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SUR QUELQUES CLASSES PARTICULIERES
DE POLYNOMES

PAR

E. LAINE (Angers).

On sait que si I'équation en ¢
ct(t—1) +ft+g=0 (1)
& une racine entiére positive, n, l’équétion différentielle
(@ +be+cat)y +(e+ fu)y +ay=0

a pour intégrale particuliére un polynome de degré n.

J’ai d’ailleurs montré! que si Iéquation (1) a une racine
entiére ‘négative, — n, I’équation adjointe de (2) aura pour
intégrale particuliére un polynome de degré n, de sorte que I’in-
tégration de I’équation (2) est toujours ramenée a des quadra-
tures si équation (1) a une racine entiére de signe quelconque.

Je me placerai exclusivement dans le domaine réel. Admettant
Pexistence d’une racine entiére positive, n, pour Péquation (1),
on peut ramener ’équation (2) aux formes canoniques suivantes:

10 I’équation

Y + axy — nay = 0 :

les polynemes cori-egpp;ﬁd@nts&sqnt les:polynomes d’HERMITE ;
20 Péquation | -
2y + (y—x)y +ny = 0 :

les polynomes ‘correspondants - sont les ‘polynomes. de KuMMER;
3° I’équation de Gauss -

(1l —2a)y” + [y — (« + Daly + n(a + ny = 0 :

1 Enseignement mathématique, avril 1924,
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192 , | " E. LAINE

les polynomes correspondants sont les polynomes de Jacosr, qui
comprennent comme cas particuliers les fonctions sphériques
primitives; |

40 enfin les deux équations

2y 4+ [(2—a)xr +1]y —n(n+1—a)y =0,
(* +1)y" + 21 —a)x + by —n(n+1—2a)y =0 .

Les polynomes correspondants ne semblent avoir fait 1’objet
d’aucune recherche particuliére: je voudrais indiquer ici quelques
propriétés de ces polynomes.

Remarquons d’abord que dans toutes les équations précédentes
figurent, avec n, d’autres parameétres que ’on suppose habituelle-
ment indépendants de n. On généraliserait donc sans difficulté les
polynomes correspondants en supposant que les autres para-
metres qui figurent dans les équations différentielles dépendent
aussi de n. Par exemple ’équation ‘

(3)

Y+ xo(n)y — no(n)y = 0

définit des polynomes qui comprennent, comme cas particuliers,
ceux d’HErMITE, quand la fonction ¢ se réduit & une constante.
On a encore pour ces polynomes . y

Pour simplifier, je supposerai que dans les équations (3) les
constantes @ et b sont indépendantes de n.
Prenons d’abord la premiére équation (3)

2y’ + [(2—a)x+ 1y —n(n +1 — a)y =0. (4)

Cest une équation qui n’est pas du type de Fucus, 1’origine
étant un point d’indétermination. Faisons dans cette equatlon
le changement de variable ! :

1
; y= x%e%z:
on obtient 1’équation

27 (2 4 a)x — 1] -!——[é——n(n +1—ajlz=1490.

1 P, HUMBERT Monographie des polynomes de Kummer (Nouvelles Annales de
Mathématiques, 1922).
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Or, s1 on dérive n fois I’équation
a?u —l—[(a —2n + ) — 1] 4+ (@ — 2n)u = 0,
on retombe, en posant u™ - z, sur l’équg}tion en z. Cgmme-
I’équation en u admet l’intégréle g¥-ae *  ]’équation en z

n 1
admettra l'intégrale Jd—n(x?n—“ e“x}, a laquelle correspond, pour
Xz

I’équation en y, un polynome de degré n, P,; nous poserons

1 1 .
T 4 ( sna T % -
P — xael‘ (m-n—ae x) . (O)
n d'xn
Telle est la formule qui peut servir de définition aux polynomes
Pn.
~ On en déduira, par des procédés classiques, la relation de
récurrence
' (n+1—a)2n—a)P,
=@2n+1—a)[2n—a)2n+2—a)x—a]P, +n(2n+2—a)P, _ . (6)
D’aprés la fagon méme dont on I’a établie, la formule (5) est
toujours valable, que a dépende ou non de n. Prenons par exemple
a = n + 1; Péquation (4) admet alors I'intégrale y = 1, et la
formule (5) donne dans ce cas

1

' I

n _ _
d ne—1 x 1 x
dx” X e == ’I;n_!_,l e :

c’est la formule bien connue d’HarpuEN. On verrait d’ailleurs
aisément qu’on al, quel que soit a,

n

P, e= Sj Chln-—a4+1, n—ma™
m=0
La relation (6), au contraire, n’est vraie que si @ est indépen-
dant de n. Si a est fonction de n, la relation de récurrence prend

des formes trés différentes. Par exemple, considérons I’équation

2y’ — [2(n — ) + 1y + nn — )y = 0 ;

1 HALPHEN, (Buvres, tome II, p. 448.
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on la ramene & ’équation (4) en posant ¢ — 2n, et changeant

% en — 2. Les polynomes P, correspondants vérifient, comme ’a
montré TissSErRAND, la relation '

Pll+1 ‘_- (.2'2'1' + 1‘) Pn + h (”’ :—' 'I)J,‘2Pn__1 —_— O ”»

essentiellement distincte de (6).
Toujours dans I’hypothése ou a ne dépend pas de n, nous
signalerons encore la relation

2n 4+ 2 — a , dP,

- X,
n+1—a dx

Popy —[2n 42 —a)x + 1]P, =
Considérons de méme 1’équation
(e* + 1)y + [2(l — a)ax 4- bly — n(n + 1 — 2a)y = 0 . (7)

(’est une équation du type de FucHus, mais on ne peut, au moyen
d’un changement de variable dans le domaine réel, la ramener
a Véquation de Gauss. En posant

y = (x? 4 1)%gbavetgx
on est conduit & 1’équation
(0 + 1) 2" + [2(1 + a)a — b]z" + [2¢ = n(n + 1 — 2a)]z = 0 .
Or, si P'on dérive n fois I'équation
(@ + N’ + 201+ a—n)a— 00 + 2(a— n)u = 0,

on retombe, en posant u™ =z, sur 1’équation en z. L’équation
en u admettant 'intégrale (22 + 1)n-o ebarctsx I’équation en z

n
admet ’intégrale c—i—ﬁ [(2% + 1)n-a ebarctex] = 3 Jaquelle corrres-

pond pour I’équation en y un polynome de degré n, II,. Nous
poserons ’ |

H,'l — (.7('2 "l‘ l)ae— barctgaz _d_n_ l(72 + l)n—aeb argltgac] . (8)

dx"

C’est la formule de définition des polynomes IT,,.
Remarquons que, quand b est nul et a entier positif, la formule
(8) devient illusoire des que les entiers 7 et a, ce dernier dépendant

ou non de n, vérifient la double inégalité % < a< n:le poly-
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nome (z® + 1) est alors en effet de degré inférieur a n. Nous
supposerons b essentiellement différent de 0: la formule (8)

convient alors quel que soit a. _
n+1 ; l’équation (7) montre que

Prenons, par exemple, ¢ = 5
le polynome I, se réduit & une constante soit P,, que nous

allons calculer. On a, par hypothése
n—1

‘ n-1 n n—1
(1,) _I__ ’|) 2 e-—-b arctgx_adn_ [((1'2 4+ 1) 2 eb are tgx] .

P" = Ly . o

posons en outre
n--1 N2
2 o bare tg d

n—3
z = (x2 4 1) 2 goaretgx 4.0 P a=(x*41)"* da—2
X

On a successivement
dn d" z n—l dvn—‘)
2] = (2 + 1) — + 2 n—1 ,
[( 1) z] ( ) T o= n ) o=
. dpn—?
puis, comme —— = (),
. dn—-l /1—22
(x? 4 1)d — 4+ [(n — ) — 4] = 0
et en dérivant
5 n dl‘l-—-l dn—-f.)z
x? 4 n x — b - (n—1)—2 —
( )d”+[(+) ] -+ | )dx"_2
On aura par suite
d" b* 4 (n — 1)2 4"2
x? 1 =
da” [(1 -+ )Z] 22 + 1 dx"2 ’
et enfin
Pn = [b2 - (n — 1)“] Pn__2
o=1, P b. On a

On trouve d’ailleurs 1mmed1atement P

done |
n n
P‘_,”_H = b I l (6> 4+ hm?) etv Py, = ' I [6* 4+ (2m — 1)?] . (9)

m=1
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On peut donc écrire la formule suivante, analogue a celle
d’HALPHEN:

n—-1 n--1 ]
2 baret x] D 2 \ 2 barctg x
e 8 = P, (x* + 1) e £

[+ )2

dn
dxll

1

P, étant un polynome en b défini par les équations (9). On en
déduit, en particulier, la formule

2n—1 2n4-1

)

2n —
(@ 1) 2 = (@41 ? [1.3. (20 —1)]2.

d%’.')"

Signalons enfin la relation de récurrence

(n—a)(n —2a + NI, = n(n+ 1 — a)[4(n — a)® + b2]I1,,_,
+ (2n — 2a + 1) [2(n — a) (n+1—a)x — ab]ll, ;

comme la relation (6), cette relation n’est valahle que si a et b
sont supposés indépendants de .

SOLUTION D’UN PROBLEME DE DIOPHANTE

PAR

E. Turrikre (Montpellier).

Ce travail concerne I’équation de DioPHANTE,
x4+y4+z4:u2,

en nombres indéterminés, et les formules elliptiques, avec les
notations de WEIERSTRASS, permettant d’en obtenir des
solutions dépendant de paramétres arbitraires. Il fait suite aux
divers articles sur Parithmogéométrie publiés dans I’Enseigne-
ment mathématique de 1915 & 1919 (. XVII, p. 315; XVIII, p. 81;
p. 397; XIX, p. 159; p. 233; XX, p. 161 et p. 245). Il se rattache
a un mémoire sur les équations indéterminées de Fermat du
" Bulletin de la Société mathématique de France (sous presse).
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