Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1926)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: GENERALISATION DU THEOREME DE CHASLES SUR LA

GÉNÉRATION DES CONIQUES

Autor: Fiquemont, M. E.

DOI: https://doi.org/10.5169/seals-20670

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

GÉNÉRALISATION DU THÉORÈME DE CHASLES SUR LA GÉNÉRATION DES CONIQUES

PAR

M. E. FIQUEMONT (Rennes).

Je me propose d'étendre le théorème de Chasles à une courbe plane, algébrique, d'ordre quelconque, c'est-à-dire de démontrer la proposition suivante:

Une courbe algébrique, plane, d'ordre n, peut être considérée comme le lieu des points d'intersection des rayons homologues d'un faisceau homographique de droites d'ordre n, les n sommets du faisceau étant n points quelconques de la courbe considérée.

Par définition, nous appellerons relation homographique entre n variables la relation algébrique, la plus générale, linéaire par rapport à chaque variable.

Soient $A_1, A_2, ..., A_n$, n points quelconques. Considérons les faisceaux de droites

$$P_1 + \lambda_1 Q_1 = 0$$
,
 $P_2 + \lambda_2 Q_2 = 0$,
 $P_n + \lambda_n Q_n = 0$,

 $P_i = 0$, $Q_i = 0$, étant les équations de 2 droites fixes quelconques passant par le point $A_{i\bullet}$

Le faisceau homographique de droites d'ordre n, de sommets A_1 , A_2 , ..., A_n , sera défini par une relation homographique

$$f(\lambda_1, \lambda_2, \dots \lambda_n) = 0 \tag{1}$$

entre les paramètres des droites du faisceau.

La condition pour que 3 droites des 3 premiers faisceaux linéaires, par exemple, soient concourantes est de la forme

$$a\lambda_1\lambda_2\lambda_3 + \Sigma b_1\lambda_2\lambda_3 + \Sigma c_1\lambda_1 + d_1 = 0.$$

Nous pouvons toujours supposer que les droites P=0, Q=0 aient été choisies de manière que a soit différent de zéro.

La condition s'écrit alors

$$\lambda_1 \lambda_2 \lambda_3 + \sum b_1 \lambda_2 \lambda_3 + \sum c_1 \lambda_1 + d_1 = 0 . \tag{2}$$

Pour que n droites, prises une dans chaque faisceau linéaire, soient concourantes, nous aurons donc C_n^3 relations de cette forme; (n-2) d'entre ces relations seulement sont d'ailleurs indépendantes.

Cherchons les points du plan tels que les n droites des faisceaux linéaires, obtenues en joignant ce point aux points A_1 , A_2 , ... A_n , satisfassent à la relation (1).

Il est clair qu'en se plaçant à ce point de vue, on pourra, en utilisant les relations (2), substituer à la relation (1) une relation équivalente de degré total moindre, en remplaçant tout facteur $\lambda_h . \lambda_h . \lambda_i$ par une relation homographique de degré total 2 en $\lambda_h, \lambda_h, \lambda_i$.

L'on ramène finalement la relation (1) à la forme canonique.

$$\Sigma \alpha_{ik} \lambda_i \lambda_i + \Sigma \beta_i \lambda_i + \gamma = 0 . \tag{3}$$

Deux cas peuvent se présenter:

1º En effectuant la réduction à la forme canonique, l'on obtient identiquement zéro.

(1) est alors une conséquence des équations (2), la relation homographique est vérifiée par tous les points du plan.

2º L'équation (1) prend réellement la forme (3).

Il existe alors un lieu des points d'intersection des droites considérées.

Ce lieu est une courbe algébrique de degré $\leq n$. On le voit immédiatement en éliminant les λ entre les équations (2) et (3); on obtient

$$\Sigma \, \alpha_{ik} \frac{\mathbf{P}_i \, \mathbf{P}_k}{\mathbf{Q}_i \, \mathbf{Q}_k} - \Sigma \, \beta_i \frac{\mathbf{P}_i}{\mathbf{Q}_i} + \gamma = 0 \ .$$

Cette équation mise sous forme entière contient autant de coefficients arbitraires que la relation (3), c'est-à-dire

$$C_n^2 + n = \frac{n(n+1)}{2}$$
.

Elle est de la forme

$$\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_{n \frac{n+1}{2}} \varphi_{n(n+1)} + \alpha_{n \frac{n(n+1)}{2} + 1} \varphi_{n(n+1)} = 0.$$

Les φ représentent des relations d'ordre n en x et y, toutes annulées par substitution à x et y des coordonnées d'un sommet quelconque A_i du faisceau homographique.

Les fonctions φ sont linéairement indépendantes. En effet, le point d'intersection des droites

$$Q_1 = 0 , \qquad Q_2 = 0$$

ne vérifie pas $\varphi_i = 0$ et vérifie toutes les autres équations $\varphi_i = 0$.

Donc une identité linéaire et homogène entre les fonctions φ , si elle existe, ne peut contenir φ_i . L'on démontrerait de même qu'elle ne peut contenir φ_2 , φ_3 , ..., φ_{cn}^2 .

Une telle identité ne peut donc contenir que les (n+1) dernières fonctions φ .

Or toutes ces fonctions sauf la 1^{re} contiennent Q_i en facteur. L'identité est donc impossible.

Or l'on peut disposer des $\frac{n(n+1)}{2} + 1$ coefficients homogènes de la relation (4) pour faire passer le lieu par $\frac{n(n+1)}{2}$ points du plan arbitrairement choisis.

En effet la substitution dans (4) des coordonnées de ces points donnera $\frac{n(n+1)}{2}$ équations linéaires et homogènes entre les $\frac{n(n+1)}{2} + 1$ inconnues α et nous savons que ce système admet au moins une solution, non identiquement nulle.

L'équation F(x, y) = 0 obtenue par cette solution n'est pas une identité puisque les φ sont linéairement indépendants.

En résumé nous obtenons pour le lieu au moins une courbe algébrique d'ordre $\leq n$ passant par les n sommets $A_1, A_2, ... A_n$ et par $\frac{n(n+1)}{2}$ points arbitraires.

49

Cette courbe passe par $\frac{n(n+3)}{2}$ points arbitraires. C'est la courbe d'ordre n la plus générale.

Tangentes aux sommets du faisceau. — La tangente en A_1 est la droite du faisceau linéaire A_1 homologue des rayons A_2A_1 , A_3A_1 , ..., A_nA_1 considérés comme appartenant aux faisceaux linéaires A_2 , A_3 ... A_n .

En effet, soient l_2 , l_3 , ... l_n les valeurs de λ_2 , λ_3 , ... λ_n correspondantes aux droites $A_2 A_1$, $A_3 A_1$, ..., $A_n A_1$.

Soit l le rayon issu de A_1 homologue des rayons l_2 , l_3 , ... l_n . Joignons les sommets A_2 , A_3 , ... A_n au point M voisin de A_1 sur la courbe C.

Les valeurs de λ_2 , λ_3 , ... λ_n correspondantes sont voisines de l_2 , l_3 , ... l_n et tendent vers ces valeurs lorsque M tend vers A. Or la relation (1) étant continue la valeur de λ_1 correspondant à A_1 M est voisine de l et tend vers cette valeur lorsque M tend vers A_1 ce qui démontre la proposition.

Proposition corrélative. — Soient n droites quelconques du plan

$$\mathbf{D_1}$$
 , $\mathbf{D_2}$, ... \mathbf{D}_n ...

Considérons n points, un sur chaque droite D, liés par la relation homographique

$$f(x_1, x_2, \dots x_n) \equiv 0 ,$$

x_i étant l'abcisse du point M_i compté sur la droite D_i.

L'enveloppe des droites passant par n points homologues est une courbe de classe n et inversement toute courbe de classe n est susceptible de ce mode de génération, les droites de base étant n tangentes quelconques à la courbe considérée.

On déterminera facilement les points de contact sur les droites de base.

Faisceaux de courbes d'ordre n. — Revenons aux n faisceaux linéaires de sommets $A_1, A_2, ... A_n$. Soit

$$f(\lambda_1, \lambda_2 \dots \lambda_n) + \mu \varphi(\lambda_1, \lambda_2, \dots \lambda_n) = 0, \qquad (5)$$

une relation où les fonctions f et φ sont des fonctions homographiques des paramètres λ_1 , λ_2 , ... λ_n et où μ est un paramètre arbitraire.

Cette relation représente le faisceau des courbes d'ordre n défini par les 2 courbes

$$f=0$$
 , $\varphi=0$.

Les points $A_1, A_2, ... A_n$ sont des sommets du faisceau.

Définissons le rapport anharmonique de 4 courbes du faisceau par le rapport anharmonique des 4 valeurs de μ correspondantes.

Il est égal au rapport anharmonique des 4 tangentes en un sommet quelconque du faisceau.

En effet donnons à λ_2 , λ_3 , ... λ_n les valeurs l_2 , l_3 , ... l_n correspondant aux droites $A_2 A_1$, $A_3 A_1$... $A_n A_1$, la relation (5) devient une relation homographique entre λ_1 et μ ce qui démontre la proposition.

Conséquence. — La relation

$$f(\lambda_1, \lambda_2, \dots \lambda_n) = 0$$

définissant une courbe d'ordre n s'écrit

$$\lambda_1 \,.\, \phi \, (\lambda_2 \,,\, \lambda_3 \,,\, \ldots \, \lambda_n) \,+\, \psi \, (\lambda_2 \,,\, \lambda_3 \,,\, \ldots \, \lambda_n) \,\equiv\, 0$$
 ,

 $\varphi = 0$ et $\psi = 0$ étant elles-mêmes des relations homographiques entre les variables $\lambda_2, \lambda_3, \dots \lambda_n$.

Si nous considérons λ_1 comme un paramètre variable quelconque, cette relation définit un faisceau Γ_{n-1} de courbes d'ordre (n-1) passant par les points A_2 , A_3 , ... A_{n-1} .

Or la droite λ_1 du faisceau linéaire A_1 rencontre la courbe d'ordre (n-1) correspondante en des points dont le lieu est précisément la courbe C.

Il y a relation homographique entre les droites A_1 et les courbes correspondantes du faisceau Γ_{n-1} puisque le rapport anharmonique de 4 droites A_1 et des 4 courbes correspondantes Γ_{n-1} sont tous les deux égaux au rapport anharmonique des 4 valeurs de λ_1 .

Donc toute courbe algébrique d'ordre n peut être considérée comme le lieu des points d'intersection de deux faisceaux homographiques de droites et de courbes d'ordre (n-1). Le lieu passe par tous les sommets des faisceaux.

Le sommet du faisceau linéaire et (n-1) d'entre les sommets du faisceau de courbes peuvent être choisis arbitrairement sur C.

La tangente en A_i est la droite homologue de la courbe Γ_{n-1} passant par A_i .

La tangente en un sommet quelconque du faisceau Γ_{n-1} est la tangente à la courbe Γ_{n-1} homologue de la droite A_1 joignant A_1 au sommet considéré.

Cette propriété constitue, en se plaçant à un autre point de vue, une nouvelle généralisation du théorème de Chasles.

Inversement il est immédiat que le lieu des points d'intersection de deux tels faisceaux homographiques est une courbe algébrique d'ordre $\leq n$.

LA CLASSIFICATION DES SURFACES DU SECOND ORDRE AU MOYEN DE LEURS GÉNÉRATRICES

PAR

H. G. GREEN, M.A.

(University College, Nottingham, England).

- 1. Dans cette étude nous nous proposons d'établir la elassification des quadriques au moyen de leurs génératrices rectilignes en nous affranchissant des restrictions concernant les axes de référence. Cette méthode a en outre l'avantage de conduire à des équations dont l'emploi est particulièrement utile lorsqu'il s'agit de la résolution numérique de problèmes relatifs aux quadriques.
- 2. Notation. Prenons l'équation générale du second degré sous la forme

$$F \equiv u_2 + u_1 + u_0 = 0 ,$$
 où
$$u_2 \equiv ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy ,$$

$$u_1 \equiv 2ux + 2vy + 2wz ,$$

$$u_0 \equiv d .$$