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SUR QUELQUES FORMULES VECTORIELLES
RELATIVES AUX SURFACES RÉGLÉES

PAR

l'Abbé E. Laine (Angers).

Le calcul vectoriel, outre les simplifications incontestables
qu'il introduit dans l'exposé général de la théorie analytique des
courbes et surfaces 1, présente parfois l'avantage de conduire
par une voie naturelle, pour des problèmes différents en apparence,
à des formules finales identiques : on peut ainsi être amené à des

généralisations intéressantes, ou, en tout cas, à une vue plus
synthétique des propriétés étudiées. Nous allons en donner un
exemple simple.

Considérons la surface réglée 2 définie, relativement à un
système d'axes rectangulaires 0xyz, parles équations

x ai + » y — + b2u t z — a3 +AU >

où a11 a2, a3, bXl b2 et b3 sont fonctions d'un paramètre v. On
distingue, pour l'étude de cette surface, le cas de la surface
gauche et celui de la surface développable. Dans le premier cas, il
existe sur la surface une ligne remarquable, lieu des points
centraux des génératrices, la ligne de striction. Dans le second cas,
la surface possède une ligne singulière, Varête de rebroussement
enveloppe des génératrices.

Employons les notations vectorielles. Soient a(ç) et b(v) les
vecteurs de composantes respectives (av a2, a3) et (6X, ô2, è3),
M un point de la surface réglée. On aura

ÔM a + bu

1. par exeiRPle Leçons de Géométrie vectorielle, de M. Bouligand. Paris Vui-oert, 1924. '
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C est l'équation vectorielle de la surface 2; on peut toujours,

sans nuire à la généralité, supposer que le vecteur est de
longueur un et c'est ce que nous ferons par la suite.

Prenons d'abord le cas de la surface développable. On doit
pouvoir déterminer u en fonction de e, de telle sorte que la courbe
correspondante de 2 soit tangente en chacun de ses points à la
génératrice qui passe en ce point: cette génératrice étant parallèle

P désignant un scalaire convenablement choisi. Multiplions
scalairement les deux membres de l'égalité précédente par —.En tenant compte de l'hypothèse

telle est l'équation qui définit l'arête de rebroussement.
Avant de passer au cas de la surface gauche, rappelons d'abord

quelques formules d'algèbre vectorielle.
Soient a,b, ctrois vecteurs de composantes (av a2, a3),

(bx, b2, b3), (cx, c2, cs) respectivement. On désigne par la notation

au vecteur b, on devra donc avoir

(b)2 rr 1 d'où 1) — — 0
dv

on aura finalement

(a b c)

le déterminant

al a2 a.

on vérifie alors la relation

(a b c) a (b /\ c)

^^, uuua • icpicocliCOIlS paiplication scalaire, et par le symbole A la multiplication vectorielle.
w"ilant ,l6S not.ation® de M. Bouligand, nous représentons par un point la multi-ication scalaire.. et. nar le svmhold a la r. ^ d xnuiti
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On voit aussi immédiatement que l'équation

[a b c) =r 0

exprime que les vecteurs a, è, c sont coplanaires.

Soient, d'autre part, a, è, a, /3, quatre vecteurs arbitraires.
On aura V identité de Lagrange généralisée

[a b) (a (3) — (a ß) (a b) =z (a /\ a) (b /\ ß)

dont la vérification ne comporte aucune difficulté.
Ceci posé, soit P un point quelconque du plan tangent en M

à la surface 2. On aura

/rrk da
t db\

\ ' b' ~dï+#ât) 0 '

OU

»Pa(4+*4)]=«-
La normale en M est donc parallèle au vecteur

— —
•+ da db\hA(-ar + «ât) •

On en déduit, en passant, la condition nécessaire et suffisante

pour que la surface 2 soit développable: la normale devant alors
avoir une direction indépendante de les vecteurs

"t * da •+ 'db
et "A^r

doivent être colinéaires, donc les vecteurs

-* da db

~dvet
sont coplanaires, et par suite on a

-+
da dbdb \ __' dv

c'est la condition cherchée.

L'Enseignement mathém., 25e année ; 1926.



66 E. LAINÉ
Supposons donc

(t, 4«, 4^
\ dv dv ^ 0

Quand le point M s'éloigne à l'infini sur une génératrice A, la

normale devient parallèle au vecteur b /\ — : la normale au

point central étant, par définition, perpendiculaire à ce vecteur*
l'argument u du point central est donné par l'équation

qu'on peut encore écrire

(*A#) •(»A^ + ^A#)'-..
Telle est l'équation qui définit la ligne de striction.

On a d'ailleurs, d'après l'identité de Lagrange généralisée,

da db
^

dv dv

et de même

fta d^V /dty(bAw) •

L'équation de la ligne de striction prend donc la forme

-t •+ —
db [ da db \lh\~d^ + uHÏ) 0 •

En résumé, sur la surface réglée

OM a + lu
où l'on suppose

(b)2 1
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une seule et même équation

HL (É± + ° •

dv \ds> dv

représente l'arête de rebroussement si la surface est développable

et la ligne de striction si la surface est gauche.

On s'explique cette particularité en remarquant que, dans

l'un et l'autre cas, laligne considérée peut être définie comme le lieu

du point de chaque génératrice qui est à la distance minimum

des génératrices infiniment voisines.

EN RELISANT UN MÉMOIRE DE PLÜGKER

SUR LA THÉORIE DES SURFACES

PAR

Gino Loria (Gênes, Italie).

Dans sa Note surune théorie générale et nouvelle des surfaces

courbes (Journal de Grelle, T. IX, 1831, p, 124-135) 1 Plücker a

posé les fondements du système de coordonnées pour les plans de

l'espace; la structure complète n'a été donnée par lui que quinze

ans plus tard dans son ouvrage System der Geometrie des Raumes

(Düsseldorf, 1846). Dans la Note citée l'illustre géomètre ne s'est

pas arrêté aux problèmes fondamentaux relatifs aux points, aux

droites et aux plans, mais il a préféré transformer les formules

classiques de la théorie de la courbure des surfaces dues àEuLER

et Monge en d'autres applicables dans l'hypothèse que les

surfaces étaient considérées comme enveloppes de plans: au contraire

i Voir aussi J. Plücker, Gesammelte wissenschaftliche Abhandlungen, I Band (Leipzig,
1895), p. 224-234.
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