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SUR LES HAUTEURS D'UN TRIANGLE - 41

section K d’une des hauteurs non correspondantes avec la
circonférence décrite surle coté opposé a celle-ci comme diameétre).

Les cercles de centres A, B, C et de rayons AK, BP et CT
coupent respectivement & angle droit les cercles décrits sur les
cotés opposés a, b, ¢ comme diamétres.

7. — Somme des hauteurs d’un triangle.

a) SEGMENTS SUPERIEURS (fig. 9).

1
o b : - C )
§ 7= = — cos a .
sin y sin y
s' == 2R cos a ,
s = 2R cos B , . (9)
nm ..

s — 2R cosy .

s sl o — 2R[cos a + cos B 4. cos Y] -
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" Des formulesﬁ'

cos a + cos 8 4 cosy = 4sin%singsiﬁ—;¥ —l—"i 5

e X, .. Y- _ . r
SN — sin — sin - — —_

22y TR
résulte
cosa—l—cosﬁ—{—cosy::r_;R. (10)
Par suite | |
s' 4" + " = 2(r + R) , (11)

c¢’est-a-dire | -
TuakorEME X. — La somme des segments supérieurs des hau-

teurs d’un triangle est égale @ la somme des diaméires des cercles
inscrit et circonscrit.

b) SEGMENTS INFERIEURS (fig. 9).

i = BH.cosy = s" cos y =— (2'R cos f3) cosy . -

i” = 2R cos B cosy ,

I = 2R ‘cosy cos a , . (12)

N/

" = 2R cos o cos f§ .

U 4 = 2R[cos a cos -+ cos B cos Y + cosycosa] . (13)

Or la parenthése peut s’exprimer en fonction des rayons
r et R des cercles inscrit et circonscrit au triangle donné et du
rayon r; du cercle inscrit dans le triangle des pieds des hauteurs.
D’aprés (10), on a
" r+ R

R

cosa -+ cos3 4 cosy =

d’ou, en élevant au carré,

(cos®a + cos? B + cos?y) + '2[cos‘a cos § + cosf eosy 4 cosy cosa] =

r? 4+ 2rR 4 R?
“RZ. -

De la relation des cosinus , on tire

cos?a 4 cos? B + cos?y =1 — 2 cos @ cosf3 cosy .
Or -

cosa cos f cosy = é% - ' (14)
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En effet (fig. 9), : |
3 Sinv<—%>‘ -

= a"1g (90 — v) ='c.coé{icotg-(;

sin (%) = sin (90 — a) = cos a .

Done
@
r, = ccosf3 colgy cosa = Ty cos 8 cosy cosa
TS QR(cos a cos B cosy) .
d’ou
’ T‘l
cos a cos B cosy = TS
Par suite | .
cos®a + cos?f3 4 cos?y = ; no (15)
Remplacons ci-dessus
Rewr ' . P 24 9 R2
" + 2[cosa cos 8 4 cos 3 cosy -+ cosy cosa] = "+ 2R +

R R?

d’ott on tire

r2 + 2rR 4+ R
- 2R? o

(16)

[cosa cos B 4 cos § cosy 4 cosy cosa] =

En portant cette valeur dans la relation (13), on obtient

. ; . 2 .
i'—}—i”—l—i”/:7'+"1+<r+1ﬁ>' ) ‘ (17)
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?

L’expression entre parenthéSés.peut s’exprimer en fonction
des rayons r’, r”, r'"’ des cercles inscrits dans les triangles aux
sommets AB,C,, BC 1Ar, CAB,. Ces triangles étant semblables

au trlangle donne ABC, on a

rl

N

— = 1 = cosa .
r a
r == rcosa, ¥ = rcos B ,; = rcosy .
" 4+ " 4+ 1" = r(cos a (_;'OSB -+ cosvy) ,
ou, en vertu de (10) “

2 o
Mo ’,.{” : <'ﬁ+ r) .o - (18)
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La relation (17) devient donc
V" =4 4 - 19)

¢’est-a-dire : :
TaktoriME XI. — La somme des segments inférieurs des hau-

teurs d’un triangle est égale d la somme des rayons des cercles

inscrits dans le triangle donné, le triangle des pieds des hauteurs

et les triangles aux sommets. n
¢) SOMME DES HAUTEURS.
Premiére expression. — En additionnant les relations (11) et

(17) membre & membre, on obtient ‘

2

% (20)

B - B 4 B" = 2R + hr + r, +

relation exprimant la somme des hauteurs en fonction des rayons
des cercles inscrit et circonscrit au triangle donné et du rayon
du cercle inscrit dans le triangle des pieds des hauteurs.

Deuxiéme expression. — En additionnant les relations (11) et
(19) membre & membre, on obtient pour la somme des hauteurs
R 4+ A" + h" = 2R+ 3r 4+ r, 4+ F "1 (21)

Cette formule exprime la somme des hauteurs d’un triangle en
fonction du rayon du cercle circonscrit et des rayons des cercles
inscrits dans le triangle considéré, le triangle des pieds des hau-
teurs et les triangles aux sommets.

La somme des hauteurs est donc une fonction entiére (trés
simple) de ces différents rayons.

Remarque. — De (9) et (12) résulte

s’.s".s" = 8R3(cos a cos § cos ) ,
et .
i/.0". 1" = 8R3(cos a cos § cos ¥)? .
Mais (14)
cos & €OS 5 COS ¥ — Q’—IR 3
Par suite _
s'.s".s" = r,.D?, ou D = 2R, (22)
¢’ 3.3 = .D , (23)
s'.s.s" " = P DY, (24)

o ’
. " . '.II' slll

s7 s s" T (2R3
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