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SUR QUELQUES CLASSES PARTICULIÈRES
DE POLYNOMES

PAR

E. Laine (Angers).

On sait que si l'équation en t

ct(t 1) -)- ft-)-— o (1)

a une racine entière positive, n, l'équation différentielle

(a + bx 4- ex2) y" (e -f- fx) y' + gy .0(2)
a pour intégrale particulière un polynome de degré

J'ai d'ailleurs montré1 que si l'équation (1) a une racine
entière négative, — n,l'équation adjointe de (2) aura pourintégrale particulière un polynome de degré n, de sorte que l'in-
tegration de l'équation (2) est toujours ramenée à des quadratures

si l'équation (1) a une racine entière de signe quelconque.
^

Je me placerai exclusivement dans le domaine réel. Admettant
l'existence d'une racine entière positive, n, pour l'équation (1)
on peut ramener l'équation (2) aux formes canoniques suivantes •

1° l'équation
y" -f- axy' — nay — 0 :

les polynômes correspondants sont les polvnomes d'HERMiTE-
2° l'équation "

xv" + (y — <*') y' -h ny 0 :

les polynômes correspondants sont les polynômes de Kummer-
3° l'équation de Gauss

.*(1 — x)y" -f- [y (a _j_ 1)^]^ _|_ ;î(a _|_ njy __ 0

1 Enseignement mathématique, avril 1924.
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les polynômes correspondants sont les polynômes de Jacobi, qui
comprennent comme cas particuliers les fonctions sphériques
primitives ;

4° enfin les deux équations

x2y" _j_ [(2 _ a) X -f- 1] y' — n(fi -f 1 — a)y 0

(x2 + l)y"+ [2(1 — ,a)x+ b]— + 1 — la) y — 0
(3)

Les polynômes correspondants ne semblent avoir fait l'objet
d'aucune recherche particulière: je voudrais indiquer ici quelques
propriétés de ces polynômes.

Remarquons d'abord que dans toutes les équations précédentes
figurent, avec n, d'autres paramètres que l'on suppose habituellement

indépendants de n. On généraliserait donc sans difficulté les

polvnomes correspondants en supposant que les autres
paramètres qui figurent dans les équations différentielles dépendent
aussi de n. Par exemple l'équation

' y" -f" xv(n)y' — ny(n)y — 0

définit des polynômes qui comprennent, comme cas particuîiers,
ceux d'HERMiTE, quand la fonction <p se réduit à une constante.
On a encore pour ces polynômes ^

-f? in) d» L%(")
v" e

Pour simplifier, je supposerai que dans les équations (3) les
constantes a et b sont indépendantes de n.

Prenons d'abord la première équation (3)

xVy" J_ [(2 __ a)x _J_ l]y _ n(n -|- 1 -- a) y 0 (4)

C'est une équation qui n'est pas du type de Fuchs, l'origine
étant un point d'indétermination. Faisons dans cette équation
le changement de variable 1

î

y xa ex z :

on obtient- l'équation

x2z" -f- [(2 -f a)x — 1~\z' 4- [a — n(n -j- 1 — a)]z — 0

i P. Humbert. Monographie des polynômes de Kummer (Nouvelles Annales de
Mathématiques, 1922).
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Or, si on dérive nfois l'équation

x2 a" + [(a — 2n -f- 2) x — 1 ]u' + ,(« — 2n) a ~ 0

on retombe, en posant u^n) z, sur l'équation en z. Gomme

l'équation en u admet l'intégrale x2n~a e x, l'équation en z
à!1 _i\admettra l'intégrale — \x2n~ae x), à laquelle correspond, pour

l'équation en y, un polynome de degré n, Pn; nous poserons

Jl in / |_\
' - *a*X-^n\*ta-a* X) * (5>

Telle est la formule qui peut servir de définition aux polynom.es
Pn-

On en déduira, par des procédés classiques, la relation de
récurrence

(n + 1 — a) (2a — a) P/| + 1

— + 1 — a) [(2« — a) (2n -j- 2 — à) x — ci] -f- a (2n -f- 2 — a) (6)

D'après la façon même dont on l'a établie, la formule (5) est
toujours valable, que a dépende ou non de n. Prenons par exemple
a n + 1; l'équation (4) admet alors l'intégrale y — 1, et la
formule (5) donne dans ce cas

dn —-\ 1

xn~] e x)d.ocnK

__
L

c'est la formule bien connue d'Halphen. On verrait d'ailleurs
aisément qu'on a1, quel que soit a,

n

Pn 2 C«(,i ~ "+ 1 " — •

m=0

La relation (6), au contraire, n'est vraie que si a est indépendant
de n. Si a est fonction de n, la relation de récurrence prend

des formes très différentes. Par exemple, considérons l'équation

X2y"_[2(,J _ l}- — 0 ;

1 Halphen, Œuvres, tome II, p. 448.
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on la ramène à l'équation (4) en posant a 2 et changeant
a: en x.Les polynômes Pn correspondants vérifient, comme l'a
montré Tisserand, la relation

P„+1 - (2 nx+ 1) P;( + n(n - l).r2P„_, - 0

essentiellement distincte de (6).
Toujours dans l'hypothèse où a ne dépend pas de re, nous

signalerons encore la relation

P«+l -[(In + 2 - a) x +1]P
2" + 2 ~

+ 1 —

Considérons de même l'équation

(x2+ 1)2/" + [2(1 — a)x-|- l,]y'1 — 2a) 0 (7)

C est une équation du type de Fuchs, mais on ne peut, au moyen
d un changement de variable dans le domaine réel, la ramener
à l'équation de Gauss. En posant

y — (x2 + \)a e~bRrc^x z

on est conduit à l'équation

(*-2 + 1 )z"+ [2(1 + a)x— b]z' + + 1 — 2a)] z — 0

Or, si l'on dérive nfois l'équation

(x2 + 1 u" +[2(1 + a — n)x— b]u' + 2 — n) u 0

on retombe, en posant z,sur l'éqùation en z. L'équation
en u admettant l'intégrale x2+ 1)»-« ^arefgi l'équation en z

dnadmet l'intégrale --[(x2 + 1)»-« ebarotg«], à laquelle corrres-

pond pour l'équation en y iln polynome de degré nn. Nous
poserons

1I„ (X2 + |)«e-^rctg* £_ ^ + 1jh—a arc tg
_ (g)

dxn

C'est la formule de définition des polynômes 17«.

Remarquons que, quand b est nul et a entier positif, la formule
(8) devient illusoire dès que les entiers n et a, ce dernier dépendant

ou non de n,vérifient la double inégalité | < < : le poly-
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nome (x~ -f- l)n a est alors en effet de degré inférieur à n. Nous
supposerons b essentiellement différent de 0 : la formule (8)
convient alors quel que soit a.

Prenons, par exemple, a —; l'équation (7) montre que
le polynome Hn se réduit à une constante, soit P„, que nous
allons calculer. On a, par hypothèse

" n—1

Pn (x2 +1) 2 e~b arc ~ ~ [(,r2 ^ 2 eb » rctgarj

posons en outre
n—3

fj_ ^

Z— (x2 -f- 1) e^arctgar çj '0l'{ _}_ j - 6 arc tg x d" " ~

dxn~'À
'

On a successivement

S[(*2+^ +*> 9+-+»<« - 9rf"~22
àx" dx"~{' ' '

dPn-»
puis, comme 0dx " '

et en dérivant

/ 9 d z Jn~~^ t jn 9(" + 1)^ + [(" + 1)"-''^ + ("- i>£^ o.

On aura par suite

— [P2 + l),] rf""2 *
«far"

J
*2 + l »

et enfin

p„ ['>2 + (« -1)2] p„_,.

On trouve d'ailleurs immédiatement Pn 1 p On *donc 0 ' 1 ~ * Un a

n

P2„ + 1 + '»n2) etV2n JJ[/>2 + (2m _ 1)2] (9)
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On peut donc écrire la formule suivante, analogue à celle
d'HALPHEN:

Pn étant un polynome en bdéfini par les équations (9). On en
déduit, en particulier, la formule

d2n _ ^i±i
— (X*+ 1) * =(«« + 2 [1.3... (2« - 1)]»

Signalons enfin la relation de récurrence

(n-a) („ _ 2 a +i)II„+1 n(n+ 1 - 4(« - «)2 + n„_,

+ (2« — 2 a+ 1) [2 (n—a)+ I - ab]Yln ;

comme la relation (6), cette relation n'est valable que si et
sont supposés indépendants de n.

SOLUTION D'UN PROBLÈME DE DIOPHANTE

en nombres indéterminés, et les formules elliptiques, avec les
notations de Weierstrass, permettant d'en obtenir des
solutions dépendant de paramètres arbitraires. Il fait suite aux
divers articles sur l'arithmogéométrie publiés dans YEnseignement

mathématique de 1915 à 1919 (t. XVII, p. 315; XVIII, p. 81;
p. 397 ; XIX, p. 159; p. 233; XX, p. 161 et p. 245). Il se rattache
à un mémoire sur les équations indéterminées de Fermât du
Bulletin de la Société mathématique de France (sous presse).

tl -J- 1

PH(rs + 1)
2~ e2> arc tg .»:

PAR

Ë. Turrière (Montpellier).

Ce travail concerne l'équation de Diophante,

+ y4 + Z4 U2
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