Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1926)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES ÉLÉMENTS IMMOBILES DANS UNE ROTATION DANS

L'ESPACE A n DIMENSIONS

Autor: Tiercy, Dr ès sc. Georges

DOI: https://doi.org/10.5169/seals-20668

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ainsi, le grand Anglais, spécialement durant ses années de maturation, fut profondément influencé par les écrits du grand Français.

(Traduit par J.-P. Dumur, Genève.)

SUR LES ÉLÉMENTS IMMOBILES DANS UNE ROTATION DANS L'ESPACE A *n* DIMENSIONS

PAR

Georges Tiercy, Dr ès sc. (Genève).

1. — Soient un système d'axes fixes et un système mobile ayant même origine; les deux systèmes sont rectangulaires. Désignons les cosinus directeurs des axes mobiles par

$$a_{i,1}$$
 ; $a_{i,2}$; ...; $a_{i,n}$;

les coordonnées d'un point par rapport au système fixe par (X_i) , et ses coordonnées relatives au système mobile par (x_i) ; on a

$$X_{i} = a_{i,1} x_{1} + a_{i,2} x_{2} + \dots + a_{i,n} x_{n} . \tag{1}$$

Dérivons ces relations par rapport au temps t, les x_i étant considérés comme constantes

$$\frac{dX_{i}}{dt} = x_{1} \frac{da_{i,1}}{dt} + r_{2} \frac{da_{i,2}}{dt} + \dots + x_{n} \frac{da_{i,n}}{dt} . \tag{2}$$

Ce sont les projections, sur les axes fixes, de la vitesse du point considéré.

Les projections sur les axes mobiles seront

$$V_{i} = a_{1,i} \frac{dX_{1}}{dt} + a_{2,i} \frac{dX_{2}}{dt} + \dots + a_{n,i} \frac{dX_{n}}{dt} . \tag{3}$$

En tenant compte des équations (2) d'une part, et d'autre part des relations bien connues entre les cosinus directeurs

$$\begin{cases} a_{1,i}^2 + a_{2,i}^2 + \dots + a_{n,i}^2 = 1, \\ \sum_{\lambda=1}^n a_{\lambda,i} a_{\lambda,k} = 0, \end{cases}$$

les équations (3) s'écrivent

$$V_i = \sum_{\lambda=1}^n p_{i,\lambda} x_{\lambda} , \qquad (4)$$

où l'on a posé

$$p_{k,h} = \sum_{i=1}^{i=n} a_{i,k} \frac{da_{i,k}}{dt} , \qquad (5)$$

ce qui entraîne

$$p_{k,h} = -p_{h,k}$$
 , et $p_{i,i} = 0$.

Le déterminant des seconds membres des relations (4) est donc symétrique gauche.

L'origine du système mobile a une vitesse nulle; mais est-ce le seul élément ayant cette propriété ? Posant

$$V_i = 0$$
,

on obtient un système d'équations homogènes

Si ces équations sont compatibles, il restera (n-1) relations linéaires distinctes au plus, lesquelles représentent le lieu des points immobiles.

Pour que ce système (6) soit compatible, il faut et il suffit que son déterminant soit nul

$$||p_{i,k}|| = 0 . (7)$$

Or, si n est impair, ce déterminant symétrique gauche est toujours nul; il y a donc toujours un lieu de points immobiles; ce lieu est une ligne droite lorsqu'il reste (n-1) équations distinctes entre les x_i .

Si n est pair, le déterminant en question est en général différent de zéro; l'origine seule est immobile. Mais il peut arriver, exceptionnellement, que ce déterminant soit nul, avec n pair; nous nous proposons de démontrer qu'alors les mineurs du premier ordre du déterminant $\|p_{i,k}\|$ sont nuls, et qu'il existe, non pas un « axe » de rotation, mais un plan fixe, c'est-à-dire un plan dont tous les points sont immobiles.

Remarque. Si l'origine du système mobile était animée d'un mouvement de translation, on chercherait le lieu des points dont la vitesse est minima. Pour que ce lieu existe, on aurait encore la condition (7).

2. — Reprenons le calcul donnant les éléments immobiles; et partons des équations (1)

$$X_i = a_{i,1} x_1 + a_{i,2} x_2 + \dots + a_{i,n} x_n . \tag{1}$$

Pour les droites invariables (s'il y en a), on doit avoir

$$X_i = \rho x_i \; ; \tag{8}$$

cela constitue un système de n équations homogènes en x_i ; pour que ce système soit compatible, il faut que la condition suivante soit vérifiée:

$$\begin{vmatrix} a_{1,1} - \rho & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} - \rho & a_{2,3} & \dots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} - \rho & \dots & a_{3,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,n} - \rho \end{vmatrix} = 0 .$$
 (9)

On obtient ainsi une équation en ρ , de degré n; toute solution de cette équation (9), portée dans le système (8), rendra celui-ci compatible, et c'est-à-dire que les n équations (8) se réduiront à (n-1) au plus.

3. — Etudions le déterminant D des équations (1). On a

$$\begin{cases} \sum_{i=1}^{n} a_{i,k}^{2} = 1 , & \sum_{k=1}^{n} a_{i,k}^{2} = 1 , \\ \sum_{i=1}^{n} a_{i,k} a_{i,l} = 0 ; \end{cases}$$
(10)

d'où

Ne retenons que D = 1; ce sont là les seules transformations qui puissent se ramener, d'une façon continue, à la transformation identique.

On établit alors, sans difficulté, que tout mineur est égal au mineur complémentaire correspondant; considérons en effet le déterminant suivant:

$$\delta_k = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & a_{k,3} & \dots & a_{k,n} \\ 0 & 0 & 0 & \dots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

où chacune des (n-k) dernières lignes ne présente que des zéros, à part un seul élément égal à l'unité et situé sur la diagonale principale du déterminant δ_k .

Si on multiplie ce dernier par D, on obtient, grâce aux relations (10)

$$\delta_{k} \cdot \mathbf{D} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{k+1,1} & a_{k+1,2} & a_{k+1,3} & \dots & a_{k+1,n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,n} \end{vmatrix}$$

or, ce dernier déterminant n'est pas autre chose que le déterminant δ_{n-k} complémentaire de δ_k ; et comme D = 1, il vient

$$\delta_k = \delta_{n-k} .$$

4. — Ce résultat a comme conséquence que l'équation (9) est réciproque.

Si n est impair, les signes des termes équidistants des extrémités sont contraires, et l'équation (9) s'écrit:

$$1 - \rho \sum_{i=1}^{n} a_{i,i} + \dots + \rho^{n-1} \sum_{i=1}^{n} a_{i,i} - \rho^{n} = 0 ; \qquad (9')$$

elle admet alors la racine $\rho=1$; pour cette valeur de ρ , les équations (8) deviennent compatibles, se réduisent à (n-1) équations au plus, et représentent le lieu des points immobiles; avec (n-1) équations, ce lieu est un « axe de rotation ».

Si n est pair, l'équation (9) devient

$$\rho^{n} - \rho^{n-1} \sum_{i=n}^{n} a_{i,i} + \dots - \rho \sum_{i=1}^{n} a_{i,i} + 1 = 0 ; \qquad (9'')$$

lorsqu'il n'y a pas, entre les n^2 cosinus directeurs, de relations particulières (autres que les relations 10), le déterminant des équations (1) n'est pas nul; l'équation (9") n'admet pas la racine ± 1 ; ses racines sont alors toutes imaginaires; en effet, si l'on élève chaque membre des équations (8) au carré, et si l'on en fait

la somme membre à membre, on trouve en tenant compte des relations (1)

$$\rho^2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i^2 ;$$

et comme $\rho^2 - 1 \neq 0$, il vient

$$\sum_{i=1}^n x_i^2 = 0 .$$

Il n'y a donc en général, avec n pair, que l'origine qui soit immobile.

Mais s'il existe entre les cosinus directeurs des relations particulières (autres que les relations 10), l'équation (9") peut admettre la racine ± 1; c'est alors une racine d'ordre pair, au moins une racine double, puisque l'équation (9") est une équation réciproque.

5. — Prenons le cas de deux racines différentes ρ et ρ' , qui ne soient pas l'inverse l'une de l'autre; c'est-à-dire qu'on a

$$\rho \rho' - 1 \neq 0$$
;

Nous venons d'ailleurs de montrer que ces racines sont imaginaires. Ces deux solutions correspondent à deux droites imaginaires invariables rectangulaires; en effet, on a les deux directions invariables

$$\begin{cases} a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,n}x_n = \rho x_1 ; \\ a_{i,1}x_1' + a_{i,2}x_2' + \dots + a_{i,n}x_n' = \rho' x_1' ; \end{cases}$$
 (d)

on en tire:

$$x_{1}x_{1}' + x_{2}x_{2}' + \dots + x_{n}x_{n}' = \rho\rho' \left[x_{1}x_{1}' + \dots + x_{n}x_{n}' \right],$$

$$(\rho\rho' - 1) \left(x_{1}x_{1}' + x_{2}x_{2}' + \dots + x_{n}x_{n}' \right) = 0 ; \tag{11}$$

et il faut bien qu'on ait

$$x_1 x_1' + x_2 x_2' + \dots + x_n x_n' \equiv 0$$
;

c'est-à-dire que les directions invariables correspondant aux valeurs ρ et ρ' sont perpendiculaires.

On voit immédiatement que ces deux directions ne peuvent pas être imaginaires conjuguées; car, si elles l'étaient, la « somme »

$$\sum_{i=1}^{n} x_{i} x_{i}'$$

ne serait pas nulle.

Or, l'équation (11) a toujours lieu. Donc, pour que deux directions soient imaginaires conjuguées, il faut que les valeurs de ρ correspondantes soient inverses l'une de l'autre, de sorte qu'on ait

$$\rho\rho'-1=0;$$

c'est là deux solutions conjuguées de l'équation (9").

6. — L'équation réciproque (9") a donc, sauf dans le cas où elle admet la racine $\rho=1$, ses n racines imaginaires et conjuguées deux à deux. Désignons-les par

$$\left\{egin{array}{lll}
ho_1 & ext{et} & rac{1}{
ho_1} \
ho_2 & ext{et} & rac{1}{
ho_2} \
ho & & \ddots & \ddots \
ho_{rac{n}{2}} & ext{et} & rac{1}{
ho_{rac{n}{2}}} \
ho \end{array}
ight.$$

Le plan des deux premières droites invariables est réel, puisque c'est le plan de deux directions imaginaires conjuguées; de même les plans des $\left(\frac{n}{2}-1\right)$ autres couples de droites conjuguées sont réels.

Ces $\left(\frac{n}{2}\right)$ plans réels sont complètement perpendiculaires entre eux; c'est-à-dire que toute droite de l'un est perpendiculaire à toute droite prise dans un des autres. Montrons la chose.

Comme on l'a vu au nº 5, la droite correspondant à la valeur ρ_i est perpendiculaire aux droites correspondant aux valeurs ρ_k et $\frac{1}{\rho_k}$, puisqu'on a:

$$\rho_i \rho_k - 1 \neq 0$$
 et $\frac{\rho_i}{\rho_k} - 1 \neq 0$;

il en est de même de la droite correspondant à $\frac{1}{\rho_i}$. Adoptons, pour les coordonnées d'un point courant sur ces droites, les notations suivantes

$$\begin{cases} \text{droite } \rho_i \ , & (x_1)_i \ ; \\ \text{droite } \frac{1}{\rho_i} \ , & (x_{\lambda})_{\frac{1}{i}} \ ; \\ \text{droite } \rho_k \ , & (x_{\lambda})_{\frac{1}{k}} \ ; \\ \text{droite } \frac{1}{\rho_k} \ , & (x_{\lambda})_{\frac{1}{k}} \ ; \end{cases}$$

On a donc

$$\begin{cases}
\sum_{\lambda=1}^{n} (x_{\lambda})_{i} \cdot (x_{\lambda})_{k} = 0 ; & \sum_{\lambda=1}^{n} (x_{\lambda})_{i} \cdot (x_{\lambda})_{\frac{1}{k}} = 0 ; \\
\sum_{\lambda=1}^{n} (x_{\lambda})_{\underline{1}} \cdot (x_{\lambda})_{k} = 0 ; & \sum_{\lambda=1}^{n} (x_{\lambda})_{\underline{1}} \cdot (x_{\lambda})_{\underline{1}} = 0 .
\end{cases} (12)$$

Cela posé, je dis que toute droite du premier plan (plan i) est perpendiculaire sur toute droite du second plan (plan k). Les équations d'une droite du premier plan sont

$$(\xi_{\lambda})_{i} = u(x_{\lambda})_{i} + \nu(x_{\lambda})_{\frac{1}{i}}; \qquad (13)$$

celles d'une droite du second plan sont:

$$(\xi_{\lambda})_{k} = u'(x_{\lambda})_{k} + v'(x_{\lambda})_{\frac{1}{k}}, \qquad (13')$$

où les facteurs u, v, u', v' sont des nombres arbitraires. En tenant compte des relations (12) de perpendicularité, on obtient:

$$\sum (\xi_{\lambda})_{i} \cdot (\xi_{\lambda})_{k} = 0 ;$$

les deux plans sont donc complètement perpendiculaires.

7. — On peut alors changer d'axes de coordonnées; on prendra deux axes rectangulaires dans l'un des $\left(\frac{n}{2}\right)$ plans en question, deux axes rectangulaires dans le second, et ainsi de suite.

En outre, une droite quelconque de l'un de ces plans se transforme, dans la rotation (1), en une droite du même plan. Soient en effet, les équations (13) d'une droite du plan *i*; après la rotation (1), on obtient

$$(\Xi_{\lambda})_{i} = a_{\lambda,1}(\xi_{1})_{i} + a_{\lambda,2}(\xi_{2})_{i} + \ldots + a_{\lambda,n}(\xi_{n})_{i};$$

ou bien

$$(\Xi_{\lambda})_{i} = \sum_{\mu=1}^{n} a_{\lambda,\mu} \left[u(x_{\mu})_{i} + v(x_{\mu})_{\frac{1}{i}} \right] ,$$

ou encore

$$(\Xi_{\lambda})_{i} = u \sum_{\mu=1}^{n} a_{\lambda,\mu}(x_{\mu})_{i} + v \sum_{\mu=1}^{n} a_{\lambda,\mu}(x_{\mu})_{\frac{1}{i}};$$

mais les directions correspondant à ρ_i et $\frac{1}{\rho_i}$ sont invariables; d'où

$$\begin{cases} \sum a_{\lambda,\mu}(x_{\mu})_{i} = \rho_{i}(x_{\lambda})_{i}, \\ \sum a_{\lambda,\mu}(x_{\mu})_{\frac{1}{i}} = \frac{1}{\rho_{i}}(x_{\lambda})_{\frac{1}{i}}, \end{cases}$$

et par conséquent

$$(\Xi_{\lambda})_{i} = u \rho_{i}(x_{\lambda})_{i} + \frac{v}{\rho_{i}}(x_{\lambda})_{\underline{1}};$$

ce n'est pas autre chose que les équations (13), où u et v sont respectivement remplacés par $u\rho_i$ et $\frac{v}{\rho_i}$.

Donc toute droite de l'un des $\left(\frac{n}{2}\right)$ plans se transforme en une droite du même plan.

Il en résulte que les équations (1) prennent la forme plus simple:

$$\begin{cases} X_{2\lambda-1} = a_{2\lambda-1, 2\lambda-1} x_{2\lambda-1} + a_{2\lambda-1, 2\lambda} x_{2\lambda} ; \\ X_{2\lambda} = a_{2\lambda, 2\lambda-1} x_{2\lambda-1} + a_{2\lambda, 2\lambda} x_{2\lambda} ; \end{cases}$$
(14)

ou bien encore

$$\begin{cases} X_{2\lambda-1} = x_{2\lambda-1} \cos \sigma_{\lambda} - x_{2\lambda} \sin \sigma_{\lambda} ; \\ X_{2\lambda} = x_{2\lambda-1} \sin \sigma_{\lambda} + x_{2\lambda} \cos \sigma_{\lambda} ; \end{cases}$$
 (14')

et il y a $\left(\frac{n}{2}\right)$ angles σ_{λ} .

On voit ici aisément que l'équation (9") en ρ a ses racines imaginaires. Elle s'écrit en effet

$$\begin{vmatrix} \cos \sigma_{1} - \rho & -\sin \sigma_{1} & 0 & 0 & 0 & \cdots \\ \sin \sigma_{1} & \cos \sigma_{1} - \rho & 0 & 0 & 0 & \cdots \\ 0 & 0 & \cos \sigma_{2} - \rho & -\sin \sigma_{2} & 0 & \cdots \\ 0 & 0 & \sin \sigma_{2} & \cos \sigma_{2} - \rho & 0 & \cdots \\ 0 & 0 & 0 & \cos \sigma_{3} - \rho & \cdots \end{vmatrix} = 0$$

ou bien

$$(\rho^2 - 2\rho \cos \sigma_1 + 1)(\rho^2 - 2\rho \cos \sigma_2 + 1) \dots$$

$$(\rho^2 - 2\rho \cos \sigma_n + 1) = 0 . \qquad (9''')$$

On a donc n droites imaginaires, invariables; ces droites ne dépendent pas des axes de coordonnées employés; elles subsistent si l'on revient au système (1).

Les équations (14) et (14') montrent que le déplacement dans l'espace E_n , où n est pair, se décompose en $\left(\frac{n}{2}\right)$ rotations planes ordinaires, indépendantes les unes des autres, effectuées respectitivement dans des plans complètement perpendiculaires entre eux. Dans l'espace E_n d'ordre pair, l'origine est donc, en général, le seul point immobile.

On a, d'ailleurs toujours $|\rho| = 1$, puisque deux racines conjuguées de l'équation (9") sont aussi inverses l'une de l'autre.

8. — Reprenons les équations (9") et (9'''); et étudions le cas où elles admettent la solution $\rho = 1$; ce sera, avons-nous dit, une solution multiple d'ordre pair, au moins double, puisque l'équation (9") est réciproque.

Si l'on utilise la forme (9'''), on voit que cette solution $\rho = 1$ correspond au cas où l'un au moins des angles σ_{λ} devient nul;

lorsqu'un seul de ces angles est nul, la solution $\rho = 1$ est double, et l'un des $\left(\frac{n}{2}\right)$ plans complètement perpendiculaires, dont nous avons parlé au n° 6, reste fixe, tous les points de ce plan étant immobiles.

Le fait subsiste, si l'on considère l'équation (9"), de forme plus générale; quand elle admet la racine double $\rho=1$, non seulement il y a un axe immobile, mais un plan entier reste fixe; le mouvement sera sensible dans $\left(\frac{n}{2}-1\right)$ autres plans complètement perpendiculaires entre eux et au plan immobile.

Si p des angles σ_{λ} deviennent nuls, la racine $\rho = 1$ est d'ordre (2p); et p des $\left(\frac{n}{2}\right)$ plans complètement perpendiculaires restent fixes, le mouvement étant sensible dans les $\left(\frac{n}{2} - p\right)$ autres.

9. — Revenons enfin au déterminant symétrique gauche (7) du paragraphe I. Il doit être nul pour que les équations (6) soient compatibles et qu'il y ait, outre l'origine, un lieu géométrique de points immobiles; s'il n'est pas nul (et c'est le cas général quand n est pair), l'origine seule possède une vitesse nulle.

Mais il peut y avoir entre les $p_{i,k}$, avec n pair, des relations spéciales, telles que le déterminant (7) soit nul. Dans ce cas, les équations (6) sont compatibles, et il y a un lieu de points immobiles. Or, nous venons de démontrer que ce lieu est un plan entier [cas où $\rho = 1$ est racine double de l'équation (9")]; cela veut dire que les équations homogènes $V_i = 0$ doivent se réduire à (n-2); ce qui exige que le déterminant (7), non seulement soit nul, mais encore ait ses mineurs du premier ordre nuls.

Donc si, avec n pair, le déterminant (7) est nul, ses mineurs du premier ordre le sont aussi. Mais, en général, les mineurs du deuxième ordre ne le sont pas; nous avons montré, en effet, que $\left(\frac{n}{2}\right)$ rotations σ_{λ} sont indépendantes les unes des autres.