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D’autre part:
Pour qu’un espace accessible E soit une classe (£) [qui est alors
nécessairement (S;)] Uensemble des deux conditions suivanies est a
la fots nécessaire et suffisant:
() toute suite convergente dans E posséde un seul point limite;
(B) quel que soit le point d accumulation x d’un ensemble quel-
conque M situé dans E, il existe une suite de points de M qut
converge vers .
La démonstration de la derniére proposition ne présente aucune
difficulté.

LA CONCEPTION ACTUELLE DE LA THEORIE
DES FONCTIONS ENTIERES ET MEROMORPHES

PAR

A. BrocH (Paris).

L’objet de cet article est exposition de ’ensemble des idées
principales que l’on est amené & avoir au sujet des fonctions
entiéres et méromorphes d’une variable, a la suite des recherches
contemporaines. La théorie de ces fonctions est supposée connue
dans ses grandes lignes, telle en particulier qu’elle se trouve déve-
loppée dans les travaux de MM. G. Variron, F. et R. NEvAN-
LINNA et de’auteur’. I’on trouvera surtout ici des considérations

1 Cf. G. VALIRON. a) Lectures on the general theory of integral functions (Toulouse 1923);
b) Fonctions entiéres et fonctions méromorphes d’une variable (Mémorial des Sciences
Mathématiques, 1925).

R. NEVANLINNA. a) Untersuchungen iiber den Picardschen Saiz (Acta Soc. Fennicae,
t. 50, 1924); b) Zur Theorie der meromorphen Funktionen (Acta math., t. 46, 1925).

F. NEVANLINNA. Ueber die Werteverteilung einer analytischen Funhtion in der
Umgebung einer isolierten wesentlich singuldren Stelle (Copenhague 1926).

A.BrocH:a)C. R.del’Acad. des Sc., t. 178, p. 1593; b) Ibid., p. 2051;¢)t. 179, p. 666;
d) t. 181, p. 276; e) Ibid., p. 1123; f) t. 182, p. 367; g) Les théorémes de M. Valiron sur
les fonctwns enméres et la theorze de Uuniformisation (Ann de la IFac. des Sc. de Toulouse,
1925); h) Sur les systémes de fonctions holomorphes & variétés lindaires lacunaires (Ann. de
I'Ec. Norm., date de publication inconnue); i) Sur les systémes de fonctions uniformes
lides par l’equatwn d’une variété algébrigue, dont Uirrégularité dépasse la dimension
(Journal de Mathématiques, 1926): j) Les fonctions holomorphes et méromorphes dans le
cercle-unité (Mémorial des Sc. Math., 1926).
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générales, de nature & dominer les diverses parties de la théorie;
cependant, plusieurs exemples particuliers seront présentés a
I’appui de ces considérations.

I. DEuX PRINCIPES DIRECTEURS.

1. Deux principes généraux, deux idées directrices, encore
assez difficiles & formuler de maniére précise, se dégagent deés a
présent de ’ensemble des faits acquis et contribuent notablement
a faciliter les recherches. Ces principes jouent un réle analogue
a celul joué par le principe de continuité, auquel on eut fréquem-
- ment recours, tant en analyse qu’en géométrie, & une époque ot
I'emploi des imaginaires n’était pas encore légitimé de facon
rigoureuse, par le principe classique en géométrie énumérative
sous le nom de «loi de conservation du nombre », et par d’autres
encore qui ont tenu ou continuent & tenir une place importante
en mathématiques. ,

2. Le premier de ces deux principes, dont la portée n’est d’ail-
leurs pas restreinte & la théorie dont il s’agit, peut s’exprimer
sous forme d’apophtegme: « Nihil est in infinito quod non prius
fuerit in finito. » On entend par 14 que dans une partie quelconque
des mathématiques, toute proposition dans 1’énoncé de laquelle
intervient I'infini actuel peut toujours étre regardée comme un
corollaire & peu prés immédiat d’une proposition ou il ne figure
pas, d’une proposition en termes finis. Le role de Iinfini actuel
est donc uniquement un réle d’abréviation, réle qu’il ne parait
d’ailleurs pas possible de lui contester: toute propriété de la
fonction exponentielle ¢* correspond & une propriété de la fonc-
tion 2™, mais cette derniére est d’un énoncé plus compliqué,
puisqu’il y figure 'indéterminée m. |

3. Comme application de ce principe, posons-nous la question
suivante: du théoréme de M. Picard, peut-on conclure celui de
M. Landau ? Le théoréme de M. Picard est certainement contenu
dans une proposition en termes finis, mais quelle est-elle ? Rien
ne parait empécher a priori que ce soit: « Connaissant les deux
premiers coefficients a, et a, de la fonction entiére f(z) =
Gy + 4, %+ ... et sa borne supérieure M dans le cercle |z | < 1,
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il existe un nombre R dépendant uniquement de do, a; et M,
tel que dans le cercle Ix} — R la fonction prenne soit la valeur 0,
soit 1a valeur 1.» Cette proposition en termes finis ne semble pas

équivalente au théoréme de M. Landau.
A vrai dire, de chacune des démonstrations connues du

théoreme de M. Picard, 'on déduit aisément en la resserrant

convenablement, une démonstration du théoreme de M. Landau,
si bien que la question ici posée peut paraitre oiseuse. Mais dans
bien des cas, il n’en est pas de méme. Ainsi, pour une proposition
donnée par M. Borel dans le tome XX des Acta Mathematica,
ou plutét pour la proposition claire et naturelle par laquelle nous
I’avions remplacée, il n’était possible d’aboutir, en en resserrant
la démonstration, qu’a un énoncé en termes finis analogue a celul
que P’on vient de lire. L’obtention du théoréme véritable ne
résulta que d’un remaniement complet de la question; ce théo-
réme [cf. A. BLocH, travaux notés ¢) et k], consiste en une limi-
tation de la variation de fonctions holomorphes dans un cercle,
ne s’y annulant pas, et dont la somme n’y devient pas égale a
I'unité. .

4. Appliquons aussi le principe & I'étude de la question sui-
vante, signalée a ’auteur du présent article, par M. G. Valiron:
Est-il vrai, est-il faux qu’une fonction entiére f(x) satisfaisant a la
condition d’étre, quel que soit R toujours inférieure a un en un
point du cercle | x| = R admette nécessairement dans le plan des X
un chemin allant vers Uinfini, ou elle demeure bornée ?

Cette fois, il n’y a pas de doute a avoir, si le fait est vrai, sur la
proposition en termes finis correspondante; celle-ci ne peut étre
raisonnablement que la suivante: « Si une fonction f(z), holo-
morphe dans le cercle-unité |z]| << 1 est inférieure ou égale & un
en un point au moins-de tout cercle |z|=r<1, il existe un chemin
partant de 1’origine et aboutissant au cercle-unité ou elle demeure
inférieure ou égale & une certaine constante universelle k& ».

Or, tout d’abord, k& ne peut étre égal qu’a un; en effet, s’il est
supérieur & un, on voit, en appliquant la proposition a la fonction
[f(x)]™, qu’on peut le remplacer par sa racine mi*™Me c'est-a-dire
par un nombre aussi voisin de 1 que ’on veut, et par suite par le
nombre 1 lui-méme. '

Dés lors, considérons le polynome 4x%-+2x—1 dans le cercle-
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unité; il y devient bien égal & 1 en module sur tout cercle centré
a l'origine; mais il n’existe pas de chemin satisfaisant aux condi-
tions prescrites (k=1). Donc la question posée doit étre résolue
par la négative.

11 serait probablement possible, en se guidant sur ce raisonne-
ment, de trouver un exemple de fonction entiére mettant le fait
en évidencé. Mais ce qui précéde parait suffisant dans 1’état
actuel de la science pour engendrer la certitflde, bien que cette
certitude n’ait pas une base logique irréprochable.

5. On peut pousser le finitisme plus loin encore et adopter un
point de vue trés voisin de celui préconisé en algébre et en
analyse par Kronecker et par M. Drach. Un cas particulier du
principe « Nil est in infinito... » est en effet le suivant: « Toute
proposition sur une fonction holomorphe ou méromorphe dans
le cercle-unité esi exacte dés qu’elle Iest, dans le méme cercle,
pour un polynome ou une fraction rationnelle.» Cet énoncé
est encore un peu vague et assurément incomplet; mais il ne
parait pas actuellement indispensable de le perfectionner, car
dans chaque cas particulier, il n’y aura jamais aucune difficulté
& discerner sous quelle forme il est applicable.

Observons cependant que si le passage d’une proposition sur

les fonctions holomorphes ou méromorphes dans le cercle-unité

& la proposition qu’elle entraine sur les fonctions entiéres ou
méromorphes dans tout le plan est toujours immédiat, il n’en est
plus tout & fait de méme ici: le raisonnement qui permet de -

- passer de la proposition sur les polynomes ou les fractions ration-

nelles, envisagées a l'intérieur du cercle-unité, & celle sur les
fonctions holomorphes ou méromorphes dans le méme cercle peut
étre un peu long; mais il est toujours de nature simple et ne repose
que sur les premiers éléments de la théorie des fonctions analyti-
ques. On pourra s’en convaincre en cherchant, la proposition
suivante étant supposée établie pour le cas d’un polynome, & la
démontrer en général: '

Sout {(x)=x+... une fonction holomorphe dans le cercle-unité,
s’annulant a U'origine et y ayant une dérivée égale & un : le domaine
riemannien correspondant contient un cercle & un seul feuillet
(de centre réel) de rayon supérieur & une certaine constante absolue
K [A. Broch, g) et jl.
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La théorie des fonctions entiéres et méromorphes dens tout
le plan se trouve ainsi ramenée a I’algébre, puisqu’elle est réduc-
tible a la théorie des fonctions holomorphes et méromorphes
dans le cercle-unité, et que celle-ci se raméne a son tour & un
ensemble de questions concernant les polynomes et les fractions
rationnelles; mais il n’en résulte pas actuellement une bien grende
simplification, car les diverses questions d’algébre auxquelles
on se trouve ainsi ramené sont presque toutes entierement.
nouvelles: leur étude n’en parait pas moins s'imposer aux eflorts
des algébristes.. )

6. Le second principe jouant un role important dans la théorie
dont il s’agit est le principe de continuité topologique. 11 consiste
en ce qu'une proposition exacte avec un certain énoncé demeure
encore exacte si ’on modifie les données au point de vue métrique,
mais non au point de vue topologique. Ici encore, il serait pre-
maturé de chercher & donner au principe une forme précise;
nous nous bornerons-a indiquer dans des cas particuliers quelle
signification il peut avoir et quel usage on en peut faire.

7. Envisageons la proposition suivante [cf. A. BrocH, e].

Les fonctions f(x) holomorphes dans un domaine et telles que,
a, b, ¢ étant trois certains nombres distincts, les équations f(x) = a,
f(x) = b, f(x) = ¢ n’aient dans ce domaine que des racines mulii-
ples, engendrent une famille normale.

L’hypothése signifie que la fonction inverse de f (x) n’a pas de
branche uniforme au voisinage de a, b, ¢; d’ailleurs, I’énoncé
subsiste évidemment si a, b, ¢, au lieu d’étre fixes, sont supposeés
contenus dans trois cercles fixes extérieurs les uns aux autres.
Faisons maintenant un pas de plus et supposons. seulement
qu’a l'intérieur de chacun de ces trois cercles la fonction inverse
n’ait aucune branche partout définie et uniforme;le principe de
continuité topologique nous dit que la proposition subsiste avec
cette nouvelle hypothése; autrement dit (7bid.): |

Les fonctions holomorphes dans un domaine et telles que le
domaine riemannien correspondant ne posséde pas de cercle a un
seul feuillet coincidant avec lun ou Uautre de trois cercles donnés du
plan, extérieurs les uns aux autres, engendrent une famille normale.

(Pour les fonctions méromorphes, il faut introduire - cing
cercles de la sphére au lieu de trois cercles du plan.)
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Signalons aussi & cette occasion la proposition légérement diffé-

rente que voici:

Le domaine riemannien correspondant & un polynome ou  une
fonction entiére d’ordre inférieur a un (envisagés dans tout le plan)
contient toujours un cercle ¢ un seul feuillet coincidant avec 'un
ou Uautre de deux cercles donnés, extérieurs 'un a Uautre. Le
domaine riemannien correspondant ¢ une fonction transcendante
entiére d’ordre quelconque contient toujours une infinité de cercles
a un seul feuillet coincidant avec 'un ou Pautre de trois cercles
“donnés extérieurs les uns aux autres.

Ces diverses propositions peuvent d’ailleurs s’établir par une
adaptation suffisamment savante des démonstrations des propo-
sitions analogues relatives au cas ou les cercles sont remplacés
par des points; le principe de continuité topologique est ici
Paffirmation de la possibilité de cette adaptation; une remarque
analogue sera vraie pour les deux exemples suivants.

8. Appliquons le principe a I’obtention de la propositicn clas-
sique : Deux fonctions méromorphes dans tout le plan, liées par
une relation algébrique de genre supérieur & l'unité, se réduisent
nécessairement a deux constantes.

On établit aisément de maniére « élémentaire » qu’une fonction
méromorphe f (x) telle que pour cinq valeurs distinctes de a,
finie ou infinie, I’équation f (z) = a n’ait que des racines d’ordre
de multiplicité pair est nécessairement une constante; par consé-
quent, la proposition ci-dessus est exacte pour toute relation.
hyperelliptique de genre supérieur a un. Or, la surface de Riemann
d’une courbe non hyperelliptique est topologiquement identique
a celle d’une courbe hyperelliptique de méme genre. De maniére
plus précise, on peut décomposer la surface de Riemann d’une
courbe hyperelliptique de genre p en deux sphéres, portant
chacune 2p 4+ 2 points correspondant aux 2p -+ 2 points de
ramification, sphéres d’ailleurs identiques; pour une courbe non
hyperelliptique, de genre p, on peut décomposer encore, au point
de vue conforme, la surface de Riemann en deux sphéres portant
chacune 2p + 2 points correspondant encore a 2p -+ 2 point
de ramification, mais non plus identiques; il suffit pour le voir
d’appliquer le théoréme de Clebsch-Liiroth et de représenter
conformément sur une sphere la surface de genre zéro formée par
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tous les feuillets, sauf le dernier. Ainsi, notre principe s’applique
encore. |

9. Passons enfin & un troisiéme exemple: considérons une sur-
face générique du quatriéme degré f, (z, y, z2) = 0, et demandons-
nous si elle est uniformisable par les fonctions méromorphes,
¢’est-a-dire §’il existe des fonctions méromorphes, non fonctions
d’une seule d’entre elles, satisfaisant & son équation. Cette surface
est identique topologiquement a la surface 2 + y* 4+ 2t —1 =0,
‘car I'une et Iautre sont sans singularités et I’on peut passer de
maniére continue de I'une & 'autre, sans avoir jamais de singu-
larités. |

On est donc ramené, en vertu du principe, a rechercher si la
surface ' + ¢ 4 2* — 1 = 0 est uniformisable par les fonctions
méromorphes, et la réponse négative est vraisemblable; quoi qu’il
en soit, la solution de cette question sera considérablement
facilitée, si 'on commence par déterminer tous les systemes de
fonctions méromorphes d’une seule variable satisfaisant a cette
derniére équation, c’est -a-dire si I'on résout I’équation
X + Y + Z—1 = 0 en fonctions méromorphes dont tous les
zéros et tous les poles sont d’ordre égal a 4 ou multiple de 4.
Il est probable que les méthodes de MM. Valiron et Nevanlinna
donneront la solution de cette derniére question (voir p. ex.
R. NEvaNLINNA, b); il faudra naturellement appliquer ici la
double dérivation. Observons que les o' sections de la surface
x* + y* 4 22 — 1 = 0 par ses plans bitangents donnent oo cour-
bes répondant & la question.

Il. I’ALGEBRISATION DE LA THEORIE DES FONCTIONS ENTIERES
ET MEROMORPHES.

10. La théorie des fonctions entiéres et méromorphes doit,
pour se rapprocher de la perfection, prendre de plus en plus
modeéle sur I’algébre. Certes, de nombreux obstacles sont encore
& surmonter dans cette voie; cependant, I’'on peut entrevoir dés
& présent deux maniéres différentes de réaliser cette algébrisation
de la théorie, seule susceptible de lui donner toute la précision
qu’elle comporte. La premiére consistera dans ’étude des fonc-
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tions holomorphes et méromorphes dans le cercle- unité, au
moyen d’inégalités toutes absolument précises, comblnees de
maniére & exclure la possibilité d’un jeu quelconque dans le
mécanisme des déductions et donnant réguliérement par suite
les résultats les plus complets. La seconde, basée sur I’étude
approfondie des propriétés dans tout le plan des polynomes et
fractions rationnelles de degré m, sera I’assimilation des fonctions
entieres et méromorphes & des polynomes et fractions ration-
nelles de degré infini.

- 11. L’étude systématiquement précise par des moyens élémen-
taires des fonctions holomorphes ou méromorphes dans le cercle-
unité a été déja réalisée pour des classes particuliéres de fonctions
par exemple les fonctions bornées et les fonctions univalentes.
Il ne semble pas douteux qu’elle soit possible dans tous les cas;
considérons par exemple la théorie des fonctions a trois valeurs
lacunaires, pour laquelle les résultats les plus complets ont été
obtenus par M. Carathéodory, a I’aide de la fonction modulaire;
les expressions relatives & cette derniére fonction peuvent etre
representees par des séries appropriées fournies par la théorie des
fonctions elliptiques (par exemple Paire du parallélogramme des
périodes en fonction du module); un raisonnement direct suffi-
samment habile permettra sans doute un jour d’obtenir sans
recours a aucune fonction particuliére les inégalités, obtenues
aujourd’hui par la fonction modulaire, ou figurent les séries
a termes purement algébriques, dont il est question.

On peut trouver superflue I’édification de ce raisonnement
direct, puisque la fonction modulaire suffit ici; mais il convient
d’observer qu’un tel raisonnement pourra.vraisemblablement
étre étendu a des questions auxquelles la fonction modulaire
ne s’applique que malaisément, et méme a d’autres pour I’étude
desquelles on ne possédera de longtemps aucun instrument
comparable a la fonetion modulaire.

12. Au sujet de I'obtention effective de ce raisonnement,
ou plutdt des divers raisonnements directs que ’on sera probable-
ment en mesure de construire un jour, et qui, comme I’emploi
de la fonction modulaire, donneront les résultats les plus précis,
seules quelques conjectures sont ici possibles. Par exemple,
puisque le résultat final sera d’aspect algébrique, on pourra tenter
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de I'obtenir par une méthode d’aspect algébrique; ainsi [A. BLocH
f) et j1, nous avons indiqué des propositions relatives au systéme
d’une infinité de relations:

aby, =1; ayb, + ajby=0; ...; agh, + ayb, 4 + ... + a,by=20; ...

070

Les questions ainsi posées paraissent intéresser également au
premier chef, non seulement 1’algebre, mais encore la théorie des
fonctions de variables réelles. o

13. On pourrait aussi songer & donmer toute la précision
possible & la méthode de démonstration «élémentaire » des
théoremes de MM.  Picard, Borel, Landau, Schottky, etc.,
méthode reposant sur la comparaison de la croissance des fone
tions considérées et éventuellement aussi de leurs dérivées; dans
cette méthode, on considére comme on sait des inégalités ou
figurent deux cercles concentriques distincts et I'on en déduit
par un certain processus de sommation de nouvelles inégalités;
I’obtention des résultats les plus complets serait assurément
considérablement facilitée si ’'on pouvait se débarrasser de ce
processus en remplacant les deux cercles successifs par un seul, et
ce serait méme la, semble-t-il, une condition indispensable du
succes; or, nous allons voir qu’il est peu probable qu’on y puisse
parvenir.

Puisqu’il s’agit de trouver des inégalités relatives & un seul
cercle et puisque, d’autre part, la parfaite précision cherchée
exige que seules soient employées des fonctions croissantes assez
simples pour qu’il n’entre dans leur définition aucun arbitraire,
la question revient en somme & la suivante: Est-il possible de
formuler par exemple le théoréme de Picard-Borel, en n’employant
que des fonctions croissantes sumples, en sorte qu’'il n’y ait pas &
introduire d’intervalles exceptionnels dans l’énoncé du théoréme. ?

Pour répondre a cette question, commencgons par rappeler que
MM. Valiron et Nevanlinna ont introduit respectivement, pour
caractériser la densité des zéros d’une fonction holomorphe f(z)
et la croissance d’une telle fonction , certaines fonctions positives
croissantes du module r de la variable x, désignées par n(r, f),
N(r, ) et par m(r, f); pour une fonction méromorphe on a, outre
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ces trois expressions (dont la derniére cesse d’étre nécessairement
croissante), la fonction positive croissante

m(r, f) + N<r, ~1—>
/
désignée par T(r, f), ou par gm(r, f).

Soit donné maintenant un certain nombre a distinct de 0, 1, oo :
nous allons définir comme il suit une fonction fp(x), n’existant
que dans un certain cercle centré a origine, ou elle est holo-
morphe. Considérons la riemanienne (sphérique) de la fonction
modulaire, et partageons-la en deux morceaux par une fente pra-
tiquée sur un des feuillets le long du demi-grand-cercle des
nombres réels négatifs. Considérons de méme la riemanienne de la
fonction exponentielle, formée d’une infinité de feuillets que nous
considérons comme reliés les uns aux autres le long du méme
demi-grand-cercle et n’en conservons que la partie formée par p
feuillets consécutifs. Intercalons enfin cette partie conservée entre
les deux morceaux de la riemanienne modulaire: nous obtenons
une riemanienne parfaitement déterminée évidemment repré-
sentable conformément sur un cercle. Pour réaliser effectivement
cette représentation, nous faisons correspondre & origine centre
du cercle, le point c-du feuillet central de la riemanienne, si p est
impair, d’un choisi une fois pour toutes des deux feuillets cen-
traux, si p est pair (c est lui-méme un nombre choisi une fois pour
toutes, différent de 0,1, oo, a). Nous achevons de définir la fonction
fp(x) réalisant la représentation conforme en fixant sa dérivée
d a I'origine.

/p(z) est alors une fonction définie et holomorphe dans un cercle

de rayon r, croissant indéfiniment avec p; pour toute valeur
d

fixe de z, elle tend pour » infini vers Pexponentielle cec”. Or,
Pexpression N(r,, f,—1) est visiblement finie pour chaque valeurde
Pentier p; au contraire, par un calcul approprié T[R. NEVANLINNA,
a) p. 36], on trouve que I’expression N (rp, ,—a) est infinie. Donc,
étant donnés les g premiers coefficients d’une fonction f(x), holo-
morphe et sans zéros dans un cercle de rayon connu r et une
borne supérieure de N (r, f~1), il est impossible d’en déduire une
‘borne supérieure de N(r, f-a), et cela quelque grand que soit r.
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Appliquant le principe «Nil est in infinito... », nous pouvons
conclure avec certitude:

I1 existe des fonctions entiéres sans zéros F(x) telles que, pour un

. , F—a .
nombre a au moins, %%_F————i—% ne tende pas vers un sans inter-

palles exceptionnels pour r infini.

(est 13 un fait digne d’attention; que m(r, F) et gm(r, F)
ne donnassent pas avec I’expression N(r, F) ou une somme de
telles expressions des inégalités sans intervalles exceptionnels,
cela pouvait ne pas surprendre, puisque log |F| n’est défin1 que
par la distinction, de caractére peu algébrique, entre les valeurs
de llFl supérieures et inférieures & I'unité; mais N(r, F) étant, au
moins pour une fonction holomorphe, défini de maniere purement
algébrique par le théoréme de M. Jensen, 1l n’était pas déraison-
nable d’espérer que les inégalités ou figurerait seulement ce

symbole, auraient lieu sans intervalles exceptionnels. On voit
_N(r, F—a)
"N(r, F—1) |
zéros, tend vers un d’aprés M. Nevanlinna, sauf éventuellement
dans certains intervalles exceptionnels, peut effectivement ne le

faire qu’a l’exclusion de tels intervalles.

qu’il n’en est rien qui, pour une fonction entiere sans

Or, les seules fonctions croissantes simples des modules des

racines inférieures a r sont n(r, f) et N(r, f). Laissant de c6té pour
instant la question de savoir si pour une fonction entiére F sans
n(r, F—a)
n(r, F—1)
intervalles exceptionnels, observons tout au moins que si la
chose a lieu, le raisonnement précédent prouve, pour n comme
pour N, la nécessité des intervalles exceptionnels. En tout cas,
le fait qu’une fonction aussi simple et aussi naturellement définie
que N, qui donne une limite du rapport égale & un, avec peut-étre
certains intervalles exceptionnels, exige effectivement 'introduc-
tion de tels intervalles, permet bien de répondre par la négative
a la question posée. Assurément, en considérant au lieu de N(r, F)

z6ros, tend vers un, avec éventuellement certains

~ la valeur moyenne entre O et r du produit de N(r,F) par une cer-

taine fonction de 7 — c’est ce que M. R. Nevanlinna fait quelque-
fois dans un objet différent — ’on pourra bien avoir un rapport
tendant vers un sans intervalles exceptionnels; mais il est certain
que la fonction ainsi introduite, dans la définition de laquelle
entrera d’ailleurs une large part d’arbitraire, ne donnera qu’une
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precision limitée en ce qui concerne la distribution des racines et
sera donc inadéquate & "obtention des résultats les plus complets.

En définitive, les méthodes élémentaires habituelles de démons-
tration du théoréme de Picard-Landau ne semblent pas — a
moins de profondes transformations — permettre d’édifier une
théorie absolument précise; cela accroit encore Iintérét de la
méthode des coefficients, dont le principe a été indiqué au n° 12,
méthode que, d’ailleurs, de toutes maniéres, ’on sera nécessaire-
ment conduit & developper un jour.

14. Pour caractériser la croissance d’une fonction méromorphe,
on peut considérer, au lieu de 'expression gm(r, f,) une fonction
croissante différente; tandis que gm(r.f) est liée par des relations
d’inégalité simples & N(r, f), cette nouvelle fonction S(r, f) parait
plutot liée simplement a n(r,f). La fonction meéromorphe f(x)
etant représentée par un point d’une sphére sur laquelle 0 et oo
sont diamétralement opposés, S(r,f) est définie comme le quotient
par laire de la sphére de ’aire du domaine riemannien corres-
pondant sur cette sphére aux valeurs de la fonction dans le
cercle |z|<Cr.

On sait que ’aire d’un domaine riemannien plan joue un grand
role dans la théorie des intégrales abéliennes: elle n’est pas moins
importante pour la représentation conforme; car le minimum de
cette aire pour une fonction holomorphe dans un domaine donné
en un point duquel sa valeur est fixée, ainsi que celle de sa dérivée,
est fourni par la représentation conforme du domaine sur un
cercle (il y aurait intérét a étendre ceci au cas de p fonctions de P
variables). L’aire S(r,f), & la convexité prés par rapport a log r,
jouit de propriétés analogues; elle est comme elle représentable
par une intégrale double, par une intégrale simple et de méme
que la premiére est égale pour r = 1 & la somme des carrés des
modules des coefficients de la série entiére, S(r,f) s’exprime sim-
plement par les coefficients des deux séries entiéres dont le quo-
tient est la fonction méromorphe considérée.

On a probablement, pour r infini, & des intervalles exceptlom
nels preés:

S(ro ) > —en(r, ) ; |
S ) < W+ ey f= @)+ nlr, f—= b+ alr, f— o) .
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11 est 6galement vraisemblable que si pour des fonctions méro-
morphes dans un domaine, ’aire du domaine riemannien est
inférieure & p fois 'aire de la sphére, les fonctions engendrent
une famille quasi-normale de M. Montel * d’ordre p au plus.

Si les égalités qui viennent d’étre écrites sont exactes, il en
résultera que pour une fonction entiére Sans zéros, zg——:—%——_i))
tend vers un pour v infini, & des intervalles exceptionnels prés (qui
sont nécessaires, comme on ’a vu plus haut).

La quantité S(r,f), en raison de la simplicité de sa définition,
est peut-8tre appelée a jouer un certain role dans le développe-
ment ultérieur de la théorie.

15. Le théoréme sur le cercle (& un feuillet) de centre réel du
n® 5 a pour corollaire la proposition suivante:

Soit F(x) = a, + a;X -+ ... une fonction entiére sans zéros. Au
terme constant a, 'on peut associer une fonction positive o (ay) de
ce terme constant jouissant de la propriété suivante: si petit que
soit ¢ positif, Uon peut trouver un nombre K ne dépendant que de
ay et ¢, tel que pour r > K, U'on ait:

nir, F —1)

r

> (1 —¢)|a] ?(ag)

Dés lors, la question qui se pose est la suivante: Peut-on prendre
at )
— X
pour o (ay) Pexpression fournie par Uexponentielle a, e . Clest-a-
1 s
7 ||
Il est possible a’ y répondre affirmativement, par un raison-

dire

nement finitiste approprié, en utilisant un théoréme établi par

M. Valiron comme conséquence de sa théorie générale :

F(x) étant une fonction entiére sans zéros, d’ordre supérieur a2z

n(r, F—1)
T

égal & un, tend vers Vinfini avec .

De méme:
Sotent: x =f(t) =ay +a;t+ ...,y =g(t)=Dby+Dbyt 4 ...
deux fonctions méromorphes liées par la relation de genre un:

y2 = (1 —x2) (1 — ¢2x2); il existe § (c) et, e positif étant donné,

1 Sur les familles quasi-normales de fonctions analytiques (Bwull. de la Soc. math.
t. LII, 1924, p. 85). :
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K ne dépendant que de ¢, a,, by, a, ¢, et d'un point 1 fixé arbitrai-
rement sur la courbe, tels que, pour r>K, Pon ait, n(r; f,g) étant le
nombre de fois que le point 1 est atteint dans le cercle de rayon r:

B8 s g [y

r

4y
bO

L’expression exacte de ¢(c) est celle fournie par I’uniformi-
sation de la courbe & I'aide de ’intégrale de premiére espece,

c’est-a- dire —S, ol Q est I'aire du parallélogramme des périodes
. dx
de cette intégrale [=.
grale [°7.

16. Observons que les deux expressions envisagées plus haut
pour caractériser la croissance d’une fonction méromorphe
gm(r, f) et S(r, f), sont de nature assez différente: la premiére
mesure la rapidité avec laquelle la fonction s’approche en
moyenne d’une valeur déterminée, d’ailleurs quelconque du
plan; la seconde peut étre regardée comme le degré d’une fraction
rationnelle voisine de la fonction dans le cercle de rayon r. A ce
second point de vue, I'on peut envisager encore d’autres expres-
sions; par exemple, la valence de la fonction dans le cercle, c’est-a-
dire le nombre maximum de fois qu’elle y repasse par la méme
valeur; ou encore le degré minimum d’une fraction rationnelle
dont la surface de Riemann comprenne le domaine riemannien
engendré par la fonction dans le cercle.

On peut aussi combiner les deux points de vue. Soit, par exem-
ple, un cercle fixe quelconque de la sphére oi1 est représentée la
fonction; on peut prendre, pour caractériser la croissance, le
degré minimum d’une fraction rationnelle dont la surface de
Riemann porte simultanément, sans empiétement, tous les
morceaux compris a l'intérieur de ce cercle du domaine rieman-
nien engendré dans le cercle de rayon r. Si I’on change de place le
cercle de la sphére, ce qui revient & effectuer sur la fonction une
substitution linéaire, on aura généralement un nombre différent
du premier. Lorsque r croit indéfiniment, il est vraisemblable
que le rapport des deux nombres tend vers un, & certains inter-
valles exceptionnels prés; ces intervalles exceptionnels sont néces-
saires, comme on le reconnait en représentant conformément le
cercle de rayon r sur un certain domaine riemannien peu différent
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d’un systéme de feuillets successifs de la riemanienne exponen-
tielle et appliquant le principe: « Nil est tn infintto...»
Ce dernier exemple prouve également sans peine que i,

comme il est probable, le rapport de S(r, g{—g) a S(r, f) tend
vers un, pour r infini, & certains intervalles exceptionnels pres,
ceux-ci sont du moins indispensables. Il est clair que ce rapport
est compris, quel que soit 7, entre deux limites finies et non nulles
ne dépendant que de a, b, ¢, d; mais cela est sans intérét.

17. Passons & la considération de la seconde méthode d’algé-
brisation de la théorie des fonctions entieres et méromorphes, celle
basée sur leur assimilation a des polynomes et a des fractions

rationnelles de degré infini.
Le concept de la surface de Riemann (ici de genre zéro) sera

‘particuliérement commode dans une méthode de ce genre; or, ce
qui fait toute 'importance de ce concept, ¢’est surtout le théo-

réme d’existence de Riemann, d’apres lequel a toute surface
connexe & m feuillets plans ou sphériques reliés par des lignes de
croisement correspond une relation algébrique. Ce théoreme est
cependant demeuré longtemps mystérieux; jusqu’a ces dernieres
années, on ne savait le démontrer qu’a l'aide de la théorie du
potentiel; & une date assez récente, M. Severi a pu ’établir par
des considérations purement algébrico-géométriques: mais bien
que marquant un progrés essentiel, cette solution conserve
encore un caractére provisoire.

En réalité, ainsi que le laissait prévoir le théoréme de Clebsch-
Liiroth, la difficulté est & peu prés la méme, qu’il s’agisse d’une
surface de genre supérieur & zéro ou simplement. d’une surface
de genre zéro; or, dans ce dernier cas, la question reléve évidem-
ment de la pure algébre; on ne change méme rien au fond des
choses en supposant qu’au lieu de la surface de Riemann’ d’une
fraction rationnelle, il s’agisse plus simplement encore de celle
d’un polynome, c’est-a-dire d’un systéme connexe de m feuillets
plans avec seulement m—1 points de ramification a distance
finie. La méthode & employer pour une surface de Riemann quel-
conque peut étre congue comme il suit: en supprimant un feuillet
de la surface, on en obtient une & un feuillet de moins; il s’agit
done, le probléme d’existence étant résolu pour une surface, de le
résoudre pour la surface obtenue en lui ajoutant un feuillet, que

L’Eunseignement m;{thém., 25¢ année ; 1926. 7
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'on peut supposer relié & la premiére par une seule ligne de
croisement. Ce procédé s’applique de maniére particuliérement
simple au cas de la surface de Riemann d’un polynome; voyons,
en effet, comment, le probléme étant résolu pour une surface
am—I1 feulllets on peut, par adjonction d’un feuillet, le résoudre
pour une surface & m feuillets: connaissant Paffixe du (m— 1)eme
point de ramification, on détermine, par la résolution d’une
équation de degré m—1, celui des m—1 feuillets sur lequel il se
trouve; ce feuillet déterminé, il y aura encore un certain nombre
d,, de maniéres essentiellement distinctes de tracer la ligne de
croisement allant & ’infini, dont la connaissance déterminera la
surface & m feuillets; donc, connaissant le polynome répondant

a la surface: & m—1 feuillets, celui répondant & la surface a

m feuillets sera déterminé par la résolution de deux équations
successives de degrés m—1 et d,,,. Ce procédé, suffisant pour éta-
blir le théoreme d’existence, devra encore étre perfectionné pour
conduire & la détermination la plus simple d’un polynome de
degré m, connaissant les valeurs qu’il prend aux zéros de sa déri-
vée, car il est possible que des simplifications se produisent. Le
procédé d’adjonction successive s’applique de méme a toute
surface de genre zéro et a toute surface de genre quelconque;
aprés l’avoir développé, comme il le mérite en lui-méme, il
conviendra de voir §’il ne peut étre abrégé.

En tout cas, le théoréme d’existence de Riemann, au moins
dans le cas d’un polynome ou d’une fraction rationnelle, apparait
bien désormais comme appartenant au domaine de I’algebre,
qu’il est probablement appelé & rénover; on peut prévoir que sa
théorie, combinée a la théorie de Galois, ouvrira des vues nou-
velles sur plusieurs questions. Etendu aux fonctions entiéres et
méromorphes, il sera trés utile dansle sujet dont nous allons parler.

18. Remarquons d’abord que si I'on découpe (comme avec un
emporte-piéce) la riemanienne d’une fonction entiére ou méro-
morphe, le long d’un contour simple donné qui peut étre un
cercle, ’on peut obtenir dans certains cas, méme si la fonction est

transcendante, des morceaux connexes formés d’un nombre

fini n de’feuillets; s’il s’agit d’une fonction entiére, chaque feuillet
se ramifie une fois avec le suivant et 1l y a n—1 points de rami-
fication (supposés ordinaires); s’il s’agit d’une fonction méro-
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morphe, chaque feuillet se ramifie une ou deux fois avec le suivant
et il y a au moins n—1 et au plus 2n—2 points de ramification.

Soit f(x) une fraction rationnelle de degré m; supposons que
=i
alors dit l'indice de multiplicité de X par rapport a la fraction;
la somme des indices de multiplicité de tous les points de la sphére
est égale & deur. Pour un polynome, la somme des indices de
multiplicité de tous les points du plan est égale a un. L’indice de
multiplicité d’une région limitée par une ou plusieurs courbes
simples est défini comme la somme des indices de ses différents
points; ¢’est le quotient par m—1 du nombre de points de rami-
fication (simples) qu’elle contient.

Une question se pose alors: pour une fonction transcendante
entiére ou méromorphe, est-il possible de définir de méme I'indice
de multiplicité d’un point ou d’une région, en sorte que la
somme des indices des différents points du plan ou de la sphére,
ou des différentes régions enlesquelles on les suppose partagés, soit
encore égale & un ou deux ? Certes, il y a des cas ou la chose
ne présente pas de difficulté; par exemple, si nous considérons
une fonction transcendante entiére telle qu’en en découpant la
riemanienne le long d’un certain cercle, I’on ne rencontre pas de
point critique et que I’on obtienne ainsi une infinité de morceaux
connexes composés tous d’exactement ¢ feuillets circulaires,

est

I'équation f(z)=X ait exactement p racines distinctes: Z

o : e g— g
Pindice sera, puisque m est infini, iy Mais sil’on suppose que
tous les morceaux obtenus soient composés par exemple d’un

ou deux feuillets, on peut dire encore, sans encourir de contradic-

1. e s
tion, que 'indice est au plus égal &= ; si Pon veut définir sa

valeur précise, ce sera par une convention qui, comme nous le
dirons plus loin, pourra varier dans chaque cas. | |
19. Pour avoir une vue plus nette du sujet actuel, fixons
notre attention sur une catégorie particuliere de fonctions entiéres
les fonctions G, (z); voici comment elles sont définies: une fonc-
tion G, (x) est une fonction dont I'inverse, donnée par la résolu-
tion de I'équation G, (z) = X est uniforme partout a distance
finie, sauf en n points Xy, X, ... X, ou elle peut avoir, soit une,

soit deux déterminations. Les fonctions G, sont les polynomes .

du premier degré, les fonctions G; ceux du second degré; les
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fonctions G, sont des polynomes de tous les degrés, se divisant
en deux catégories, suivant la parité du degré (et qu’il y aurait

lieu de former explicitement), la fonction cos\/z, d’ordre %

et la fonction cos z, d’ordre un.

Les fonctions Gj, & I’étude desquelles on peut borner celle des
G,,, comprennent d’une part des polynomes, d’autre part, des
fonctions entiéres, dont il y aurait lieu d’établir la classification
on peut, d’ailleurs, supposer pour fixer les idées Xj, X, et X
réels. Il existe parmi les G, des fonctions dont la croissance
dépasse celle de toute fonction donnée a I’avance. Si, pour X,
et X,, toutes les branches de I'inverse ont deux déterminations,
il s’agit du cosinus d’une fonction entiére, d’ailleurs particula-
risée; par exemple, cos (ax? + bz + c). ,

Voyons s’il est possible de définir d’une maniére générale pour
une fonction Gy I'indice d’un des trois points, X, par exemple.
Supposons que pour |9c! <R, I'équation G4(x) = X, ait «, racines

by

Pindice de X; & Dintérieur du cercle ix] = R. Il est naturel de
définir comme indice de X; dans tout le plan la limite pour R
infini de I'indice & Iintérieur du cercle de rayon R, a la condition
que cette limite existe; mais on peut construire des fonctions
Gy pour lesquelles cette limite n’existe pas; et quelque définition
que 'on donne de I'indice, telle bien entendu que la somme des
indices de X, X,, X, soit égale & un, il existera boujours des-Gy
pour lesquels cette définition n’aura pas de sens. ‘

20. Or, pour les fonctions entiéres quelconques, particuliére-
ment intéressantes sont les valeurs d’indice un, c¢’est-a-dire en
somme les valeurs exceptionnelles B (Borel); on est alors, d’une
maniére analogue, conduit au fait suivant:

11 est impossible de trouver une définition des valeurs exception-
nelles'B présentant un caractére définitif : quelque définition que
Uon en donne, il exisiera toujours des fonctions n’en possédant
pas avec cette définition, mais en possédant au coniraire avec une
nouvelle définition, comprenant la précédente, mais plus générale

simples et 8, racines doubles; le quotient sera dit alors

(telle bien entendu comme la précédente qu’une fonction entiére

ait au plus une, une fonction méromorphe au plus deux-valeurs
exceptionnelles B). |
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Ce fait ayant lien pour les valeurs exceptionnelles B a lieu
nécessairement aussi pour les valeurs exceptionnelles d’un type

plus général dites valeurs exceptionnelles N [R. NEVANLINNA b), -

p. 97] et qui peuvent étre en infinité dénombrable; il est d’ailleurs
assez curieux que leur théorie présente un certain parallélisme
avec celle de la multiplicité des zéros.

91. Pour une fonction Gy, nous avons dit qu’il est impossible
de définit d’une maniére générale Pindice de X par le comporte-

ment pour R infini de % . mais on a peut-étre la pro-
%y + 2@1 —1

position suivante: |
Pour une fonction Gy, la somme

By P Ps
o, —l—2{51-——1+a2 —§-2@2—1+a3 + 28, —1

des indices de Xy, X,, X3 a Uintérieur du cercle |I'| = R a une
limite inférieure d’indétermination égale & un lorsque R croit indé-
finiment.

De méme, on a probablement:

Pour une fonction entiére quelconque, la somme des indices de
points fixes Xq, Xy ... X d Pintérieur du cercle |x| = R a une
limite inférieure d’indétermination au plus égale @ un lorsque R
croit indéfiniment. |

Ces propositions s’établiront vraisemblablement comme conse-
quence de la théorie de la fonction S (r,f), signalée au n° 14; mais
nous ne voulons pas y insister.

Plus importante est la question suivante, dont la résolution
permettra d’approfondir les véritables analogies entre les fonc-
tions entiéres ou méromorphes et les polynomes ou les fractions
rationnelles et conduira & une nouvelle et féconde démonstration
du théoréme de Picard-Landau; la facon particuliérement simple
dont elle se pose, montre & quel point la considération des fonc-
tions G est opportune: |

Etant donnés trois points Xy, X,, Xy du plan complexe, il existe
une infinité de riemanniennes simplement connexes ne se ramifiant
pas ailleurs qu’en ces trois points, ces points de ramification étant
d’ailleurs simples. A quelle condition une telle riemannienne est-elle
celle d’une fonction transcendante entiére Gy ?

—
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La relation numérique cherchée, ne relevant que de la géomé-
trie de situation, sera sans doute fournie par la considération
~d’un réseau infini de polygones. |

22. Citons enfin, dans un ordre d’idées Vvoisin, une proposition
dont il conviendrait de vérifier 'exactitude: '

Soit F(x) une fonction entiére: supposons qu’au voisinage d’un -
pownt Xy, c'est-a-dire & Uintérieur d’un certain cercle de centre X,
toutes les branches de la fonction inverse admettent au plus un certain
nombre fini de déterminations. Considérons alors les racines de
Péquation F (x) = X,, situdes a Uintérieur du cercle |x| =R: la
somme des inverses de ces racines, des carrés de leurs Lnverses, etc.
ont, lorsque R croit indéfiniment, des limites dont les différences
pour deux valeurs voisines de X, se calculent en fonction des
premuers coefficients du développement de F (x), exactement comme
st F(x) était un polynome. ‘

Cette proposition est & rapprocher de la suivante, due &
M. Collingwood : |

Les mémes hypothéses étant faites sur le comportement de Uinverse
au voisinage de X,, l'on a

N(R, F—X,)

lim =1 .

r=w gm(R, F)

On pourra peut-étre, dans le méme ordre d’idées, établir la
proposition que voici: |
P(x) étant un polynome, la somme des inverses des racines de
Péquation :
P — ¢, +‘clx + ... =a,
situées a Uintérieur ‘du cercle |x|=R, est égale dg(%j_'_—ff)—)fg— -
ou ¢ est une quantité qui, ¢, et ¢, étant connus, tend uni]‘oormoément

’

’ 1 - « g
vers zéro avec ¢, quels que sotent les coefficients suivants du poly-

nome, quel que soit son degré.

L’énoncé suivant est peu différent :

La somme des inverses des puissances mi®™* des racines de
Uéquation obtenue en égalant d zéro le sinus d’une fonction enticre,
comprises & Uintérieur d’un cercle centré & origine, tend lorsque le
rayon du cercle croit indéfiniment, vers une limite qui se calcule
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par les formules de Newton exactement comme si le sinus était un
polynome.

93. Une conclusion & tirer du précédent article est la suivante:
la théorie des fonctions entiéres et méromorphes n’est en somme pas
auire chose que la théorie quantitative des polynomes et des fractions
rationnelles, abstraction faite de leur degré. Ce point de vue n’a
évidemment qu’un lointain rapport avec d’autres, comme celul
d’aprés lequel «les comparaisons et le langage de la biologie»
seraient « trés utiles en théorie des fonctions »*. Mais si le point
de vue actuel comporte plus que celui-la des difficultés ardues et
périlleuses et exige assurément plus d’efforts, il n’est pas douteux
par contre qu’il conduira en définitive & de tout autres résultats.
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1. La loi de Gauss, que quelques auteurs appellent aussi le
théoréme de BerNouLLI-LapLACE, s’exprime par la relation
arithmétique suivante:
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ou 0<p<L 1,. g=1—p, s= E(\V 2pgn), A étant un nombre
constant, choisi & volonté. E(z) désigne le plus grand entier

1 E. BorEL, Méthodes et problémes de théorie des fonctions. 1922.
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