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SUR CERTAINES FRACTIONS CONTINUES
RELATIVES A LA SÉRIE HYPERGÉOMËTRIQUE

PAR

M. Paul Appell, Membre de l'Institut (Paris).

La série hypergéométrique de Gauss est maintenant entrée
dans 1 enseignement. On sait que Gauss a donné des développements

en fraction continue qui s'y rattachent (Oeuvres,
t. Ill, p. 134 et suiv.) et qui ont été ramenés à un point de vue
général. Voici d'autres fractions continues obtenues également
en partant des relations entre les fonctions contiguës. Gauss a
donné [ibid.p.130 éq. (15)] la relation suivante que nous écrivons
ici en changeant yen y -j- 1 et en posant

Fp F(a, ß, y, F, _ F (a, ß, y + ,«•)
Fs F (a ß y + 2

~ T(ï + I) (1 - x) F, + (y + l)[y — (2y - a _ ß + IJ^JF,
+ (y + 1 — a) (y + 1 _ ß) Fj — 0 (i)

Divisons par le terme du milieu et posons :

1* — ï C1 — U F,
y — (2y — a — ß + F,

'

En appelant ^ la quantité déduite de ¥ en v changeant
y en y -r l

ip _ (y j-1) (1 — xF,ï T 1 (2y — a —' ß + 3j F, '

la relation (1) devient

-? + ij (y +1 — °o c +1 — ß) « F,
(ï + 1)[t — (2y — a — ß + 1).T] F] ~ 0 '

W 1 + (y + 1 — a) (y + 1 — ß)aqi _ -r) ^
[y _ (2T _ a - ß + i)x] [y + ip- •
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On a de même

j I (t + 2 — a)(y + 2 — ß)x(l — x) 1

1 [T+1 — (2r— a — ß + [T + 2 — (2y — « — ß + 5)x] ^3 '

et ainsi de suite, en changeant chaque fois y en y -f- 1. On
obtient ainsi la fraction continue

V i+
i +

i + ü

__ (t H- V — «) (t + V — ß) oc (1 — x)
ll' ~ [(ï "h v — 1) (2y — a — fi 4- 2v — l)x] [(y v) — (2y — a — ß -f- 2v -f- ljxj

x(l — x) 1 — xlira u> — —i. hm Wj —
(1 — 2.x)2 ' 1 — 2x

Exemple. — On a (Gauss, ibid., p. 127, éq. XXI et XVI).

/1 i 1 il \
cos nt z= cos *F —ft + — — "2" ' s^°2 t) — cos * F(a, ß, y, x)

/1 i 1 1 3 \sin /i/ zz: n sin tF l — n -j- — — —- a -}- —, — sin2 l\ — n sin tF(en, ß y', x)

1 1 111 3
« ^" + "2' .8 - "2,i + ¥' Y=±!' î' —Ï + 1— 2"' ^ sia2<.

Alors

ft cotg nt 1
2

11
v2 — r-

W Mv f f- tg2 21
2 cotg 2/ 4 _ 1

1^ tg2 2
4

1 _ i4n cotg nt
^

2 cotg 2 t
~~~

L _0(L
1 4

T*-t
i + -

tg2 it

i +
formule finie si n24v2.
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On peut faire un usage analogue des équations (1) et (1 D) de
Gauss (loc. cit. p. 130) en faisant jouer à a et /3 le rôle de y.

En posant

l|f __ Y a 1 F(a ß y, x)
f— 2a — 2 — (ß — a — F (a + 1, |3 y,

— 1~ g ~ 1 £»
y — 2« — 2 — (ß — a — l)xF,'

on a une fraction continue dans laquelle

U; — (a + y) (y — a — y — 1) (1 — x)
[(y — 2q — 2v) — (ß — q — v) x][y— 2q — 2v — 2 — (ß — a — v — l)x2] '

Pour l'équation (10) de Gauss il suffit de permuter dans ce qui
précède a et ß.

Dans le calcul différentiel de J. Bertrano on trouve (p. 430 et
suiv.) des vues générales sur les fractions continues analytiques;
le caractère de ces fractions a été mis en lumière par M. Padé
dont nous indiquons les mémoires à la fin de cet article.

La série

O (z)i + - + i 1 «3
S 2 z(z + \) + 1.2.3 z{z + 1)(z + 2) -

considérée par Legendre dans une Note mise à la fin de sa
Géométrie a été développée par lui en fraction continue. Elle
se déduit de la série de Gauss en y supprimant, dans le terme
généra], les factorielles «(a + 1) (« -f n — 1) et ß(ß -f 1)
'{ß + n 1). Il y aurait intérêt à traiter de même la fonction

/•(q y, z) 1+ -Z+ -g(tt + ^ I
a(a + (« + 2) s3

Y y (y + 1) 1.2 ^ y (y + l)(y + 2) ijî + " '

qui se réduit à <? pour « y. La fonction F(<Z) ß, x) devient,
quand on y pose ß k, xJ et qu'ensuite on fait oo

F (a, A. y



188 P. APPELL
La même fonction où on fait

a zz: k [3 -=z k y z=z z x =z ~ f /i oc

devient.

F(*, /,, s> |) 9(«)

Les formules (15) et (l).de Gauss (Oeuvres, t. IV, p. 130) se
réduisent alors pour / à

0 T [Y — 1 + <]/'(a > y > -) — (y — a) s/'(a y + 1 î)
— ï(ï — !)/(<*. T — 1, s) 0

0 (y — 2 a + /'(a » y, s) + a/*(a + 1 y, z)

— (y — a)/"(a — 1, y, *) 0
et pour <p

0 — z (z 1 )<p(z) -P aç(s + 1) — z{z — 1)9(2 — 1)

qui, en y changeant z en z 1. donne la relation de Legendre,
remarque qui a probablement été faite. Les deux relations
précédentes où on change y en y + 1 dans la première et a en a + 1

dans la deuxième, donnent lieu à des fractions continues qu'il est
facile d'écrire.

Voici pour terminer l'indication des Mémoires que M. Padé
a publiés sur les fractions continues. Ces Mémoires ont tous
paru dans les Annales Scientifiques de VEcole Normale Supérieure,

Sur la représentation approchée d'une fonction par des fractions
rationnelles. 91 p. (9, 1892).

Mémoire sur les développements en fractions continues de la
fonction exponentielle, pouvant servir d'introduction à la théorie des

fractions continues algébriques. 32 p. (16, 1899).
Recherches nouvelles sur la distribution des fractions rationnelles

approchées d'une fonction. 37 p. (19, 1902).
Recherches sur la convergence des développements en fractionsj

continues d'une certaine catégorie de fonctions. 60 p. (24, 1907).
Sur la généralisation des formules de Sylvester relatives aux

fonctions qui se présentent dans l'application du théorème de

Sturm et sur la convergence de la table des réduites d'une fraction
rationnelle. 16 p. (24, 1907).

A ces travaux il convient d'ajouter un Mémoire de M. Montes-
sus de Ballore à Lille, Sur les fractions continues algébriques,
{Rendiconti del Circolo matematico di Palermo t. XIX, année
1905, p. 185-257).
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