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MELANGES ET CORRESPONDANCE

Sur les bitangentes d’une quartique.

A propos des articles de MM. WiNANTS et DELENS.

Dans son article Fonctions elliptiques et quartiques binodales de
PEns. Math. (tome XXIII, 3, 4, p. 148-163) M. WiNANTS a rencontre
une. difficulté d’élimination en cherchant les bitangentes de la quar-
tique £ = p'u, y = pu. M. DELENS a donné la solution de cette diffi-
culté dans le tome XXIII, 5,6, p. 327-328 de I’ Ens. Math. Je veux mon-
trer comment on peut trouver les bitangentes, sans cette difficulté.

Hors de la droite a I'infini les bitangentes joignent des paires de

(J), (L),’

points donnés par les affixes u, ¢, ot u + ¢ = 0, ou % ou - oU -,
w et o’ étant les périodes et w” = 0 + o’. Si Az + By - C =0
est une bitangente, la fonction

A})/u - Bpnu + C — AP/u -+ B(G})‘zu -—% >'+ C

posséde deux paires de zéros doubles. Done, pour u | ¢ =0, on
a les conditions nécessaires et suffisantes u = ¢ et

A}yu—[—B< p2u — %2>+C:O,

1 A
__Aplu—[—B<6})u 5-2)—{—(4::.0,
A})’/u -+ 12Bpup/u = 0 .

Seule solution : pu = 0, et nous trouvons une bitangente joignant les
deux points ot pu = (). ~

Pouru 4 v =
et

= 2 ,on a les conditions necessalres et suffisantes u =< ¢

A.P/u —|—B%6P2u———%g2s—|— C=0 ,
1
2

(s ) nfon(3 )

A}wu - ’12B})u})/u e= { ,
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done

v = 2}1”}*!%?'%9’(3* o) { = prufp —p(5—)f{=0

¢ (u) a le point u = 0 pour pole :d’drdre &, le point u = % pour poéle

’ "
d’(ordre 4, donc ¢ (u) a 12 zéros. Les zéros 2. © + %, %—]— (i;—, %—{— %

47 4
sont doubles et satisfont & u = %~ u. Restent 4 zéros, et nous trou-

vons deux bitangentes joignant les deux paires de points correspon-

.. o’ '’
dants. D’une maniére analogue pour u 4 ¢ = 5 Ou -, donc hors

de la droite & I'infini la courbe a 7 bitangentes. .

Que la droite & I'infini, qui coupe la courbe en 4 points coincidant
avec le point a I'infini de z = 0 doive compter pour une seule bitan-
gente, devient clair si nous cherchons les points d’inflexion. Hors du
point a I'infini ces points correspondent aux solutions de

pnu -+ J)Ivu — (J)Hll()z = 0 ,
donc il y en a 10. Par suite le point & linfini compte pour 2 points

d’inflexion dans le sens de Pliicker. La figure ci-dessous peut illustrer
un peu la chose.

Si les points S; se réunissent, les deux points d’inflexion se réunis-
sent dans le méme point.

J. WoLrr (Utrecht).

Trajectoires orthogohales et ombilies.

Je voudrais, sans toucher au fond méme du probléme, ajouter
quelques remarques aux intéressantes considérations présentées par
M. Marcel WinaNTs dans un récent article (Combien passe-t-il de
lignes de courbure par un ombilic ? L’Enseignement mathématique,
24me année, p. 239, 1925). : o

I. Les différentes configurations de trajectoires orthogonales

indiquées au premier paragraphe de cet article appartiennent & une .
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