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196 E. TURR1È

On peut donc écrire la formule suivante, analogue à celle
d'HALPHEN:

Pn étant un polynome en bdéfini par les équations (9). On en
déduit, en particulier, la formule

d2n _ ^i±i
— (X*+ 1) * =(«« + 2 [1.3... (2« - 1)]»

Signalons enfin la relation de récurrence

(n-a) („ _ 2 a +i)II„+1 n(n+ 1 - 4(« - «)2 + n„_,

+ (2« — 2 a+ 1) [2 (n—a)+ I - ab]Yln ;

comme la relation (6), cette relation n'est valable que si et
sont supposés indépendants de n.

SOLUTION D'UN PROBLÈME DE DIOPHANTE

en nombres indéterminés, et les formules elliptiques, avec les
notations de Weierstrass, permettant d'en obtenir des
solutions dépendant de paramètres arbitraires. Il fait suite aux
divers articles sur l'arithmogéométrie publiés dans YEnseignement

mathématique de 1915 à 1919 (t. XVII, p. 315; XVIII, p. 81;
p. 397 ; XIX, p. 159; p. 233; XX, p. 161 et p. 245). Il se rattache
à un mémoire sur les équations indéterminées de Fermât du
Bulletin de la Société mathématique de France (sous presse).

tl -J- 1

PH(rs + 1)
2~ e2> arc tg .»:

PAR

Ë. Turrière (Montpellier).

Ce travail concerne l'équation de Diophante,

+ y4 + Z4 U2
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Le problème de Diophante.

1. L'objet de la trente-deuxième proposition du Ve livre de

l'Arithmétique de Diophante d'Alexandrie est de trouver trois
bicarrés dont la somme soit un carré parfait. Il s'agit donc de
résoudre en nombre rationnels l'équation indéterminée:

+ 2/4 + s4 — U2

(la résolution en entiers en découlant). L'exemple donné par
Diophante est celui des nombres'

x —
12

_

Quelques réflexions viennent à l'esprit, à l'énoncé même de
cette question vraiment inattendue dans cet ouvrage. Diophante
vient de traiter, en effet, (Ve livre, problèmes 18 et 19) le cas de
l'équation

X8 _j_ yz _j_ ss 3 _ u2 ;

mais il passe sous silence les équations :

X4 + 2/4 U2

x4 — yA — U2

X3 + y* U2

/
X'3 + y3 -f r.3 U2 :

les deux premières sont impossibles; la troisième et la quatrième
sont possibles. C'est l'observation consignée par Fermât à
propos du problème V, 32 : « Cur autem non quaerat duo qua-
« dratoquadratos quorum summa sit quadratus Sane haec
« questio est impossibilis, ut nostra demonstrandi methodus
« potest haud dubie expedire ». g:

Ainsi donc, alors que la moindre allusion ne se trouve faite
à des équations plus simples de forme, Diophante soulève
brusquement la question de la remarquable équation

•x4 + y4 H- *4 u2

et son analyse même, si elle ne fournit pas la solution générale,
a le double mérite et d'une certaine généralité et d'une profonde
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signification arithmogéométrique. La méthode du mathématicien
d Alexandrie est extrêmement curieuse \ elle consiste à

prendre y et z égaux aux cathètes d'un arithmotriangJe pytha-
gorique quelconque, puis à poser

* yz

Vînt? '

en d'autres termes, puisque la relation précédente n'est autre
que celle,

1 - 1 + iX-2 ~~~
Î/2 32 '

qui relie la hauteur relative à l'hypoténuse aux deux côtés de
1 angle droit, la solution donnée par Diophante est constituée
par les trois hauteurs d'un arithmotriangle pythagorique
quelconque.

Cette solution dépend non seulement du paramètre d'intérêt
secondaire de similitude, mais aussi du paramètre caractéristique
de la forme- même du triangle. En introduisant la représentation
arithmotrigonométrique (c'est-à-dire en prenant pour
paramètre l'angle 9 tel que tang-0 soit un nombre rationnel et
arbitraire), à un facteur près de similitude, cette solution s'écrit
sous la forme suivante:

y sind ; - cos 0

& s*n > U — 1 — sin2 ô cos2 ô

comme cela résulte de l'identité:

s»«4 0 + cos4 9 + sin4 9 cos4 9 (1 — si»2 9 cos2 0)2

C'est ainsi qu'après ftt solution

or=12 y15 z 20 U 481

de Diophante, il est possible de former toute une série de
solutions relativement simples respectivement attachées aux
triangles pythagoriques, par exemple:

« 60 y — 65 s 156
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2. Pour résoudre ce problème, une méthode simple consiste
à le rattacher aux équations de Fermât:

X X* + a

Paitons, en effet, d une solution connue: elle est, par exemple,
une de celles fournies par la considération des triangles pytha-
goriques. C'est ainsi qu'en prenant pour a la valeur

a 124 + 204 29.353

l'équation ci-dessus est vérifiée par 15, 481. La
solution générale de cette équation indéterminée de Fermât est:

1 P'" V2u + Jayx —2 j>« fu
V"2 "f" - &J>» - s» • « • S, 0 ;

la cubique normale est harmonique. En outre, d'après la
formation même de l'équation considérée, g2 est positif mais non
carré parfait (puisque la somme de deux bicarrés n'est jamais
égale à un carré). L'équation p'w 0 a donc ses trois racines
réelles; mais seule la racine e2 P&>2 0 «a) est rationnelle,

ce qui écarte pour l'application arithmétique, un certain
nombre de formules utiles de la théorie des fonctions de Weier-
strass. De toute racine connue, on déduira immédiatement
u + û>3, 2w, 3m, etc... par des formules auxquelles le caractère
harmonique de la cubique normale apporte des simplifications
appréciables pour la rapidité des calculs. Le théorème d'addition
pei mettra ensuite, deux solutions quelconques m et étant
acquises, de former de nouvelles solutions e, etc... :

i
J)(« + CO,)

t

fU

2Vp2«r/ i \2 -,
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La solution primitive p^ est déterminée au moyen de la solution

considérée du problème de Diophante. Les formules de

eorrespondance,
p'11

2x — + U x2 — 2 t) ur r
donnent :

1

P« —'(x2 ±: U) yu •= 2x.yu

d'où deux valeurs distinctes de pw; leur produit est identique-
1

ment égal à —g2: la somme ou la différence des arguments

est donc égale à la demi-période réelle &>2. En fait, aux périodes
près, sont connues initialement quatre solutions, correspondant
à quatre points de la cubique. L'un des arguments étant w,

les autres sont — w, u + w2 et «2 — u.

Dans le cas g2 29.353, g3 0, la connaissance de x= 15,
U 481, donne donc:

P« 353 yu — 10-590 p"u — 2.353.931

y(u -j- w2) — — 128 p'(« + fc>2) 3-840 p"(u + oj2) rr 28.31

/481 \2 481 x 130 111
J>2" ("äöj ' V2"2».a».s» '

•

„ 29.32.52.353
p(2 u + w2) ^ ;

d'où la nouvelle solution du problème de Diophante:

130*111

2.3.5.481
12 z 20

3. — La connaissance d'une solution quelconque (x, ?/., z)

du problème de Diophante permet de lui associer trois équations
de Weierstrass distinctes, chacune de celles-ci ayant une solution

connue; à la solution même de Diophante sont ainsi
associées les trois équations avec g3 0 et les valeurs respectives

de g2 suivantes:

g, 2».353 X =Z 15 (ï)

g, 34.881 x 20 (II)

54.337 h il tO (III)
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Dans le cas de l'équation II, les valeurs x — 20, U 81.881

conduisent à
81 r -y - P'" ~20-8i '

881
p(« + (08) — p'(" + «s) 20.881

/481\» „ 481 x 88-639
P2" - («r) • P 2" —405—

d'où la solution

~
80.481 *

Enfin dans le IIIe cas,

88-639
x — ftn ÄÖ.I * y — 12 ' * — lo

gt 54 x 337 ft 0

la solution primitive sera

625
p« y u 12 X 625 p77« =r 625 x 769

337
P (u + tüg) — p' (tt + w2) — 12 X 337 p77 (w -f w2) =: 337 x 193

d'où:
9 ri-3 X 3712

P2" L 24 J *

Formules pour g21 — 2r2, g3 0.

4. — Soit une équation définissant, d'une manière plus générale,

une fonction de Weierstrass avec les invariants 1 — 2r2,
g3 0; r est un paramètre rationnel et quelconque. Quelle que
soit la valeur de ce paramètre r, l'équation cubique admet
les solutions:

P" ¥ • P'" ± :

J

J>(« + Wg) r'2 — 2 •P'(" + ">„) ± ;• (2r2 — 1) ;

/r2 1\ 2 1
P2" ' P'2" ± - + 2'-2 - '!) ;

m t ra(2r2— 1) l_2,.2
p (2« + o>2) _ —_ i)2 p'(2« + co2) ± r (,-* + 2r2 — 1)

jy3 -

L'Enseignement mathém., 25« année; 1926. I»,
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En prenant maintenant rde la forme spéciale sin o cos o

(avec tangue rationnel), l'invariant g2 est précisément égal à
sin4 e -f cos4 eet les formules précédentes s'appliquent au
premier cas qui se pose dans l'étude générale du problème de
Diophante, sous le point de vue même qui a été exposé sur des
exemples numériques.

Ce même type d'équation, mais avec l'hypothèse r \i
contient la solution d'un problème célèbre. Ce cas ne rentre
pas dans celui des équations associées au problème de
Diophante, car la relation 2 sin ecos 1 exprime que l'aire de
l'arithmotriangle pythagorique est carré parfait, ce qui est

impossible (Fermât). Mais alors l'équation avec =y, gs 0,
n'est autre que celle des triangles pythagoriques dont l'hypoténuse
est carré parfait, ainsi que la somme ou la différence des côtés de
l'angle droit et des diverses équations indéterminées qui ont
été rattachées par Euler, Lagrange, etc., à ce problème (voir
Les origines d'un problème inédit de E. dans VEnseignement

mathématique de juin 1919, t. XX, p. 245-268)1.

Formules pour g22(z8 + 6£4 + 1), 0.

5. — Un second cas à traiter est celui où est égal à

g2 =z sin4 9 -f- sin4 6 cos4 9 ou cos4 9 -J- sin4 cos 4 9 ;

par une transformation immédiate, il est réductible à

fö2 ~~~ 1 ~l~ cos4 9 ou 1 -f- sin4 9

Nous prendrons:

(1 - *2)4 + (1 + 2(£® + 6/4 + l)

t est un nombre rationnel arbitraire; tangue. Les
fonctions puet p'u ont été multipliées par les facteurs

(i+C)4 (1 + t2)6

4I2 8<s

1 Je profite de l'occasion pour signaler que, sur la même question et en même temps
que mon travail, paraissait un mémoire de M. Michèle Cipolla: I triangoli di Fermât
e un problema di Torricelli, dans les Atti dell' Accademia Gioenia di scienze naturali in
Catania, Vme série, vol. XI, mémoire XI, 1° maggio 1919.
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Si donc nous posons toujours

p'2a 4pw(p2tt — g2) t

2 03

avec la valeur spécifiée ci-dessus de l'invariant g2 en fonction
entière de J4, les formules de correspondance avec le problème
de Diophante sont maintenant:

y 1 — t2
> z 1 4- t2

Parmi les solutions, celle de Diophante est

La solution correspondante de l'équation de la fonction de

Weierstrass est:

p^ — 212 y a — + 2/(/4 — 1)

à remarquer la présence du facteur octaédrique ts + 14£4 + 1.

Pour t 2, ces formules donnent g2 706 2 X 353,

p" — 3 y u — 60

130 111 X 481

23.33.53

d'où la solution x —

donnée.

130 ni
y — 3, z 5 antérieurement23.3.5.481 '

Sur certains triangles arithmogéométriques.

6. — La question précédente pose la recherche des triangles
tels que la somme des quatrièmes puissances de- deux de leurs côtés
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etde lahauteur issue du sommet qu'ils définissent soit un carré
parfait.

Tout arithmotriangle pythagorique est de cette nature. Il en
est de même de tout arithmotriangle héronien tel que les deux
bissectrices intérieure et extérieure issues d'un même sommet

soient égales. Ces triangles, définis par la condition C — B ^,
se construisent simplement au moyen' des triangles rectangles.
Ils peuvent être arithmogéométriquement représentés par les
formules :

A — — 2 6 a cos 26

B — 6 I» z: sin 6

G — -f- 2 6 c — cos 6

2R 1 S i sin 40 ;
O

de même que pour les triangles pythagoriques, cette surface S
ne saurait être mesurée par un nombre carré parfait. Les deux

bissectrices des angles en A ont pour longueur commune —sin 2ö*

Les bissectrices intérieure et extérieure issues du sommet B
ont pour longueurs respectives

cos6.cos26 cos 6.cos 26
3

et
3

;

cos —6 sin —6

elles peuvent être mesurées rationnellement (pour tangue
rationnel). En aucun cas, il ne peut en être de même des bissectrices
égales issues de A ni de celles des angles en C.

La solution du problème arithmogéométrique posé est difficile ;

mais son étude met en évidence une équation intéressante. En
exprimant que b*+ c+ A* on obtient en effet l'équation

de Fermât:

X*+ 2 Tin'^A + 4-u0,SA-'r + 1

ou encore
(x2 — l)2 -j- 2x cotg A {x cotg A -f- 2) y2
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où x s= ^. Cette équation admet les solutions évidentes

x 0 00, — 2 tang A i coig A (cotg2 A - 2)

quelle que soit la valeur rationnelle de tang A. En outre elle est

satisfaite identiquement pour A. (c'est le cas des triangles

rectangles); pour B — C x~ cotg A est solution (triangle
à bissectrices égales, issues de A).

En posant cotg A y, l'équation devient

î/2 (x2 — l)2 -f 2yx(y.r + 2) ;

elle permet d'étudier les triangles jouissant de la propriété
indiquée que b-j- c-j-haestle carré d'un nombre rationnel,

pour des valeurs rationnelles de ^ et de tang A. Les formules
de réduction aux fonctions elliptiques sont:

i P'« — p'"* — 2 p« -p,
• ± y + ") - p *2 + - 2F

g-2 —1 4- 3ß2 — ~(t4 _ 2Y2 + 4) > 0

Su('- + 2ß + ß3) — ^ (y6 — 3 y4 + 21 y2 -f 8) <[ 0

A — f(f - 2 y4 + 1.1 y2 + 16) < 0 ;

vétant un argument constant défini par les équations concordantes:

F - ß pv y p'V _ 2)

J>2" ^(3Y6 — 12y4 + 44y2 - 32)

<P'2i' ~~ ~~ 6?8 + 28^4 — 56f + 64)

on obtient les solutions suivantes, relativement simples pour ce
genre de questions, et qui peuvent être exprimées au moyen
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d'un certain argument constant

P2"' |(2T2 + P'2«' - t(1 +

„W 11T6 + 20ï4 - 20T2 ~ 32

f 48 (y2 + l)2

p('" ~i)=i(y2 +2> • p'('" - J) t • ]>"("

p('" + ï) i<>2 ~4> • p'("' + J) - t 2 T2 -

p L—lP)= T4~4T2+ 24 _ 4T2 + 16

1 2 6 y2 ' P - ^5 '

-L
3 .A - r6 - 2T* + 20Y2 + 8 2y4 — 3y2 + 8

'\ 2 / 6(y2 — 2)2 ' P —
(2 — Y

'

P(2"' -<•) - ^(y2 + S),p' iT3
-

p I2w+ «,1 - ~ t+ 4ÎS ±_12 -, _ Y6-2T4 + 4t2 + 8
<rv ^ ' 12Y2 ' P — 4f '

n(4„. _ -2,1
11 y8 + 16r6 + 56Y4 + 768Y2 + 768

y ' 48 y6

t Jhw —l\—T4 + 20y2 + 24 _ &T4 + 20y2 + 16

r\ l) ~ 6y2 ' P —
y3

'

L'équation yx4 +

7- — Soient aet ydeux nombres rationnels donnés et soit
(•<o I/o) lln(> solution primitive de l'équation indéterminée

[).y2 x* a

Cette solution .particulière peut être rejetée à l'infini par la
transformation homographique

2

[j.y
* «« + Y >

qui transforme l'équation considérée en l'équation suivante de
Fermât:

(YX*)2 X4 + 4.x'8Xs + 6,,>2X + 4|j.2X + ^ •
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Les formules de représentation des solutions au moyen des
fonctions elliptiques sont:

ft av*y* ft, 0 :

pv — — ax20,j,V =; (a - a>)

P'" - - 10a.t* + a2) ;

v 3 _ 1 P'K — P'f 1
' + *• ~ 2

*

pu-pv ' Y ± xifp(" + ") ~ P"] •

8. Généralisation de Véquation de Diophante. — Les résultats
ci-dessus trouvent leur application immédiate dans la résolution,

à partir d'une solution primitive, des équations indéterminées

du type
py2 x4 + z4 + t4

p. étant un nombre rationnel donné. Par exemple, dans le cas
(y 3), la solution de

3y2 s= X4 -f- Z4 -f- t4

résulte de la connaissance de la solution primitive (1, 1, 1, 1);
en prenant donc

* 2, g2 is .*3 0,.. *0 i, Vo i
pi' — 2 pV __ 2 p'V — 15

la solution u e donne à la limite:

x + i i Z_!_
> x — X ~~2 p'p 4 ' '

d'où
•234 -f 114 -f 114 __ 3 ^3 iQ7)2

on aurait ensuite

9. Uéquation 2y* x* + z* + tL - Parmi les équations quiviennent d etre traitées d'une manière générale, celle qui correspond
au cas ix 2 (trouver trois nombres dont la somme des
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bicarrés soit le double d'un carré) est particulièrement intéressante:

une solution primitive dépendant d'un paramètre
arbitraire est en effet connue. Si trois nombres rationnels
algébriques ont leur somme nulle, la somme de leurs bicarrés est

toujours le double d'un carré; cela résulte de l'identité
algébrique :

'*'4 + y* + {x 4- yY 2 (x2 + xy + y2)2

Si donc b et c sont deux nombres rationnels quelconques,

l'équation
2y2 x4 -j- + c* (a =z b4 -j- c4)

admet toujours la solution primitive

jr0 b + c y0 b2 + bc + c2

comme le justifient en particulier les égalités:

14 _j_ 14 24 z= 2.32

14 _j_ 24 -f- 34 2.72 etc.

Alors :

£2_= U(b2 + bc + + c4) g* 0

pe — (bA + c4) (b + c)2

pV — — 2bc(b -j- c) (fc4 + c4) (2/>2 + 3bc -f 2c2) ;

la solution limite pour u c est en particulier:

#8 -}- 8##4 — a2 p2e — pe
v o

1

o v — £_ £x- s,.' - x2

Parmi les solutions simples de cette équation, sont à signaler

les suivantes (avec des nombres tels qu'aucun d'eux ne soit

somme des deux autres):

i*+ 34 + 104 2.712

-ji_|_74 4- 124 2.1132

234 + 464 + 1214 2. (10 467)2

264 + 2394 -f- 2394 2.(57/l23)2
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