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La relation (4) devient
a® 4 bt = a’®

ou |
b2 — ¢t = o't — a’?, (5)
¢est-a-dire | | ,
TaforEME V. — Dans un triangle RECTANGLE, la différence
des carrés consiruits sur les cotés de Pangle droit est égale a la
différence des carres construits sur les segments déterminés sur

Phypoténuse par la hauteur correspondante.

5. — Démonstration des théorémes H, III et IV basée sur
le théoréme de Pythagore généralisé.

En nous basant sur le théoréme de Pythagore généralisé, nous
pouvons démontrer le théoreme II — d’ot nous déduirons le
théoréme I — puis les théorémes 11T et IV. Nous envisagerons
le cas du triangle acutangle.

1o Pour le théoréme II (fig. 2):

Appliqué au coté ¢, le théoreme de Pythagore généralise

donne :
2 = a? + b — 2ad"’ .

Or

2= W4 a?.
En remplacant on a

K2 4 a’t = a® 4 b2 — 2aad"

d’ol :
e = a? — a’? + b? — 2aa"”
2 = (a’ + a'')a — a’? + b — 20a" =
= af(a — ') — ad” + b2 .
Mais
aa’ = bl .
Par suite

B2 = a’a" — bb" + b2 = a’a’ + b(b— V),

%

[l

a’a’ + bb' (= a’a’ + )

Cest la relation du théoréme IT.

b . "
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“ce qui est la relation du théoréme I

- d’ou
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2° Déduction du théoréme I dy théoreme II (fig. 1):

h/2 — 7 o1 o gy cc”’ . ¢’
=aa + o’ = a'la—a") 4 =2 m
- C
Mais
e’ = aa’
: aa’ . ¢’ aa’ " aa’c
2 ’2 _ 2]
k_aa—-a+c_” —c”+ — — a’?
B — aa’. (c" + ¢) 4, __ad’c a2
_ - ¢!’ - c"
Or )
4 al
d’ou, en divisant membre a4 membre

R 1" = ac — a’¢” |

3° Pour le théoréme II1 (fig. 4):
¢ = a® 4 b2 — 244" ,
= a(a + a”’) + b(b" + b') — 2aa" —
= aa’ 4 bb' — aa’ 4+ bh" .

Mais

bb! — ad" .

Par suite | .
¢? = aa’ + bb" (= aa’ + cc’) .

C’est la relation du théoréme III.
4° Pour le théoréme IV (fig. 5):
En appliquant le théoréme de Pythagore généralisé aux trois
cOtés, on obtient successivement :

@ = b2 et gy
b? c? 4+ a? — 2¢¢”

o? a? 4+ b?2 — 2qa”

I

Il

a? + b? 4 2 = 2(a? 4+ 0% ¢?) — 2aa” — 26" — 2a¢" -,
@ 4 b2 4 ¢ = a(2a") + h(26") + ¢(2¢")

ou aussi, puisque aa” = bb’, bb" = cc’, cc” = qa’,

@ B = a(2a’) 4+ b(2) 4 c(2¢’) .
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Ces deux relations s1gn1ﬁent que:

La somme des carrés construits sur les cotés d'un trw,ngle est
égale a la somme des trois rectangles construils sur chaque coié et
le double d'un des segmenis correspondants, les trois Segments
devant étre non consécutifs.

Chacune des deux relations précédentes conduit au theoreme
IV. La seconde peut s’écrire

((’/ + all)2 + ([)' _I__ bl!)2 + (C, + C//)Z —
= 2[(a" + a"Ya’ + (b’ —}— bV b + (¢/ + )e']
d’ou résulte ' |
(@2 4 b'2 4 %) 4 (&% + b2 + %) = 2[a’? + b"2 + ¢'?] .

Par suite
a’”? 4+ b 4 ¢'? = a'"”? + b2 £

ce qui est la relation du théoréeme IV, .
50 Le théoréme V peut se démontrer directement comme su1t
On a

2 ’

et ¢ = aa

6. — Conséquences résultant des formules du groupe (3).

1o Menons les hauteurs A’ et 4" issues des sommets A et B
d’un triangle ABC et prolongeons-les jusqu’a leurs points
d’intersection T et K avec les circonférences décrites sur les
cotes opposés BC et AC comme diameétres. Puis dessinons des
circonférences avec les extrémités A et B du troisitme coté
comme centres et leurs distances & ces points K et T comme
rayons (fig. 6).

Soit M un point d’intersection de celles-ci. D’apres la troi-
sieme des formules (3) on a

¢? = aa’ + bb"
ou ’

mt— 9

= Bl' + AK® = BM® 4 AV’
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