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par les formules de Newton exactement comme si le sinus était un
polynome.

93. Une conclusion & tirer du précédent article est la suivante:
la théorie des fonctions entiéres et méromorphes n’est en somme pas
auire chose que la théorie quantitative des polynomes et des fractions
rationnelles, abstraction faite de leur degré. Ce point de vue n’a
évidemment qu’un lointain rapport avec d’autres, comme celul
d’aprés lequel «les comparaisons et le langage de la biologie»
seraient « trés utiles en théorie des fonctions »*. Mais si le point
de vue actuel comporte plus que celui-la des difficultés ardues et
périlleuses et exige assurément plus d’efforts, il n’est pas douteux
par contre qu’il conduira en définitive & de tout autres résultats.

DEMONSTRATION ELEMENTAIRE

DE LA

LOI DE GAUSS DANS LE CALCUL DES PROBABILITES

PAR

Antoine Lomnicki (Lwow, Pologne).

1. La loi de Gauss, que quelques auteurs appellent aussi le
théoréme de BerNouLLI-LapLACE, s’exprime par la relation
arithmétique suivante:

lim n! E(np)—s  n—E(np)\ts 4/7 '
ns>o (E(np) — s)! (n — E (np) + s) lp q Vépqn
| _ /2 e
—Vz¢ (1)

ou 0<p<L 1,. g=1—p, s= E(\V 2pgn), A étant un nombre
constant, choisi & volonté. E(z) désigne le plus grand entier

1 E. BorEL, Méthodes et problémes de théorie des fonctions. 1922.
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contenu dAns . Le symbole (E (np) —s)! n’a de sens que
pour n suffisamment grand, savoir pour E(np)>s. Si np par-

court seulement les valeurs entiéres, la formule (1) prend une

forme plus simple: |

n]_i:l; <"P ”— $>Pnp—-s qnq-{-s Vrpqn — \/;‘2: s ’ @)

Comme dans cette formule figurent le nombre r et la fonc-

tion exponentielle, il faudra dans la démonstration faire usage
d’une définition arithmétique ‘du nombre = et d’une définition
de e*. Nous adopterons la définition de x par la formule de
WaLLss, laquelle se montre ici la Plus naturelle et la plus

ro . x\"
convenable et nous définirons e* par lim <1 —}-4;) . Nous ne

n= 0

ferons pas usage de la formule de STIRLING, au contraire, elle
découlera presque immeédiatement de nos raisonnements. Vcila
pourquol nous appelons notre démonstration « démonstration
élémentaire ».

La formule classique de WALLIS §’écrit:

lim 2:2.5.% ... (2m — 2)2m =
maw 1.83.3.5 .. (2m —1)2m —1) — 7 °
On lo transforme sans peine en
lim W,, = lim 27! VIn _ /2 3)
ne o 2 me o m 12 9m - T o

Appelons A, (s) le terme général de la suite, qui figure dans
la formule (1) ou (2).

2. La démonstration de la loi de Gauss devient tros simple

[N

dans le cas symétrigue p = q = 5. La suite considérée devient

CORICEAEDIEE

Il suffit de chercher la limite de cette suite pour n=2m,

A (s) =

- cay

lim A?m-]—l (9)
g A2m (’5)

=1, -

—
==
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comme il est aisé de voir. Nous avons donc

2m ! - \/ﬁ . 5)
(m — s) ! (m + s)1 g2m

-An (S‘ = A:Zm(s) —

Pour s =0 on a B
_ 2m! V2m

An( ) — 2 ’ 22,” — 2m
done ,
lim A, (0) = \/3 . (6)
= ® . [

, : 2
Pour s~ 0 nous séparons le terme qui tend vers \/ = alors

A, (5) = A,(0).B,(s)

__ZmI\/ﬁ m(m —1)(m — 2) ... (1n—s—|—2)(m—s+1.') ‘ 7
— Tzt (ms)(m4s—1)(m4s—2).... (m + 2)(m + 1) A7)

Pour déterminer la limite de B,(s), considérons

1 1
Bu(s) BZm (s)

A s\./., . s , s . s
_<1+;¢><1+m—1>'“<l+m——s+2><1+m—s—{—1>'

Ce produit contient s facteurs, qui vont en croissant, donc

s\*¢ 1 ) s )
Pour s = const. nous aurions lim B,(s) =1, mais pour

s = E(V 2pgn), c’est-a-dire pour

s = l*(/x\/%) = E(\Vm) ,

nous obtiendrons une limite qui dépend du 4. Supposons d’abord
AV m entier. Dans ce cas

s T “/’—’2 | m.A
(1+—S—>=(1 +XV"") —(14+ 2 ,
m \ .om _ \/m -

i 7 S .LS. .
lim (1 4 2} = " .
mer © m "

alors
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De méme

s s A W
(1+m)=(1+ 1)

Vir — 3+ Vm

tend vers ¢, ‘
Les inégalités (8) fournissent alors

Jim B, (s) = e . (9)

Les formules (6), (7) et (9) donnent

lim A (s) = \/ 2 (10)
= © T :

L3

Si AV m n’est pas un entier, il faut refaire le méme raisonne-
— . a
ment sur s = AV 'm — « ou 0 <a<1. Comme —— tend vers

m
zéro, on constate qu’on obtient la méme limite e}{ et la méme
formule (10). La loi de Gauss est donc démontrée dans le cas
symétrique. A |

3. Passons au cas asymétrique, c’est-a-dire posons p = g,
par exemple p > ¢. Supposons d’abord np et AV 2pgn entiers
et décomposons A,(s) en deux facteurs, comme dans le cas
symétrique

!
M) = o b 4 Vg

np.(np—1) ...np —s+2)np —s +1) 4°

"(ng + s)(ng + s — 1) .. (ng + 2)(ng + 1) " ,5°

<
-

F
Soient
n! np .n 7T ' .
A,(0) = np | nq!p P gt V;Pqn (12)
et B,(s) le produit restant, alors
CA,(s) = A,(0).B,(s) . (13)

Considérons en premier lieu la limite de B, (s).
- npq npqg — q
B o } e ees
n(5) npq + sp npq + sp —p

P9 — 59+ 29 npg— sq+ g
npq + 2p npq + p

’
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d’ou |
1 _ /. 3P>< SP—(P——q>>
— (1 + 22 )(1
B, (s) <+npq T npqg —q
1 661-1-2(1?——61)><1 5q+(p-—f/)>. 14
( +npq—-sq+2q +np61—39+q (1%)

s sp )\ sq + (p—4)\®
Les limites de <1 - ;—[;]) et <1 -- g — 54 T q) sont 1c1
e et ¢20"; elles sont alors trop larges. On parvient cependant

: - : 1
aux suites limitantes convenables pour RO groupant les
n

facteurs de (14) deux a deux, le premier avec le dernier, etc.
On prouve aisément (par exemple dans la formule (11)) que ces
couples de facteurs vont en croissant pour 7 suffisamment

grand, p étant plus grand que g, done

| sfa sz :
sp. sq + (p — 9) 1
(1 ol npq) (1 T npqg — sq + 61> =~ B, (s)

s+ 2(p — )‘5/2 s st
1 s+ 2(p—gq ) (
<( +2npq—sq+26/ 1+2npq—sq ’

si s est un nombre pair, et d’une maniére analogue pour s impair.
Pour s = AV 2pgn les suites limitantes tendent vers les mémes
limites que les suites

' s/2 s[2 sfe s/2
S I (R (e
( . ng) + np ot . 2npq \ 1+ 2npq

qui sont moins compliquées. En introduisant s = 2V 2pgn
on voit, que la suite limitante inférieurement tend vers
eP? . e = ¢ et la suite limitante supérieurement vers

1 1
12 o
512 5

)\2
e . e - e .
Donc
lim B, (s) = ™ . (15)
=y O '

On voit ici clairement pourquoi on a adopté pour s la forme

A V?pqn .
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4. Il reste & prouver que la limite de la suite A, (0) dans (12)

g . :
est \/?: . Posons n = 2m, ce qui est sans influence sur lIa valeur

de la limite — comme dans le cas symeétrique. I1 vient

2m !

Anl0) = 4,000 = g0 S p

2mp q?mq vw . (] 6)

Cette suite est une généralisation de la suite (3) de WaLLis

et pour p = ¢ = % elle est identique & (3). Mettons en évidence
la suite Wy, de WarLis. Il vient

2m ! V2m m 2 9 9 —
2m C2m = m 12 22,,1 ’ 2”7'[)! 2mq! (2[)) e (2(1) 'nqv4pq N

A, (0) = W

(17)
En simplifiant la fraction, on raméne Com & la forme

) c. — (2mg+1)(2mg +2) ... (m —1)m
o = G o — 1) (o 12 ()

i (2p)2lnp+% (2q)2mq-|—% ,

ou

_ (2mg 4+ 1)(2mg + 2) ... (m — 2) (m — 1)
2 T (2mp — D(Zmp —2) ... (m 4 2)(m + 1)

(2[)) 2mp—1, (27) 2mqg+Y .

Nous réunissons et complétons les facteurs correspondants
pour obtenir les suites de la forme exponentielle. Par exemple,

2mp-1, 9 2mp-Yp . ae
on transforme 22" en < = ) en multipliant et en

2mp — 1 5”71?1
o 2mp—Y, . . 2mp — 1 2mp=ha,
divisant par - - e . Ensuite on transforme ! gmp _) 5
I)lp—'
. 4\ 2mp=3)s .. . .
n (%‘*é) et ainsi. de suite. On parvient de cette ma-
g —

niére a ’expression suivante

1 2mp-1, . 1 2mp-3fa - . . 1 m-4-8/g . 1
()T g )
PY—

m 1 \2mq+% 1 2mq-+-3f2 1 m-3/a 1 m-Y, '
(1 +2mq> : <1+2mq—|—1> <l+m—2> ( +m-—1> ‘I

(18)
On peut enfermer les termes de cette suite entre deux suites,
qui tendent vers la méme limite 1. Il v a 2mp — m — m — 2mgq |

I
2I

m+4-1,

N—""
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facteurs dans le numérateur et dans le dénominateur. Nous
appliquons & chaque facteur les inégalités connues '

x+% .1_{_1.) l__1_
R T

x

. ~ x+7%
qu’on obtient aisément du développement de log (1 + l) .

Prenons d’abord pour les facteurs du numérateur les nombres

e, qui sont plus petits et dans le dénominateur les nombres
1 1

1
PN S .
e 1\# 2+U/ " qui sont plus grands et ensuite inversement.

Nous trouvons

e2mp—m ?
1 1 1 1 1 < C?m
2mp—m-4 — ( — ] S
12\2mq 2mg41 " 2mqg4-1 m
1 /1 1 1 1
2 i —_— — — [
e mp m+12 m lzz+1+nz+’l 2mp)

<

e?mp—m

ou -’

1 ( 1 1 ) + 1 /1 1 )
12\ 2m m 2\m 2m
e . ! < C:!m <e Pr

Les suites limitantes tendent ici vers 1, donc

lim C,,, = 1 . (20)
n= o

La formule (17) devient alors

: 2
nan:oAn(O) — \/E . (21)

Les formules (13), (15) et (21) donﬁent

. 2 e
lim A (s) = Zev .
L= ~

La loi de Gauss est donc démontrée aussi dans le cas asymé-
trique.
Nous avons supposé np et AV 2pgn entiers. S’il n’en est pas

ainsi, il faut introduire dans les raisonnements E(np)=np —a«
et |

E()\V2pqn) :J\Vqun—B ol 0 <<a<<1l et 0<[§<1
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et compléter toute la discussion. On constate qu’on obtient les
meémes limites pour B, (s), Com, A (O) et A,(s). Nous ne ferons
pas ici cette discussion minutieuse qui n’est ni difficile ni inté-
ressante. :

5. Remarques. — 1° Les formules (21) et (16) fournissent
. une généralisation intéressante de la formule de WarLis. Si np
n’est pas un entier, nous pouvons écrire cette formule généra-
lisée -de la maniére suivante

|
n.
lim

1 E(np) n—E(np) /7 7 __ E
asw E(np) | (n — E (np)) 1 £ 1 Vipgn = \/n - (22)

20 Par des raisonnements tout a fait analogues a la démons- | |

tration de la formule (20) on peut démontrer la formule de
StirLING. D’abord la formule (3) de WaLLis fournit en divisant
par m !

7 | z2m ;
lim W= lim . — 5
M= o0 2m Ni=> 0O (2'n _ 1)(2"1 —_ 2) . (m -+ 2) (”n + 1) 2”3 V2In =

ou ' |

m! 22" ;
]im 3 - il !
mao 2(2m — 1) (2m — 2) ... (m + 2)(m 4 1) m /2 2 4

En procédant ici de la méme maniére que pour Cgm on trouve -
Pidentité

] 2m—Y, v 1 2m~8fg ,1~ m-+-Y
t = (i, 1 NTR 1+____> S TR
A% ammt% 2m — 1 2m — 2 m

2m

Les 1négalités (19) donnent ici |
‘ 1

m! e™ 1 m! em+24"l
2m™mt% e Vs 2m™+7%
donc '
1 m! e™ m !
I s =1 ou lim - — =1 . (23)
'nlnalo <VV2 m o 2mmt% mes m” e " 2xm

La formule de STIRLING est démontrée.
Pour parvenir a la formule

* | ' —m4— ' ‘
m! = V2xm m™e 12m (24)
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il suffit de former le quotient de deux termes consécutifs de la

suite sy, qui figure dans (23) |
1\ t+%
o _(1+3)

—

Srrz+l ¢

et appliquer encore une fois les inégalités (19) (v. E. CEsARoO,
Elementares Handbuch der algebraischen Analysis. Leipzig.
1904; p. 154-155).

Lwow, Pologne, mars 1926.

LES EPREUVES REPETEES
o _ET LA
METHODE DES FRACTIONS CONTINUES DE MARKOFF

PAR

D. MirimANOFF (Genéve).

Considérons une suite de s épreuves comportant deux événe-
ments contradictoires A et B de probabilités constantes p et ¢

(conditions de Bernoulli) et soit P la probabilité pour que le

nombre de réalisations m de I’événement A soit compris au sens
large entre deux nombres donnés m,, m,. On sait que P est égale
a la somme |

Mo

m n S—-n
2 C < P9 .

m=imy

Envisageons le binome
((/ + p)s s qs + C;pqs—l + .
+ C‘;n1 Pml qs—-ml + .+ C;)IQPII12 (IS_—’)?z.

+ C;n2+lpmz+1 q“"’”’?“‘l 4+ Ps )
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