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SUR LES POLYNOMES DE FONTANA-BESSEL

PAR

M. Paul ApprLL, Membre de I'Institut (Paris).

Les formules connues de la théorie des différences appliquées

aux polynomes
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donnent évidemment des formules relatives aux polynomes
P, (x) = / Q(x)dx i P (x) = — x (2)

qui ont été considérés par Bessel pour z = 1 & propos d’une
formule de Fontana (Voyez, pour une bibliographie détaillée,
une Note de M. Giovanni Vacca, dans les A della reale Acca-
. demia Nazionale dei Lincei, Classe di Scienze fisiche, matematiche
e naturali, Serie Sesta, Vol. 1, Fasc. 3, Seduta del 28 febbraio
1925, p. 206 et suiv.). Nous appellerons ces polynomes P, ;(x)
les polynomes de Fontana-Bessel. M. Ser a donné dans L’ Inier-

médiaire des Mathématiciens (2me Série, t. 1V, 1925, p. 126 et

suiv.) des formules relatives a ces polynomes. Il écrit notamment
la formule suivante, dans laquelle C désigne la constante d’Euler

log I'( 4+ 1) 4+ Cx = P, (x) + 1)30(%) + P43(x)

ey (3)

qui donne la formule de Fontana pour z = 1; dans ce qui suit,

nous désignerons par p,, ps, ... les nombres rationnels P, (1),

P,(1), ... . En dérivant (3) par rapport & z on a

Q (%) | Q;(x)
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ou W(x) désigne la fonction de Gauss. ¥ (x) -+ C est, d’apres
Gauss (Oeuvres, t. 111, p. 154 et suiv.) exprimable en termes
finis quand z est commensurable; il en est de méme de la série
qui forme le second membre de (4). Par exemple les équations

1 . 1 ; 1 .
1F<f-2->+C:~210g2, 1]?(—~z>-|—C:T7:—3log2
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. 1 1 1
— 2log2 = Ql(—~ ~2~> -+ TZ—Q’(_ —Ez—) + ...
. 1 1 1 1
——~§x—3log2 = Q’<——7;) + §Q2<—Z—) + ...

! on a, d’aprés (1),

Comme V(x4 1) — W(z) =

x + 1’
1T Qu(x) | Q,(x) ,
1+x‘“_[Q°+ 3 T3 +]
de méme : '
1 1 — [QOQ(.T) n Q13(x) . ] ;

2+.x—1+x

En intégrant ces relations, par rapport & x, de 0 & x, on a une
série de formules dont la premiére a été donnée par M. Ser (loc.
cit.); en les intégrant par rapport a z de 0 & 1 on voit apparaitre
les p. | -

La formule (1) intégrée par rapport & z, donne

P.,+1 (x + 1) — P-,+1 (¥) = — P (x) + Py o
qui exprime P,i4(x + 1) en
P () et P (x) .

La formule (4) ‘se trouve déja dans le Calcul intégral de
J. Bertrand, p. 160; en 'ordonnant par rapport a z et iden-
tifiant avec |

S,z — S,2% + ... ,
ol
1 1 -
3

on obtient des formules dignes d’attention.
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