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tous les feuillets, sauf le dernier. Ainsi, notre principe s'applique
encore.

9. Passons enfin à un troisième exemple : considérons une
surface générique du quatrième degré /4(#, y, z) 0, et demandons-

nous si elle est uniformisable par les fonctions méromorphes,
c'est-à-dire s'il existe des fonctions méromorphes, non fonctions
d'une seule d'entre elles, satisfaisant à son équation. Cette surface
est identique topologiquement à la surface x4 + yà + zé — 1 =0,
car l'une et l'autre sont sans singularités et l'on peut passer de

manière continue de l'une à l'autre, sans avoir jamais de
singularités.

On est donc ramené, en, vertu du principe, à rechercher si la

surface x4 + y4 + z4 — 1 — 0 est uniformisable par les fonctions
méromorphes, et la réponse négative est vraisemblable; quoi qu'il
en soit, la solution de cette question sera considérablement
facilitée, si l'on commence par déterminer tous les systèmes de

fonctions méromorphes d'une seule variable satisfaisant à cette
dernière équation, c'est -à - dire si l'on résout l'équation
X + Y + Z — 1 0 en fonctions méromorphes dont tous les
zéros et tous les pôles sont d'ordre égal à 4 ou multiple de 4.

Il est probable que les méthodes de MM. Valiron et Nevanlinna
donneront la solution de cette dernière question (voir p. ex.
R. Nevanlinna, à); il faudra naturellement appliquer ici la
double dérivation. Observons que les oo1 sections de la. surface

+ y* + zé — 1=0 par ses plans bitangents donnent oo1 courbes

répondant à la question.

II. L'algébrisation de la théorie des fonctions entières
ET MÉROMORPHES.

10. La théorie des fonctions entières et méromorphes doit,
pour se rapprocher de la perfection, prendre de plus en plus
modèle sur l'algèbre. Certes, de nombreux obstacles sont encore
à surmonter dans cette voie; cependant, l'on peut entrevoir dès
à présent deux manières différentes de réaliser cette algébrisation
de la théorie, seule susceptible de lui donner toute la précision
qu'elle comporte. La première consistera dans l'étude des fonc-
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tions holomorphes et méromorphes dans le cercle-unité, au
moyen d'inégalités toutes absolument précises, combinées de
manière à exclure la possibilité d'un jeu quelconque dans le
mécanisme des déductions et donnant régulièrement par suite
les résultats les plus complets. La seconde, basée sur l'étude
approfondie des propriétés dans tout le plan des polynômes et
fractions rationnelles de degré m, sera l'assimilation des fonctions
entières et méromorphes à des polynômes et fractions rationnelles

de degré infini.
- 11. L'étude systématiquement précise par des moyens élémentaires

des fonctions holomorphes ou méromorphes dans le cercle-
unité a été déjà réalisée pour des classes particulières de fonctions
par exemple les fonctions bornées et les fonctions univalentes.
Il ne semble pas douteux qu'elle soit possible dans tous les cas;
considérons par exemple la théorie des fonctions à trois valeurs
lacunaires, pour laquelle les résultats les plus complets ont été
obtenus par M. Carathéodory, à l'aide de la fonction modulaire;
les expressions relatives à cette dernière fonction peuvent être
représentées par des séries appropriées fournies par la théorie des
fonctions elliptiques (par exemple l'aire du parallélogramme des
périodes en fonction du module) ; un raisonnement direct
suffisamment habile permettra sans doute un jour d'obtenir sans
recours à aucune fonction particulière les inégalités, obtenues
aujourd'hui par la fonction modulaire, où figurent les séries
à termes purement algébriques, dont il est question.

On peut trouver superflue l'édification de ce raisonnement
direct, puisque la fonction modulaire suffit ici; mais il convient
d'observer qu'un tel raisonnement pourra vraisemblablement
être étendu à des questions auxquelles la fonction modulaire
ne s'applique que malaisément, et même à d'autres pour l'étude
desquelles on ne possédera de longtemps aucun instrument
comparable à la fonction modulaire.

12. Au sujet de l'obtention effective de ce raisonnement,
ou plutôt des divers raisonnements directs que l'on sera probablement

en mesure de construire un jour, et qui, comme l'emploi
de la fonction modulaire, donneront les résultats les plus précis,
seules quelques conjectures sont ici possibles. Par exemple,
puisque le résultat final sera d'aspect algébrique, on pourra tenter
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de l'obtenir par une méthode d'aspect algébrique ; ainsi [A. Bloch

/) et /], nous avons indiqué des propositions relatives au système

d'une infinité de relations :

«0b0 1 ; aQbi -f atb0 0 ; ; aQf>n + axbn_x + ••• + ^nbo 0 ' •••

Les questions ainsi posées paraissent intéresser également au

premier chef, non seulement l'algèbre, mais encore la théorie des

fonctions de variables réelles.

13. On pourrait aussi songer à donner toute la précision

possible à la méthode de démonstration « élémentaire » des

théorèmes de MM. Picard, Borel, Landau, Schottky, etc.,
méthode reposant sur la comparaison de la croissance des fonc

tions considérées et éventuellement aussi de leurs dérivées ; dans

cette méthode, on considère comme on sait des inégalités où

figurent deux cercles concentriques distincts et l'on en déduit

par un certain processus de sommation de nouvelles inégalités;
l'obtention des résultats les plus complets serait assurément

considérablement facilitée si l'on pouvait se débarrasser de ce

processus en remplaçant les deux cercles successifs par un seul, et

ce serait même là, semble-t-il, une condition indispensable du

succès; or, nous allons voir qu'il est peu probable qu'on y puisse

parvenir.
Puisqu'il s'agit de trouver des inégalités relatives à un seul

cercle et puisque, d'autre part, la parfaite précision cherchée

exige que seules soient employées des fonctions croissantes assez

simples pour qu'il n'entre dans leur définition aucun arbitraire,
la question revient en somme à la suivante: Est-il possible de

formuler par exemple le théorème de Picard-Borel, en n'employant
que des fonctions croissantes simples, en sorte qu'il n'y ait pas à

introduire d'intervalles exceptionnels dans l'énoncé du théorème

Pour répondre à cette question, commençons par rappeler que
MM. Valiron et Nevanlinna ont introduit respectivement, pour
caractériser la densité des zéros d'une fonction holomorphe f(x)
et la croissance d'une telle fonction certaines fonctions positives
croissantes du module r de la variable x, désignées par n(r, /),
N(r, /) et par m(r, /); pour une fonction méromorphe on a, outre
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ces trois expressions (dont la dernière cesse d'être nécessairement
croissante), la fonction positive croissante

désignée par T(r, /), ou par gm(r, /).
Soit donné maintenant un certain nombre a distinct de 0,1, oo ;

nous allons définir comme il suit une fonction fp(x), n'existant
que dans un certain cercle centré à l'origine, où elle est
holomorphe. Considérons la riemanienne (sphérique) de la fonction
modulaire, et partageons-la en deux morceaux par une fente
pratiquée sur un des feuillets le long du demi-grand-cercle des
nombres réels négatifs. Considérons de même la riemanienne de la
fonction exponentielle, formée d'une infinité de feuillets que nous
considérons comme reliés les« uns aux autres le long du même
demi-grand-cercle et n'en conservons que la partie formée par p
feuillets .consécutifs. Intercalons enfin cette partie conservée entre
les deux morceaux de la riemanienne modulaire : nous obtenons
une riemanienne parfaitement déterminée évidemment
représentable conformément sur un cercle. Pour réaliser effectivement
cette représentation, nous faisons correspondre à l'origine centre
du cercle, le point c du feuillet central de la riemanienne, si p est
impair, d'un choisi une fois pour toutes des deux feuillets
centraux, si p est pair (c est lui-même un nombre choisi une fois pour
toutes, différent deO, 1, oo, a). Nous achevons de définir la fonction
fp(x) réalisant la représentation conforme en fixant sa dérivée
d à l'origine.

fp(x) est alors une fonction définie et holomorphe dans un cercle
de rayon rp croissant indéfiniment avec p; pour toute valeur

d
fixe de x, elle tend pour n infini vers l'exponentielle cec*. Or,
l'expression N(rp, fp—1) est visiblement finie pour chaque valeurde
l'entier p ; au contraire, par un calcul approprié [R. Nevanlinna,
a) p. 36], on trouve que l'expression N(rp, fp-a) est infinie. Donc,
étant donnés les q premiers coefficients d'une fonction f(x),
holomorphe et sans zéros dans un cercle de rayon connu r et une
borne supérieure de N (r, /—1), il est impossible d'en déduire une
borne supérieure de N (r, /-a), et cela quelque grand que soit r.
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Appliquant le principe « Nilest in », nous pouvons

conclure avec certitude:

Il existe des fonctions entières sans zéros F (x) telles pour un

nombre a au moins,^ne tende pas vers un sans

intervalles exceptionnels pour r infini.
C'est là un fait digne d'attention; que m(r, F) et gm(r, F)

ne donnassent pas avec l'expression N(r, F) ou une somme de

telles expressions des inégalités sans intervalles exceptionnels,

cela pouvait ne pas surprendre, puisque log | F | n'est défini que

par la distinction, de caractère peu algébrique, entre les valeurs

de IF| supérieures et inférieures à l'unité; mais N(r, F) étant, au

moins pour une fonction holomorphe, défini de manière purement

algébrique par le théorème de M. Jensen, il n'était pas déraisonnable

d'espérer- que les inégalités où figurerait seulement ce

symbole, auraient lieu sans intervalles exceptionnels. On voit

qu'il n'en est rien ; qui, pour une fonction entière sans

zéros, tend vers un d'après M. Nevanlinna, sauf éventuellement

dans certains intervalles exceptionnels, peut effectivement ne le

faire qu'à l'exclusion de tels intervalles.

Or, les seules fonctions croissantes simples des modules des

racines inférieures à r sont n(r, /) et N(r, /). Laissant de côté pour
l'instant la question de savoir si pour une fonction entière F sans

zéros n\r' tend vers un, avec éventuellement certains
' n(r,r — 1)

intervalles exceptionnels, observons tout au moins que si la
chose a lieu, le raisonnement précédent prouve, pour n comme

pour N, la nécessité des intervalles exceptionnels. En tout cas,

le fait qu'une fonction aussi simple et aussi naturellement définie

que N, qui donne une limite du rapport égale à un, avec peut-être
certains intervalles exceptionnels, exige effectivement l'introduction

de tels intervalles, permet bien de répondre par la négative
à la question posée. Assurément, en considérant au lieu de N (r, F)
la valeur moyenne entre 0 et r du produit de N(r,F) par une
certaine fonction de r — c'est ce que M. R. Nevanlinna fait quelquefois

dans un objet différent — l'on pourra bien avoir un rapport
tendant vers un sans intervalles exceptionnels; mais il est certain

que la fonction ainsi introduite, dans la définition de laquelle
entrera d'ailleurs une large part d'arbitraire, ne donnera qu'une
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précision limitée en ce qui concerne la distribution des racines et
sera donc inadéquate à l'obtention des résultats les plus complets.

En définitive, les méthodes élémentaires habituelles de démonstration

du théorème de Picard-Landau ne semblent pas — à
moins de profondes transformations — permettre d'édifier une
théorie absolument précise; cela accroît encore l'intérêt de la
méthode des coefficients, dont le principe a été indiqué au n° 12,
méthode que, d'ailleurs, de toutes manières, l'on sera nécessairement

conduit à développer un jour.
14. Pour caractériser la croissance d'une fonction méromorphe,

on peut considérer, au lieu de l'expression une fonction
croissante différente; tandis que gm(r,f) est liée par des relations
d'inégalité simples à N(r, /), cette nouvelle fonction S(r,/) paraît
plutôt liée simplement à n(r,f). La fonction méromorphe f(x)
étant représentée par un point d'une sphère sur laquelle 0 et oo
sont diamétralement opposés, S(r,/) est définie comme le quotient
par l'aire de la sphère de l'aire du domaine riemannien
correspondant sur cette sphère aux valeurs de la fonction dans le
cercle \x\<r.

On sait que l'aire d'un domaine riemannien plan joue un grand
rôle dans la théorie des intégrales abéliennes; elle n'est pas moins
importante pour la représentation conforme ; car le minimum de
cette aire pour une fonction holomorphe dans un domaine donné
en un point duquel sa valeur est fixée, ainsi que celle de sa dérivée,
est fourni par la représentation conforme du domaine sur un
cercle (il y aurait intérêt à étendre ceci au cas de fonctions de
variables). L'aire S (r,/), à la convexité près par rapport à log r,
jouit de propriétés analogues; elle est comme elle représentable
par une intégrale double, par une intégrale simple et de même
que la première est égale pour r1 à la somme des carrés des
modules des coefficients de la série entière, S(r,/) s'exprime
simplement par les coefficients des. deux séries entières dont le
quotient est la fonction méromorphe considérée.

On a probablement, pour r infini, à des intervalles exceptionnels
près :

S (r,fl>(l-»)/»(r,t) ;

S ('' » /) (1 + E) [" (''> f — a) +«(/•, f— -|- — c)]
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Il est également vraisemblable que si pour des fonctions méro-

morphes dans un domaine, l'aire du domaine riemannien est

inférieure à p fois l'aire de la sphère, les fonctions engendrent

une famille quasi-normale de M. Montel1 d'ordre p au plus.

Si les égalités qui viennent d'être écrites sont exactes, il en
• > n(r, F — a)

résultera que pour une fonction entiere sans zeros, ^^
tend vers un pour r infini, à des intervalles exceptionnels près (qui
sont nécessaires, comme on l'a vu plus haut).

La quantité S (r,/), en raison de la simplicité de sa définition,
est peut-être appelée à jouer un certain rôle dans le développement

ultérieur de la théorie.
15. Le théorème sur le cercle (à un feuillet) de centre réel du

n° 5 a pour corollaire la proposition suivante:
Soit F(x) a0 + axx + une fonction entière sans zéros. Au

terme constant a0 Von peut associer une fonction positive y (a0) de

ce terme constant fouissant de la propriété suivante: si petit que

soit s positif, Von peut trouver un nombre K ne dépendant que de

a0 et s, tel que pour r >> K, Von ait :-''' y~'
->(! — £) I »11 K) •

Dès lors, la question qui se pose est la suivante : Peut-on prendre
ai
— x

pour y(a0) Vexpression fournie par Vexponentielle a0 ea° c'est-à-

II est possible d'y répondre affirmativement, par un
raisonnement fmitiste approprié, en utilisant un théorème établi par
M. Valiron comme conséquence de sa théorie générale :

F(x) étant une fonction entière sans zéros, d'ordre supérieur ou
n (y F —— 1)

égal à un, ~
Y

tend vers Vinfini avec r.

De même :

Soient : x f (t) a0 ~t~ ajt -f- y — g (t) — b0 -f- b-^t -)-•••
deux fonctions méromorphes liées par la relation de genre un:
y2 (1 — x2) (1 — c2x2); il existe $ (c) et, s positif étant donné,

i Sur les familles quasi-normales de fonctions analytiques (Bull, de la Soc. math.
t. LII, 1924, p. 85).
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K nedépendant que de c, aQ, b0,a, et d'un point I fixé arbitrairement

sur la courbe,tels que, pour r>K, l'on ait, n(r; f,g) le
nombre de fois que le point I est atteint dans le cercle de rayon r:

n{r\ /', £•)

J -> (1-0 + (0

L'expression exacte de ip(c) est celle fournie par l'uniformisation

de la courbe à l'aide de l'intégrale de première espèce,
c'est-à-dire

q, où Q est l'aire du parallélogramme des périodes

de cette intégrale J~.
16. Observons que les deux expressions envisagées plus haut

pour caractériser la croissance d'une fonction méromorphe
gm(r, f) et S(r, /), sont de nature assez différente: la première
mesure la rapidité avec laquelle la fonction s'approche en
moyenne d'une valeur déterminée, d'ailleurs quelconque du
plan; la seconde peut être regardée comme le degré d'une fraction
rationnelle voisine de la fonction dans le cercle de rayon r. A ce
second point de vue, l'on peut envisager encore d'autres expressions

; par exemple, la valence de la fonction dans le cercle, c'est-à-
dire le nombre maximum de fois qu'elle y repasse par la même
valeur; ou encore le degré minimum d'une fraction rationnelle
dont la surface de Riemann comprenne le domaine riemannien
engendré par la fonction dans le cercle.

On peut aussi combiner les deux points de vue. Soit, par exemple,

un cercle fixe quelconque de la sphère où est représentée la
fonction; on peut prendre, pour caractériser la croissance, le
degré minimum d'une fraction rationnelle dont la surface de
Riemann porte simultanément, sans empiétement, tous les
morceaux compris à l'intérieur de ce cercle du domaine riemannien

engendré dans le cercle de rayon r. Si l'on change de place le
cercle de la sphère, ce qui revient à effectuer sur la fonction une
substitution linéaire, on aura généralement un nombre différent
du premier. Lorsque r croît indéfiniment, il est vraisemblable
que le rapport des deux nombres tend vers un, à certains
intervalles exceptionnels près; ces intervalles exceptionnels sont
nécessaires, comme on le reconnaît en représentant conformément le
cercle de rayon r sur un certain domaine riemannien peu différent



FONCTIONS ENTIÈRES MÉROMORPHES 97

d'un système de feuillets successifs de la riemanienne exponentielle

et appliquant le principe: « est m infinito... »

Ce dernier exemple prouve également sans peine que si,

comme il est probable, le rapport de s(r,f£±-g) à S(r,/) tend

vers un, pour r infini, à certains intervalles exceptionnels près,

ceux-ci sont du moins indispensables. Il est clair que ce rapport

est compris, quel que soit r, entre deux limites finies et non nulles

ne dépendant que de a, b, c, d; mais cela est sans intérêt.

17. Passons à la considération de la seconde méthode d'algé-

brisation de la théorie des fonctions entières et méromorphes, celle

hasée sur leur assimilation à des polynômes et à des fractions

rationnelles de degré infini.
Le concept de la surface de Riemann (ici de genre zéro) sera

particulièrement commode dans une méthode de ce genre; or, ce

qui fait toute l'importance de ce concept, c'est surtout le théorème

d'existence de Riemann, d'après lequel à toute surface

connexe à yyi feuillets plans ou sphériques reliés par des lignes de

croisement correspond une relation algébrique. Ce théorème est

cependant demeuré longtemps mystérieux; jusqu'à ces dernières

années, on ne savait le démontrer qu'à 1 aide de la théorie du

potentiel; à une date assez récente, M. Severi a pu l'établir par
des considérations purement algébrico-géométriques : mais bien

que marquant un progrès essentiel, cette solution conserve

encore un caractère provisoire.
En réalité, ainsi que le laissait prévoir le théorème de Clebsch-

Lüroth, la difficulté est à peu près la même, qu'il s'agisse d'une

surface de genre supérieur à zéro ou simplement d'une surface

de genre zéro; or, dans ce dernier cas, la question relève évidemment

de la pure algèbre ; on ne change même rien au fond des

choses en supposant qu'au lieu de la surface de Riemamf d'une

fraction rationnelle, il s'agisse plus simplement encore de celle

d'un polynome, c'est-à-dire d'un système connexe de m feuillets

plans avec seulement m—1 points de ramification à distance

finie. La méthode à employer pour une surface de Riemann

quelconque peut être conçue comme il suit : en supprimant un feuillet
de la surface, on en obtient une à un feuillet de moins; il s'agit
donc, le problème d'existence étant résolu pour une surface, de le

résoudre pour la surface obtenue en lui ajoutant un feuillet, que
L'Enseignement mathém., 25e année ; 1926. 7
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l'on peut supposer relié à la première par une seule ligne de

croisement. Ce procédé s'applique de manière particulièrement
simple au cas de la surface de Riemann d'un polynome ; voyons,
en effet, comment, le problème étant résolu pour une surface
à m—1 feuillets, on peut, par adjonction d'un feuillet, le résoudre

pour une surface à m feuillets: connaissant l'afïixe du (m—l)eme

point de ramification, on détermine, par la résolution d'une

équation de degré m—1, celui des m—1 feuillets sur lequel il se

trouve ; ce feuillet déterminé, il y aura encore un certain nombre

dm de manières essentiellement distinctes de tracer la ligne de

croisement allant à l'infini, dont la connaissance déterminera la
surface à m feuillets; donc, connaissant le polynome répondant
à la surface à m—1 feuillets, celui répondant à la surface à

m feuillets sera déterminé par la résolution de deux équations
successives de degrés m—1 et dm. Ce procédé, suffisant pour établir

le théorème d'existence, devra encore être perfectionné pour
conduire à la détermination la plus simple d'un polynome de

degré m, connaissant les valeurs qu'il prend aux zéros de sa dérivée,

car il est possible que des simplifications se produisent. Le

procédé d'adjonction successive s'applique de même à toute
surface de genre zéro et à toute surface de genre quelconque;
après l'avoir développé, comme il le mérite en lui-même, il
conviendra de voir s'il ne peut être abrégé.

En tout cas, le théorème d'existence de Riemann, au moins

dans le cas d'un polynome ou d'une fraction rationnelle, apparaît
bien désormais comme appartenant au domaine de l'algèbre,

qu'il est probablement appelé à rénover; on peut prévoir que sa

théorie, combinée à la théorie de Galois, ouvrira des vues
nouvelles sur plusieurs questions. Etendu aux fonctions entières et

méromorphes, il sera très utile dans le sujet dont nous allons parler.
18. Remarquons d'abord que si l'on découpe (comme avec un

emporte-pièce) la riemanienne d'une fonction entière ou méro-

morphe, le long d'un contour simple donné qui peut être un
cercle, l'on peut obtenir dans certains cas, même si la fonction est

transcendante, des morceaux connexes formés d'un nombre

fini n de*feuillets ; s'il s'agit d'une fonction entière, chaque feuillet

se ramifie une fois avec le suivant et il y a n—1 points de

ramification (supposés ordinaires); s'il s'agit d'une fonction méro-
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morphe, chaque feuillet se ramifie une ou deux fois avec le suivant

et il y a au moins n—1et au plus In-—2 points de ramification.

Soit f(x)une fraction rationnelle de degré m; supposons que

l'équation f(x)=X ait exactement p racines distinctes: est

alors dit l'indice de multiplicité de X par rapport à la fraction;
la somme des indices de multiplicité de tous les points de la sphère

est égale à deux. Pour un polynome, la somme des indices de

multiplicité de tous les points du plan est égale à un. L indice de

multiplicité d'une région limitée par une ou plusieurs courbes

simples est défini comme la somme des indices de ses différents

points; c'est le quotient par m—1 du nombre de points de

ramification (simples) qu'elle contient.
Une question se pose alors: pour une fonction transcendante

entière ou méromorphe, est-il possible de définir de même l'indice
de multiplicité d'un point ou d'une région, en sorte que la

somme des indices des différents points du plan ou de la sphère,

ou des différentes régions en lesquelles on les suppose partagés, soit

encore égale à un ou deux Certes, il y a des cas où'la chose

ne présente pas de difficulté; par exemple, si nous considérons

une fonction transcendante entière telle qu'en en découpant la
riemanienne le long d'un certain cercle, l'on ne rencontre pas de

point critique et que l'on obtienne ainsi une infinité de morceaux
connexes composés tous d'exactement q feuillets circulaires,

l'indice sera, puisque m est infini, *
^

Mais si l'on suppose que

tous les morceaux obtenus soient composés par exemple d'un
ou deux feuillets, on peut dire encore, sans encourir de contradic-

tion, que l'indice est au plus égal à j ; si l'on veut définir sa

valeur précise, ce sera par une convention qui, comme nous le
dirons plus loin, pourra varier dans chaque cas.

19. Pour avoir une vue plus nette du sujet actuel, fixons
notre attention sur une catégorie particulière de fonctions entières
les fonctions Gn(#); voici comment elles sont définies: une fonction

G*(x) est une fonction dont l'inverse, donnée par la résolution

de l'équation Gn(x) X est uniforme partout à distance
finie, sauf en n points Xx, X2 Xn, où elle peut avoir, soit une,,
soit deux déterminations. Les fonctions G0 sont les polynômes
du premier degré, les fonctions G± ceux du second degré; les
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fonctions G2 sont des polynômes de tous les degrés, se divisant
en deux catégories, suivant la parité du degré (et qu'il y aurait
lieu dé former explicitement), la fonction cosV/x, d'ordre |
et la fonction cos x,d'ordre un.

Les fonctions G3, à l'étude desquelles on peut borner celle des
G„, comprennent d'une part des polynômes, d'autre part, des
fonctions entières, dont il y aurait lieu d'établir la classification ;

on peut, d'ailleurs, supposer pour fixer les idées Xx, X2 et X3
réels. Il existe parmi les G3 des fonctions dont la croissance
dépasse celle de toute fonction donnée à l'avance. Si, pour Xx
et X2, toutes les branches de l'inverse ont deux déterminations,
il s agit du cosinus d'une fonction entière, d'ailleurs particularisée;

par exemple, cos (ax2 + bx+ c).
Voyons s'il est possible de définir d'une manière générale pour

une fonction G3 l'indice d'un des trois points, Xx par exemple.
Supposons que pour \x\<R, l'équation G3(ai) Xx ait ax racines
simples et /3X racines doubles ; le quotient — j,V sera dit alors

ai i Pi 1
1 indice de Xj à l'intérieur du cercle \x\ R. Il est naturel de
définir comme indice de Xx dans tout le plan la limite pour R
infini de l'indice à l'intérieur du cercle de rayon R, à la condition
que cette limite existe; mais on peut construire des fonctions
G3 pour lesquelles cette limite n'existe pas; et quelque définition
que l'on donne de l'indice, telle bien entendu que la somme des
indices de Xl7 X2, X3 soit égale à un, il existera toujours des-G3
pour lesquels cette définition n'aura pas de sens.

20. Or, pour les fonctions entières quelconques, particulièrement
intéressantes sont les valeurs d'indice un, c'est-à-dire en

somme les valeurs exceptionnelles B (Borel); on est alors, d'une
manière analogue, conduit au fait suivant:

Il est impossible de trouver une définition des valeurs exceptionnelles

B présentant un caractère définitif : quelque définition que
Von en donne, il existera toujours des fonctions n'en possédant
pas avec cette définition, mais en possédant au contraire avec une
nouvelle définition, comprenant la précédente, mais plus 'générale
(telle bien entendu' comme la précédente qu'une fonction entière
ait au plus une, une fonction méromorphe au plus deux valeurs
exceptionnelles B).
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Ce fait ayant lieu pour les valeurs exceptionnelles B a lieu

nécessairement aussi pour les valeurs exceptionnelles d'un type

plus général dites valeurs exceptionnelles N [R. Nevanlinna

p. 97] et qui peuvent être en infinité dénombrable ; il est d'ailleurs

assez curieux que leur théorie présente un certain parallélisme

avec cello de la. multiplicité des zéros.

21. Pour une fonction G3, nous avons dit qu'il est impossible

de définir d'une manière générale l'indice de Xx par le comporte-

ment pour R infini de
^ + 2Pl-i ' mais 011 a Peut"être la Pr0"

position suivante:
Pour une fonction G3, lu somme

ßi I h |
^

Ä1 -f 2 — l a2 -4- 2 ß2 — 1 a3 +. 2 ß3 — 1

desindices de Xx, X2, X3 à V indu cercle |r| R

limite inférieure d'indétermination égale à un lorsque R croit indé-

finiment.
De même, on a probablement:
Pour une fonction entière quelconque, la somme des indices de

points fixes Xx, X2 Xn àl'intérieur du cercle |x| R

limite inférieure d'indétermination au plus égale à un lorsque R

croît indéfiniment.
Ces propositions s'établiront vraisemblablement comme consé-

quence de la théorie de la fonction S (r,f), signalée au n° 14; mais

nous ne voulons pas y insister.
Plus importante est la question suivante, dont la résolution

permettra d'approfondir les véritables analogies entre les fonctions

entières ou méromorphes et les polynômes ou les fractions

rationnelles et conduira à une nouvelle et féconde démonstration

du théorème de Picard-Landau; la façon particulièrement simple

dont elle se pose, montre à quel point la considération des fonctions

Gg est opportune:
Etant donnés trois points Xl5 X2, X3 du plan il existe

une infinité de riemanniennes simplement connexes ne se ramifiant

pas ailleurs qu'en ces trois points,ces points de ramification étant

d'ailleurs simples. A quelle condition une telle riemannienne est-elle

celle d'une fonction transcendante entière G3
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La. relation numérique cherchée, ne relevant que de la géométrie

de situation, sera sans doute fournie par la considération
d'un réseau infini de polygones.

22. Citons enfin, dans un ordre d'idées voisin, une proposition
dont il conviendrait de vérifier l'exactitude:

Soit F(x) une fonction entière; supposons qu'au voisinage d'un
point X0, c est-à-dire à Vintérieur d'un certain cercle de centre X0,
toutes les branches de la fonction inverse admettent au plus un certain
nombre fini de déterminations. Considérons alors les racines de
Véquation F(x) X0, situées à l'intérieur du cercle |x| R: la
somme des inverses de ces racines, des carrés de leurs inverses, etc.
onty lorsque R croit indéfiniment, des limites dont les différences
pour deux valeurs voisines de X0 se calculent en fonction des
premiers coefficients du développement de F(x), exactement comme
si F (x) était un polynome.

Cette proposition est à rapprocher de la suivante, due à
M. Collingwood:

Les mêmes hypothèses étant faites sur le comportement de l'inverse
au voisinage de X0, l'on a

lim N(R- F-Xo)
R=» gm (R F)

On pourra peut-être, dans le même ordre d'idées, établir la
proposition que voici:

P(x) étant un polynome, la somme des inverses des racines de
l'équation:

eV{x) __ c^x _j_ ^ ^ __ a ^

situées à l'intérieur du cercle |x| R, est égale à ^ c°^Cl + *2 (a — co) co
ou s est une quantité qui, c0 et cx étant connus, tend uniformément
vers zéro avec — quels que soient les coefficients suivants du

nome,quel que soit son degré.
L'énoncé suivant est peu différent :

La somme des inverses des puissances mièmes des racines de
Véquation obtenue en égalant à zéro le sinus d'une fonction entière,
comprises à l'intérieur d'un cercle centré à l'origine, tend lorsque le

rayon du cercle croit indéfiniment, vers une limite qui se calcule
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par les formules de Newton exactement comme si le sinus était un

polynome. n

23. Une conclusion à tirer du précédent article est la suivante :

la théorie des fonctions entières et méromorphes n'est en somme pas

autre chose que la théorie quantitative des polynômes et des fractions

rationnelles, abstraction faite de leur degré. Ce point de vue n'a

évidemment qu'un lointain rapport avec d'autres, comme celui

d'après lequel « les comparaisons et le langage de la biologie »

seraient «très utiles en théorie des fonctions >>\ Mais si le point

de vue actuel comporte plus que celui-là des difficultés ardues et

périlleuses et exige assurément plus d'efforts, il n'est pas douteux

par contre qu'il conduira en définitive à de tout autres résultats.

DÉMONSTRATION ÉLÉMENTAIRE

DE LA

LOI DE GAUSS DANS LE CALCUL DES PROBABILITÉS

PAR

Antoine Lomnicki (Lwôw, Pologne).

1. La loi de Gauss, que quelques auteurs appellent aussi le

théorème de Bernoulli-Laplace, s'exprime par la relation

arithmétique suivante:

lim ilpE(«p)-s
(E (np)— s) (n— E (tip) +il-* oc

112 .- (1)

où 0<P<1, q=1 — P, sE{lAétant un nombre

constant, choisi à volonté. E(a:) désigne le plus grand entier

i E. Borel, Méthodes et problèmes de théorie des fonctions. 1922.
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