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SUR CERTAINES FRACTIONS CONTINUES
RELATIVES A LA SERIE HYPERGEOMETRIQUE

PAR

M. Paul AppeLL, Membre de I’Institut (Paris).

La série hypergéométrique de Gauss est maintenant entrée

~ dans ’enseignement. On sait que Gauss a donné des dévelop-
pements en fraction continue qui s’y rattachent (Oeuvres,
t. 111, p. 134 et suiv.) et qui ont été ramenés & un point de vue
genéral. Voici d’autres fractions continues obtenues également
en partant des relations entre les fonctions contigués. Gauss a

donné [7bid. p. 130 éq. (15)] la relation suivante que nous écrivons
ici en changeant 7y eny + 1 et en posant

Fo = F(a, B, vy, a)_, FI::F(OL,(S,Y—]—’I,&'),
Fo = Fa, B, vy + 2, 2),
YO HENE = F + (r+ O)y — @y — o — § + 1)a]F,
-}-(Y-{-l—a)(y—i—l—(s)xFQ:O. (1)

- Divisons par le terme du milieu et posons:

v tl—a b,
V= Br—«—FF 1jaF,

En appelant ¥, la quantité déduite de ¥ en y changeant
y eny 41

v — b + 11 —a)
Y1y —«—FF 3

y

¥,
¥,
la relation (1) devient

OFl—wy+1fe F
— W4+ 1. , 2
+ I oy e e R
gy (Y+‘1-—-a)(y+1~—[3)x(’l—x)h‘ 1

=y =« — b ey 1= 2y 2 — 3] T

1
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On a de méme

T [f+1—@y—a—B+3)x][y+2— 2y —a—B+ 5)x] ¥, ’

et ainsi de suite, en changeant chaque fois y en y 4+ 1. On
obtient ainsi la fraction continue
V=14 0
1 + Ug
u
1 . 8

u,
1+

L+

G+v—a+v—F=x{l — )

W, — — »
(y+v—1)—2y—a—E+2v—D)x][(y +Vv) — 2y —a— + 2v 4 1)
' 1 — x) 1— x
lim u, —T f..g_—._-.—_ h Y, — .
S 1 — 2x)% ° im W =3
Exemple. — On a (Gauss, tbid., p. 127, éq. XXI et XVI).
1 1 1 1 1 - :
cos nt — costF(in + 30 —3h + R sin2t) = costF(a, B, v, x) ,
. . 1 i 1 1 3 ) )
sin nt = nsth<—2—n -+ 3 ——Q«n + 50y s1n2t> == N §1utF(a, B, Y, x) ,
1 1 1 1 1 , 3 e
“"'5”""‘7}’ ,8_...——2—11—{—&—, T=3 y_]-l—l.__i, x = sin?¢ .
Alors ,
, n?
ncotg nt 17 T & 5
W = -2 y = — —— tg? 2f ,
» . 2colg 2t “ 4 2 _1_ g
"
! : tg? 2t
| &, _1°
n cotg nt 4
e, - Mg N | 3
Zcotg 2t Al 4 __._76_2
1 4 2 9
718
ho—
1 + 3
14 ..

formule finie si n? = 4y2
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On peut faire un usage analogue des équations (1) et (1 D) de
Gauss (loc. cit. p. 130) en faisant jouer & « et B le réle de 5.
En posant |

- o y—a—1 Fla, B, v, )
T Y — 20— 2 — f—a—1x Flat+1, B, v, )

y—a—1 F,
—'Y—-»Qa——il—(ﬁ—cx-——l)xFI’

on a une fraction continue dans laquelle

(A r—a—v—1)(1—2)
[ = 20— ) = a2l y— 22— — F—a—v—1)a7 *

u, —

) x — 1 . ‘ 1
lim w, — — Jim W, = :
s (x — 2)? 2 —x

Pour I’équation (10) de Gauss il suffit de permuter dans ce qui
précede a et S. ‘

Dans le calcul différentiel de J. BERTRAND on trouve (p. 430 et
suiv.) des vues générales sur les fractions continues analytiques;
le caractére de ces fractions a é6t6 mis en lumiére par M. Padé
dont nous indiquons les mémoires & la fin de cet article.

La série |
u? 1 a®

G+ 123 e ry o

o) =1+ %42

considérée par Legendre dans une Note mise & la fin de sa
Géométrie a ét6 développée par lui en fraction continue. Elle
se déduit de la série de Gauss en y supprimant, dans le terme
général, les factorielles «(« 4 1) ... (@ +n—1) et B(B+1)...
B+ n—1). Il y aurait intérét a traiter de méme la fonction

- , o afa 4 1) 22 a(a + 1) (a 4+ 2) 33 ,
@, v, z) = 1 —
Mo ) +¥z+Y(T+’1)1-2 ‘;’(‘{+1)(Y+2)’1.2.3+ '

qul se réduit & € pour a« = y. La fonction F(«, 3, 7> x) devient,

quand on y pose 8 =k, z = ;i et quensuite on fait k= oo

F(q, k, v, —Ai> = f(, v, 3) .
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La méme fonction ou on fait
a::'l','-(::k, Y =1z, * == = 1
devient

. a
P(/{,./.', 2, P) = ¢(z) .

Les formules (15) et (1).de Gauss (Oeuvres, t. IV, p. 130) se
réduisent alors pour f a |
O =rylr—=1+:2f(e, v, 5) — (y = &)zf(e, y + 1, 2)
» =y —=Uf(, y—1,2 =0,
0 = (y— 2a + z3)f(a, Y, 2) + qf(a + 1,7, 3)
' — (y—a)f(a —1, v, 3 =0,
et pour ¢
= 5(z —1)9(z) +ag(z + 1) — z(z — 1) o(z — 1) , .
qui, en y changeant z en z 4 1 donne la relation de Legendre,
remarque qui a probablement été faite. Les deux relations
précédentes oul on change y eny + 1 dans la premiére et a en o -+ 1
dans la deuxiéme, donnent lieu & des fractions continues qu’il est
facile d’écrire.

Voici pour terminer I'indication des Mémoires que M. Padé
a publiés sur les fractions continues. Ces Mémoires ont tous
paru dans les Annales Scientifiques de I Ecole Normale Supérieure,

Sur la représentation approchée d’une fonction par des fractions
rattonnelles. 91 p. (9, 1892).

Mémoire sur les développements en fractions continues de la
fonction exponentielle, pouvant servir d’introduction & la théorie des
fractions continues algébriques. 32 p. (16, 1899).

Recherches nouvelles sur la distribution des fractions rationnelles
approchées d’une fonction. 37 p. (19, 1902).

Recherches sur la convergence des développements en fractions:
continues d’une certaine catégorie de fonctions. 60 p. (24, 1907).

Sur la généralisation des formules de Sylvester relatives aux
fonctions qui se présentent dans Uapplication du théoréme de
Sturm et sur la convergence de la table des réduites d’une fraction
ratwonnelle. 16 p. (24, 1907).

A ces travaux il convient d’ajouter un Mémoire de M. Montes-
sus de Ballore & Lille, Sur les fractions continues algébriques,
(Rendiconti del Circolo matematico di Palermo t. XIX, année
1905, p. 185-257).




	SUR CERTAINS FRACTIONS CONTINUES RELATIVES A LA SÉRIE HYPERGÉOMÉTRIQUE

