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La relation (4) devient

4- IA a"2 + c2

0U
b2 - C2 c"2 — fl/2 (5)

c'est-à-dire
Théorème V. — Dans un triangle rectangle, la difference

des carrés construits sur les côtés de Vangle droit est égale à la

différence des carrés construits sur les segments déterminés sur

l'hypoténuse par la hauteur correspondante.

5# Démonstration des théorèmes II, III et IV basée sur

le théorème de Pythagore généralisé.

En nous basant sur le théorème de Pythagore généralisé, nous

pouvons démontrer le théorème II — d'où nous déduirons le

théorème I — puis les théorèmes III et IV. Nous envisagerons

le cas du triangle acutangle.
1° Pour le théorème II (fig. 2):

Appliqué au côté c, le théorème de Pythagore généralisé

donne
c2 a2 + b2 — 2aa"

Or
c2 JT2 + a'2

En remplaçant on a

/i'2 4. a'i — a2 4- b2 — 2aa"

d'où
h'2 a2 — a'2 + b2 — 2aa"

h/2 (a' 4- a") a — a'2 + b2 — 2 aa"

=Z a'[a. — a') — aa" -f b2

Mais
aa" — bb/

Par suite

h/2 — a' a" — bb' + b2 a'a" 4" b(b — //)
)T2 a'a" 4- />//'(= a'a" + cc')

C'est la relation du théorème II.
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A. STREIT
2° Déduction du théorèmeIduthéorème II {fig. J);

h" «'«" .+ ce' - +
Mais

ce" aa'

h'2 — aa'— a'2-f aa/^
~Ër~ + ~>

h,2 __ aa\aa'c
c" — « —

Or
W_a/
h"'

d où, en divisant membre à membre

h' W" z=z ne — a' c"

ce qui est la relation du théorème I.
3° Pour le théorème III (flg. 4):

c2 a2 + h2 — 2aa"
c2 a (a' -f a") -f b (b' -f b") — 2aa"

aa' 4" bb' — cl a" -f- bb"
Mais

ht/ aa"
Par suite

c2 z=z aa' -f- bb" [r=r aa' -f- ce')

C est la relation du théorème III.
4° Pour le théorème IV (fig. 5):
En appliquant le théorème de Pythagore généralisé aux trois

cotes, on obtient successivement

a2 b2 +c2—
b2c2 + a2— 2cc"

c2 a2 +2

d'où
a2 + b2+ c2 2 (a2+ b2 + c2) -. 2 ~ Ub" - 2cc"
a2 -f b2 + c2 a(2a")-f- b (2b"+ c(2c").

ou aussi, puisque aa" =* bb', bb" ce', cc"'= aa',a2+ A2.+ C2 a(2a')+ /,(2//) -f c(2c')
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Ces deux relations signifient que:
La somme des carrés construits sur les côtés d'un triangle est

égale à la somme des trois rectangles construits sur chaque côté et

le double d'un des segments correspondants, les trois segments

devant être non consécutifs.
Chacune des deux relations précédentes conduit au théorème

IV. La seconde peut s'écrire

+ a")2 -f (// + b")2 + (c' + c")2 —

— 2 [(«' + a") a' + (// + b")b' + (c' + c") c']
d'où résulte

(fl'2 + f/2 c/2) + |a//2 _|_ ///2 + c//2) — 2[«'2 + />/2 + C/2j

Par suite
fl/2 + //2 _j_ ci% _ a//2 + ///2 _|_ cn2

ce qui est la relation du théorème IV.
5° Le théorème V peut se démontrer directement comme suit :

On a
b2 aan et c2 au'

d'où
b2 — c2 a {a" — cl') — [a" + a') (a» — a')

OU
b2 — c2 — a"2 — a'2

6. — Conséquences résultant des formules du groupe (3),

1° Menons les hauteurs h' et h" issues des sommets A et B
d'un triangle ABC et prolongeons-les jusqu'à leurs points
d'intersection T et K avec les circonférences décrites sur les
côtés opposés BC et AC comme diamètres. Puis dessinons des
circonférences avec les extrémités A et B du troisième côté
comme centres et leurs distances à ces points K et T comme
rayons (fig. 6).

Soit M un point d'intersection de celles-ci. D'après la
troisième des formules (3) on a

c2 — aaf -f- bb"
OU

c2 ÏÏT2 + ÄK2 BM2 + AM2
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