4+ )% = 208+ 604 + 1) ,
: o 1
t est un nombre rationnel arbitraire; t = tang 5 6. Les fonc-

tions pu et p’'u ont été multipliées par les facteurs

t+er 0 +oe

AT 813

1 Je profite de I’occasion pour signaler que, sur la méme question et en méme temps
que mon travail, paraissait un mémoire de M. Michele CiporLLA: I triangoli di Fermat
e un problema di Torricelli, dans les Atti dell’ Accademio Gioenia di scienze naturali in
Catania, V™me série, vol. XI, mémoire XI, 1° maggio 1919.
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UN PROBLEME DE DIOPHANTE

Si -donc nous posons toujours

P’2u — épzt(P2zt — &)

avec la valeur spécifiée ci-dessus de l'invariant g, en fonction
entiere de t4, les formules de correspondance avec le probleme
‘de DiorHANTE sont maintenant:

p’u
—t U:x?——QJ)u,

plt

y:’l—tz,

X
=14 .

Parmi les solutions, celle de DIoPHANTE est

iU e ol B R

442

X = a;

La solution correspondante de I’équation de la fonction de

WEIERSTRASS est:

pu = — 22, P’u = = 2(*—1) ,
g g, (1 + 22
p(u + w,) = §t2'~’ , p’(u + 0,) = + 22 o ) ,
8 4+ 14t 1

84 14t 1 '
P’Qu - T 32—;(14 —-{1-,3 (t1¢ — 36412 — 18612 — 36¢* + 1) ;

a remarquer la présence du facteur octaédrique 8 - 1414 + 1.
Pour ¢ = 2, ces formules donnent g, = 706 = 2 X 353,

A}]u:——S, P’u:GO,

) 481\2 130 111 >< 481
9,y 1Yy, — -
p=t (’120) ’ P =2 28 .3%.58

Lot 1 luti 130111 : o
ou la solution T = 55535 781> y =3, z=>5 antérieurement

donnée.

SUR CERTAINS TRIANGLES ARITHMOGEOMETRIQUES.

6. — La question précédente pose la recherche des triangles
tels que la somme des quatriémes puissances de deux de leurs cétés
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