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CALCUL DES PROBABILITÉS 103

par les formules de Newton exactement comme si le sinus était un

polynome. n

23. Une conclusion à tirer du précédent article est la suivante :

la théorie des fonctions entières et méromorphes n'est en somme pas

autre chose que la théorie quantitative des polynômes et des fractions

rationnelles, abstraction faite de leur degré. Ce point de vue n'a

évidemment qu'un lointain rapport avec d'autres, comme celui

d'après lequel « les comparaisons et le langage de la biologie »

seraient «très utiles en théorie des fonctions >>\ Mais si le point

de vue actuel comporte plus que celui-là des difficultés ardues et

périlleuses et exige assurément plus d'efforts, il n'est pas douteux

par contre qu'il conduira en définitive à de tout autres résultats.

DÉMONSTRATION ÉLÉMENTAIRE

DE LA

LOI DE GAUSS DANS LE CALCUL DES PROBABILITÉS

PAR

Antoine Lomnicki (Lwôw, Pologne).

1. La loi de Gauss, que quelques auteurs appellent aussi le

théorème de Bernoulli-Laplace, s'exprime par la relation

arithmétique suivante:

lim ilpE(«p)-s
(E (np)— s) (n— E (tip) +il-* oc

112 .- (1)

où 0<P<1, q=1 — P, sE{lAétant un nombre

constant, choisi à volonté. E(a:) désigne le plus grand entier

i E. Borel, Méthodes et problèmes de théorie des fonctions. 1922.
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contenu d'ans x. Le symbole (E (np) — s) n'a de sens que
pour n suffisamment grand, savoir pour E Si np
parcourt seulement les valeurs entières, la formule (1) prend uneforme plus simple:

n-+ oc („/_ Vis; y/î m

Comme dans cette formule figurent le nombre et la fonction

exponentielle, il faudra dans la démonstration faire usaged'une definition arithmétique du nombre n et d'une définition
de ex. Nous adopterons la définition de n par la formule de
Wallis, laquelle se montre ici la plus naturelle et la plus
convenable et nous définirons ex par lim ^1 -j- Nous ne
ferons pas usage de la formule de Stirling, au contraire, elle
découlera presque immédiatement de nos raisonnements. Voilà
pourquoi nous appelons notre démonstration « démonstration
élémentaire ».

La formule classique de Wallis s'écrit:

7U]jm 2,2,4,4 (2m — 2)2m _m->ce1.3.3.5 ('2m — 1 (2m — 1)' "2 '

On la transforme sans peine en

Hm w3„, ]im
m-* 00 /«-+ oo m :

V 2 m _ J2

22«i y n- V« • (3)

Appelons An(s)leterme général de la suite, qui figure dans
la formule (1) ou (2).

2. La démonstration de la loi de Gauss devient très simple
dans le cas symétrique p q La suite considérée devient

A (s) -
11 '

"-E(ï)
Il suffit de chercher la limite de cette suite pour n 2 m,car

A2/»+l (,S)
lim 1

'H-* A2«IW
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(5)
s) : [m -|- s) : 22m

1m V2/î

comme il est aisé de voir. Nous avons donc

1m\ Y2/«
A„(s) — Ain.(S) — (m _ 7) (,„ + 7)

Pour s 0 on a

A„(°)
f

12 iy2m
w.,

m r 2

donc

lim A„ (0) 1/— • (6)
00

Pour s^z 0 nous séparons le terme qui tend vers y/- alors

* AJOJ.B,»

2/71 y2m m (771 — i)(m — 2) (m — a- -f 2) (m — s + 1)

m S2 2"m (m -|- 5) (/7i -f- -s- — 1) (777 -p s — 2)— (771 -}- 2) (777 -}- 1)

Pour déterminer la limite de Bn(s), considérons

1

_
1

(' + ^X1 + - 0 + m-SS + 2)(1 + m + 1) '

Ce produit contient s facteurs, qui vont en croissant, donc

1 + ^)<ir^<(1 + 7) • (g)
1

"V B2m(s) V m — S + 1,

Pour s const, nous aurions limB„(s) l, mais pour
77.- se

s E(k \/2pqn), c'est-à-dire pour

« E(xyiO

nous obtiendrons une limite qui dépend du À. Supposons d'abord
1\/m entier. Dans ce cas

alors

lim (1 +.*)'
m-+ oo \ 77IJ
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De même

tend vers e1*.

Les inégalités (8) fournissent alors

Les formules (6), (7) et (9) donnent

Iim A„W t/-«"1' (10)
n-¥ oo V TU

Si A Vmn'estpas un entier, il faut refaire le même raisonnement

sur s X Vm — « où 0 < « < 1. Comme ~ tend vers
y m

zero, on constate qu on obtient la meme limite et là même
formule (10). La loi de Gauss est donc démontrée dans le cas
symétrique.

3. Passons au cas asymétrique, c'est-à-dire posons p^£q,
par exemple p q. Supposons d'abord np et W/lpqn entiers
et décomposons An(s) en deux facteurs, comme dans le cas
symétrique

A"{S) ~ np l nq
P"P V ^PV1

np. (np— 1) (np— * + 2) (np— s + 1) ,f' (nq+«)(«? + « — 1) (nq + 2)(ny + 1)
'
ps

'
Soient

A"(0)
np

"
nq

r'"P(12)

et Bn(s) le produit restant, alors

A»W A„(0)-B„(*) (13)

Considérons en premier lieu la limite de Bn(s).

B (s) npq npq — g
" npq + sp

'
npq -f- sp— p'

npq— + 2<ji — +
npq +>ip + '
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d'où
_J_ U + ^Yi
b„(s) \ "PiA npq-i >

107

*g 4- 2(p — q)Vt«9 + (P — l)\ (14)

npq — 7q +2q J\^ npq

Les limites de (l + et (l + sont 101

e2Pl* et e2^8; elles sont alors trop larges. On parvient cependant
I

aux suites limitantes convenables pour en groupant les

facteurs de (14) deux à deux, le premier avec le dernier, etc.

On prouve aisément (par exemple dans la formule (11)) que ces

couples de facteurs vont en croissant pour n suffisamment

grand, p étant plus grand que donc

je.V'Yi SJL+ (P ~ Ûy/a<*

\ npq) \ npq — sq + q) B(J (s)

<(ij- •" + 2<P ~ 9) )Sh(i-| f \ *
^ V 2nPi — sci+ 2iJ V 2npi — sii

si s est un nombre pair, et d'une manière analogue pour s impair.
Pour s 1\/2pqn les suites limitantes tendent vers les mêmes

limites que les suites

1++iT et (*++é)
qui sont moins compliquées. En introduisant

on voit, que la suite limitante inférieurement tend vers
ep# ^eiset la suite limitante supérieurement vers

1)2 1)2
e2 e2 el

Donc
lim B (s) (15)

On voit ici clairement pourquoi on a adopté pour s la forme

X]/2pqn
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i.11^reste à prouver que la limite de la suite An(0) dans (12)/lest V H Posons n 2n», ce qui est sans influence sur la valeur
de la limite — comme dans le cas symétrique. Il vient

A"(Q) (16)

Cette suite est une généralisation de la suite (3) de Wallis
et Pour P qY elle est identique à (3). Mettons en évidence
la suite W2 mdeWallis. Il vient

A2m(°) — w2,„-c2 m %np| 2,nq
(2 V4

W)
En simplifiant la fraction, on ramene C2m à la forme

ou

r — (2my + l)(2mûr + 2) (m — 2) (m — 1)
2m ~~

(2>mp — 1) (2mp — 2) (m + 2) (m -f 1) ^ 2 (2q)2mg+V2 •

Nous réunissons et complétons les facteurs correspondants
pour obtenir les suites de la forme exponentielle. Par exemple,

on transforme en t)^ en multipliant et en

divisant par -Ensuite on transforme (2">P
(2mp — \ymP '2 2mp — 2

(Imp — #en
\2mp — 2) et amSL de smte- 0n parvient de cette

manière à l'expression suivante

fi 1

1 V'"P~'/2 A
1

1 /, 1 \'"+8A / i\»+M
V 2mp 1/ 2mp — 2/ ' +m + l) '(1+rô)

\ ^ ïmql)+m_2j p + ^ _
(18)

On peut enfermer les termes de cette suite entre deux suites,
qui tendent vers la même limite 1. Il y a 2mp — m m — 2mq
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facteurs dans le numérateur et dans le dénominateur. Nous

appliquons à chaque facteur les inégalités connues

e<(i <e 12 V* *+V (19)

j \ X + V2

qu'on obtient aisément du développement de log ^1 +
Prenons d'abord pour les facteurs du numérateur les nombres

e, qui sont plus petits et dans le dénominateur les nombres

i+jL/i—
e 12 \x x+x', qui sont plus grands et ensuite inversement.
Nous trouvons

^2mp—m

<ciraimp-m+L(Aî—|—î ±\
12 \2mq 2mq-\-\ 2mq-\-\ m

1/1 1,1 1 \

< f
e

2 tnp-m

OU '

1 / 1
__

1 \ 1 /_1_ 1 \
e

12 \2mq m)
g

Les suites limitantes tendent ici vers 1, donc

lim C2,„ 1 (20)
m-*- oc

La formule (17) devient alors

lim An(0) — t /I (21)
/2-v 00 y 71

Les formules (13), (15) et (21) donnent

lim A;I (s) 4 —e~k*

7oo y 77

La loi de Gauss est donc démontrée aussi dans le .cas asymétrique.

Nous avons supposé np et1\/2entiers. S'il n'en est pas
ainsi, il faut introduire dans les raisonnements E —?.
et

E (A y 2 Jqn)X SjYpqn — ß où 0<a<l et 0 < ß < 1
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et compléter toute la discussion. On constate qu'on obtient les
mêmes limites pour B„(s), C2m, A»(0) et A» (s). Nous ne ferons
pas ici cette discussion minutieuse qui n'est ni difficile ni inté-
ressante.

5. Remarques. — 1° Les formules (21) et (16) fournissent
une généralisation intéressante de la formule de Wallis. Si np
n'est pas un entier, nous pouvons écrire cette formule généralisée

de la manière suivante

5 E (np) (n — E (np)
pE("P) qn-E{np)^^ (22)

2° Par des raisonnements tout à fait analogues à la démonstration

de la formule (20) on peut démontrer la formule de
Stirling. D'abord la formule (3) de Wallis fournit en divisant
par m

1 m \ 'l2m
Il ni zrjTz— — hiaiii

At
oc- m-* co (2m — 1)(2m—2) (m -j- 2) (m -f- 1) 2m y2m V ^

OU

m 22m-K
lim

m-+ cc 2(2 m— 1) (2m — 2) + 2) (m + 1)
=v/î-

En procédant ici de la même manière que pour C2m on trouve
l'identité

1 m! / 1 / \2 lXm+y2
W2,„ ~2mm+1/2 + 2m — l) ' V + 2m — - (1 + m)

Les inégalités (19) donnent ici

m em ^ l ^ ni e 24m

2 m'"+% 2m"1+v*

donc

/ l ffi ] ßm \ m
*

2mm + 1/2) ~ 1 °U
m"1 e~m yinm ^

La formule de Stirling est démontrée.
Pour parvenir à la formule

ml — y 2 7zm mrn e
12 m

(24)



MÉTHODE DES FRACTIONS CONTINUES DE MARKOFF 111

il suffit de former le quotient de deux termes consécutifs de la

suite sm qui figure dans (23)

_(1+w
sm+l e

et appliquer encore une fois les inégalités (19) (c. E. Cesàro,
Elementares Handbuch der algebraischen Analysis. Leipzig.
1904; p. 154-155).

Lwöw, Pologne, mars 1926.

LES ÉPREUVES RÉPÉTÉES

ET LA

MÉTHODE DES FRACTIONS CONTINUES DE MARKOFF

PAR

D. Mirimanoff (Genève).

Considérons une suite de s épreuves comportant deux événements

contradictoires A et B de probabilités constantes p et q

(conditions de Bernoulli) et soit P la probabilité pour que le
nombre de réalisations m de l'événement A soit compris au sens

large entre deux nombres donnés m1: m2. On sait que P est égale
à la somme

m g

2cr/y-"j.
m—mi

Envisageons le binôme

(q + p)s qs + dsPqs-[ +

+ C'Y'p'"1 qs~'"1+ + C

+ CY2+lpm*+V-'"sH +. ...+//
(D
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