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SUR LES HAUTEURS D'UN TRIANGLE 41

section K d'une des hauteurs non correspondantes avec la
circonférence décrite sur le côté opposé à celle-ci comme diamètre).

Les cercles de centres A, B, C et de rayons ÂK, BP et GT

coupent respectivement à angle droit les cercles décrits sur les

côtés opposés a, ô, c comme diamètres.

7. — Somme des hauteurs d'un triangle.

a) Segments supérieurs (fig. 9).

Fig. 9.

h" c
—— — cos a
sin y sin y

s'— 2R cos a

s" 2R cos ß

s"'=2R cosT

s' + s" + 2R[cos a + cos ß -(- cosy] •

(9)
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Des formules

cos a -f- cos ß -j- COS y =r 4 sin ~ sin sin T -{- 1

a 2 2 r

résulte

(10)

Par suite
s' + s" + s'" 2 (r + R) (11)

c'est-à-dire
Théorème X. La somme des segments supérieurs des

hauteurs d'un triangle est égale à la somme des diamètres des cercles
inscrit et circonscrit,

b) Segments inférieurs (fig. 9).

Or la parenthèse peut s'exprimer en fonction des rayons
r et R des cercles inscrit et circonscrit au triangle donné et du
rayon rx du cercle inscrit dans le triangle des pieds des hauteurs.
D'après (10), on a

d'où, en élevant au carré,

(cos2 a -f- cos2 ß- 4- COS2 y) -f 2[cos a cos ß -f- cos ß cos y + cos y cos a]

__
r2 + 2rR +. R2

R2: *

De la relation des cosinus on tire

cos2 a -f- cos2 ß -j- cos2 y =-1 — 2 cos a cos ß cos y

i' BH.cosy s" cosy (2R cos ß) cosy

i7 ~ 2R cos ß cos y

i" m 2 R cos y cos a (12)
im 2R cos a cos ß

*' + 2R[cos a cos ß + cos ß cos y + cos y cos a] (13)

Or

cos a cos ß cos y —2R (14)
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En effet (fig. 9),

43

7Y l 81D-(

Donc-

ï — a' lg (90 — y) — c • cos ß cotg y

sin — sin (90 — a) cos a

r, c cos ß cotg y cos a — cos ß cos y cos ai » sll] y

r1 — 2R(cos a cos ß cos y) -

d'où

Par suite

cos a cös p cos y rr ^
cos2 a -R cos2 p -R cos2 y

Remplaçons ci-dessus

_ R
(15)

R - ?* r2 -|- 2rR -R R2
-——- -R 2 [cos a cos p -f- cos ß cos y -|- cos y cos a] — - R2

d'où l'on tire

[cos a cos ß -R cos ß cos y -R cos y cos a] _ r2 -R 2rR -R R
— Tr2 (16)

En portant cette valeur dans la relation (13), on obtient

i'+ i"+ i'" r+ /, + (/• + E) (17)

L'expression entre parenthèses. peut s'exprimer en fonction
des rayons r', r", r'" des cercles inscrits dans les triangles aux
sommets AB, C,, BG, A,, CA, B,. Ces triangles étant semblables
au triangle donné ABC, on a

r a
— — — =: cos a
r a

r' r: rcosa r" — r cos p / r'" — r cos y

r' -R r" -j- r"' z=z r(cos a R- cos p -R cosy)

ou, en vertu de (10)

r' -R + - (18)
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La relation (17) devient donc

ï + i" 4- im r + rt +V + v" + /•'" ;19)

c'est-à-dire
Théorème XI. — La somme des segments inférieurs des

hauteurs d'un triangle est égale à la somme des rayons des cercles

inscrits dans le triangle donné, le triangle des pieds des hauteurs
et les triangles aux sommets.

c) Somme des hauteurs.
Première expression. — En additionnant les relations (11) et

(17) membre à membre, on obtient

h' + h" + h'" 2R + 4r + r, + jr (20)

relation exprimant la somme des hauteurs en fonction des rayons
des cercles inscrit et circonscrit au triangle donné et du rayon
du cercle inscrit dans le triangle des pieds des hauteurs.

Deuxième expression. — En additionnant les relations (11) et
(19) membre à membre, on obtient pour la somme des hauteurs

h' 4- h" 4- h!" 2R 4 3r + r, 4- r' + r" 4- r'" (21)

Cette formule exprime la somme des hauteurs d'un triangle en
fonction du rayon du cercle circonscrit et des rayons des cercles

inscrits dans le triangle considéré, le triangle des pieds des

hauteurs et les triangles aux sommets.
La somme des hauteurs est donc une fonction entière (très

simple) de ces différents rayons.
Remarque. — De (9) et ^12) résulte

s'. s".sm — 8R3(cos a cos ß cos y)

et
ir. i". im 8R3 (cos a cos ß cos y)2

Mais (14)
o rîcos a cos ß cos y ^

Par suite
s', s", s'" r1. D2 où D 2R (22)

i'.i".ï"r\ D (23)

s'. s". s'". i'. i". i'" —r* D* (24)
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