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28 .. . 4. STREIT

Nous pouvons donc envisager la relation %2 = q'q” < pp”
relative & un triangle acutangle ou obtusangle en A, c’est-a-dire

le théoréme II', comme étant la généralisation du théoréme

énoncé ci-dessus et relatif 4 un triangle rectangle.

Si 'on tient compte de la regle des signes des segments, le-

théoréme généralisé — c’est-a-dire le théoréme II' — peut s’énon-
cer comme suit: ‘

Dans un triangle QUELCONQUE, le carré construit sur chaque

hauteur est équivalent a la somme algébrique du rectangle construit
sur les segments qu’elle détermine sur le coté correspondant et du
rectangle construit sur Pun des deux autres cOiés et la projection
du second sur lui, la surface d’un des rectangles devant éire prise
négativement si I'un des segments qui deviennent ses dimensions
est négatif.

3. — Carré construit sur un eoté d’un triangle,

PREMIER cAs. — Triangle acutangle (fig. 4).

Le théoréme II donne

R = a’a” + bb" .
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Mais :
A2 = ¢ — a’?.
Par suite _
2 —a? = ad’a" + bb"
d’ou

I

a’? + a'a" 4 bb" =
= a'(a’ 4 a") ‘—{— bb" .
¢ = aa" + bb" .
Par permutation circulaire on a
@2 == bAl)’ + ce"
- ¢c¢’ + ad"” (3)
aa’ + bb"

ol
()

no

¢’est-a-dire

TutoriME III. — Dans tout triangle ACUTANGLE, le carré
construit sur 'un quelconque des cotés est égal d la somme des
rectangles construits sur chacun des deux autres coiés et la pro-
jection du premier sur lui.

SecoND cas. — Triangle obtusangle (« > 90°) (fig. 4).

En effectuant sur les formules (2') les mémes transformations
que, dans le premier cas, sur les formules (2) et en observant que
a=a +a", b=b—0b", c=c"—c', on est conduit au
résultat suivant

a > 90° ,
a? = bb' 4 ¢
b = — c¢’ + aa" (3)
82 — ga’ - bb* .

Le carré du coté opposé & langle obtus est donc égal & la
somme des rectangles, tandis que le carré d’un coté adjacent est
egal & la différence des deux rectangles dont le plus grand cor-
respond au coté opposé a I’angle obtus:

TutortmE III'. — Dans un triangle OBTUSANGLE, le carré
construit sur un coté est égal a la somme ou & la différence des
rectangles construils sur chacun des deux auires ciés et la projection

du premier sur lui, suivant que ce premier coté est opposé ou adja-
cent a Uangle obtus. |
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Remarque 1. — Si I’on observe la régle des signes des seg-
ments (voir 2, remarque 1), ¢’est-a-dire si ’on considére comme
négatif un segment situé en entier sur le prolongement du coté,
les formules (3) sont alors valables pour un triangle obtusangle

comme pour un triangle acutangle, c’est-a-dire pour un triangle

quelconque. - R )
Remarque 2. — Soit ABC un triangle rectangle en A (fig. 4)
et appliquons-lui le théoréme suivant:
Dans un triangle rectangle, le carré construit sur un cété de
Pangle droit est équivalent au rectangle construit sur Uhypoténuse
entiére et la projection de ce cété sur I hypoténuse :

a = 90° , ¢ = aa’ .

Supposons que le sommet A se déplace sur la hauteur #’,
@ et &’ restant invariables. _ «

10 Si A s’éloigne de a, donc si « diminue et devient par consé-
quent aigu, le carré construit sur le coté (c) augmente du rec-
tangle bb", car on a alors, d’aprés le théoréme III relatif ayu
triangle acutangle,

a < 90° | ¢ = aa’ + bb" .

20 Si par contre A se rapproche de a, donc si « augmente et
devient par conséquent obtus, le carré construit sur le coté ()
diminue du r'/ectang'le bb”, car on a, dans ce cas, d’aprés le théo-
reme III" applicable au triangle obtusangle en A,

a > 90° | ¢ = aa’ — bb" .

D’ailleurs, pour « = 90°, la troisiéme des formules (3)
| ¢? = aa’ + bb" |
devient précisément, b” étant nul,
@ = 90° | o? = pa' .
Le théoreme III, ou plus généralement la relation
| 2 = ad’ + bb"
relative au triangle acutangle ou obtusangle en A, est donc la

GENERALISATION du théoréme ci-dessus relatif au triangle
rectangle. '
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En tenant compte de la régle des signes des segments, le

| ihéoréme généralisé peut s’énoncer comme: suit et il remplace

alors les théorémes III et III:

Dans un triangle QUELCONQUE, le carré construit sur l’un quel-
conque des cdiés est équivalent & la somme algébrique des rectangles
construits sur chacun des deux autres cotés et la projection du

premier sur lut.

4, — Somme des earrés construits sur trois segments
non conséeutifs.

PreEMIER cAs. — Triangle acutangle (fig. 5).
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Fig. 5.

~Les formules (2), sous leur premiére forme, peuvent s’écrire,
en considérant que a =a’' +a’, b=>b"+b", ¢ = ¢ + ¢

k/2 [ / " + bbl’ [ I H + blb" + bl!2

R' = b b" 4 e = b 4 o’ 4 ",

h”l2 — C,C" + aa"‘z C,C” + al n a
d’ou : + ’

(a) h’2 -+. Il"2'+ B2 — (aH2 + e + cnz) + 2.( " a" + b b + ¢’ ¢ n)
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