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On a donc
A. STREIT

«
_b behe

h'»h' cfl _ c„a*
Par permutation circulaire on a

h'h" ab — a" //
h"h»> be - 6'V
h'"h' =: ca — c" a'

(1)

c'est-à-dire
Théorème I. _ Z,e rectog/e co/wtrait *Mr

triangle quelconque est égal au rectangle construit sur les deuxcotes correspondants,dimmué du rccftmgfe 6Wjections de ces cotés l'unsur Vautre
'hé°rème « ïa,»W' 1 «** 1-

2. —- Carré construit sur une hauteur d'un triangle.

Premier cas. Triangle acutangle (fig. 2).
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Fig. 2.

fJÜüfi ^ Un trfangle acutang^ D'après la première desformules du groupe (1), nous avons
h'h" ab — a" //
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Les triangles semblables AA,C et BB,C fournissent la

relation

h"~ b'

Multiplions membre à membre

un_aa"b a,n— ««"(// + b") ,,2h _ —,a — y a

aa" b"
h'2 a" {a - a") + —.

Les quadrilatères ABA^i, BCB^, CAQAj étant ins-

criptibles, le théorème des sécantes donne

aa" — bbf ; bb" ccf ; cc" aa'

Remplaçons aa" par bb' dans A'2, puis appliquons la permutation

circulaire

|
h'2 a'a" + bb" I h'2 a'a" + cc' f

< /i"2 A'A" + cc" ou | A"2 ////' + äa' (2)

h'"2 c'c" + aa" h'"2 — c'c" + bb'

c'est-à-dire
Théorème II. — Le carré construit sur une hauteur d'un

triangle acutangle est équivalent au rectangle construit sur les

segments qiïelle détermine sur le côté correspondant augmenté du
rectangle construit sur l'un des deux autres côtés et la projection
du second sur lui.

Second cas. — Triangle obtusangle (oc > 90°) (fig. 3).
En appliquant successivement à chacune des formules du

groupe (1) le même procédé que dans le premier cas et en observant

que a ~ a' + a", b b' — b'\ c c" — c', on est conduit
ux résultats ci-dessous

— b'b" + aa' (2')

_ c'c" _|_ w

a > 90°

h!2 — a'a" — bb"

h"2 — b'b" + ce"

h"'2 — c'c" + aa"

h'2 :

A"2

h'"2 :



A.STREIT
Dans le cas d'un triangle obtule carré construit surune hauteur est donc équivalent à la différence des deux rec-

tangles en question.
Les relations (2) et (2') peuvent être exprimées par le théo-

reme unique suivant:
Theorème II'. — Dans un triangle quelconque, le carré

construit sur une hauteur est équivalent au rectangle construit surles segments qu'elle détermine sur le côté correspondant augmenté

ou diminué du rectangle construit sur Vun des deux autres côtés
et la projection du second surl,suivant que les trois angles
sont aigus ou que Vangle traversé par la hauteur est obtus. Le
carre d'une hauteur ne traversant pas l'angle obtus est égal ausecond rectangle moins le premier.

Remarque 1. Si nous convenons d'envisager les segments

«' BA, a"A, C ; CB, b" —B,A :

c' AC, C, B



SUR LES HAUTEUES D UN TRIANGLE 27

comme positifsquand ils sont dirigés dans le sens AB CA et

négatifs dans le sens contraire AGB A, les (2) sont a ors

valables dans tous les cas, donc quels que soient les angles du

triangle. On constate d'emblée qu'un segment négatif est situe

en entier sur le prolongement du côté correspondant; un

segment qui empiète seulement sur le prolongement du côté est

^
Remarque 2. — Soit AB C un triangle rectangle en A (fig. 3)

et appliquons-lui le théorème suivant:

Le carré construit sur la hauteur d'un triangle rectangle est

équivalent au rectangle construit sur les segments qu'elle determine

sur l'hypoténuse :
a90° /t'2 »'«"

Supposons que le sommet A se déplace sur la hauteur que

les sommets B et C restent fixes et les segments a' et a" par

conséquent invariables.
lo Si A s'éloigne de a, l'angle a diminue, la hauteur h' augmente

et l'on a, d'après les formules (2) concernant le triangle acutangle

a < 90° h'2 a'a" + bb" •

Le carré construit sur la hauteur h' a ainsi augmenté du rectangle

bb".

2° Si par contre A se rapproche de a, l'angle <x augmente, la

hauteur h' diminue et l'on a, d'après les formules (2') applicables

au triangle obtusangle en A

a > 90° h'2 z=z ci'a" — bb"

où b" doit être pris en valeur absolue.
Dans ce cas, le carré construit sur la hauteur h' a diminué

du rectangle bb".

D'ailleurs, en faisant tendre a vers 90°, la première des

formules (2) (ou (2')), c'est-à-dire

h'2 =z a'a"± bb"

devient, puisqu'à la limite b" 0,

a 90° h'2 a'a"



J. S T

Nous pouvons donc envisager la relation A'2 ±relative à un triangle acutangle ou obtusangle en A, c'est-à-dire
e t éorème II', comme étant la généralisation du théorème

énoncé ci-dessus et relatif à un triangle rectangle.
Si l'on tient compte de la règle des signes des segments, le

theoremegénéralisé — c'est-à-dire le théorème II' — peut s'énon-
cer comme suit:

1

Dans un triangle quelconque, le carré construit sur chaquehauteur est équivalent à la somme algébrique du rectangle construit
sur les segments qu'elle détermine sur le côté correspondant et du
rectangle construit sur l'un des deux autres côtés et la projectiondu second sur lui,lasurface d'un des rectangles devant être prise
négativement si l'un des segments qui deviennent ses dimensions

3. — Carré construit sur un côté d'un triangle.

Premier cas. — Triangle fig. 4).

Le théorème II donne

A'2 a'a" + bb"
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