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MELANGES ET CORRESPONDANCE

Sur la dérivation des séries terme a terme.

Etant donnée une série Suk(x) convergente pour toute valeur de
2 appartenant & un intervalle donné (a, b), sv les dérivées ug (x) des
termes de celte série sont des fonctions bien définies de X partout dans
Pintervalle considéré, et si, de plus, la série Y uy(x) est uniformément
convergente dans cel intervalle, cetle derniére série représente, dans
Pintervalle (a, b), la dérivée de la fonction f(x) définie par la série
proposée. :

Pour démontrer ce théoréme je m’appuie: 1° sur le théoréme des
accroissements finis, applicable, comme on sait, & une fonction d’une
variable dans tout intervalle ou cette fonction admet une dérivée
“partout bien définie; 20 sur le fait qu’une série quia pour termes des
fonctions de z continues dans un intervalle donné, et qui, en outre,
est uniformément convergente dans cet intervalle, représente, dans
cet intervalle, une fonction continue de .

Soient x et 2, deux nombres quelconques de I'intervalle (a, ). On a
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Les fonctions ¢, ainsi définies sont évidemment continues pour
toute valeur de x appartenant a Pintervalle (, b). De plus, je dis que la
série 3¢, () est uniformément convergente dans cet intervalle. En
effet, pour chaque couple d’entiers positifs 7 et p, on a
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&qp représentant un nombre compris dans Pintervalle (g, x). Cette

relation, qui se réduit & une identité en vertu de (3), quand z = x,, se

déduit de (2), quand z est différent de %y, en appliquant la formule des
n--p

accroissements finis & la fonction Z u,(x) a dérivées bien définies
n-1

partout dans lintervalle (a, b). Or, soit une quantité positive &

choisie & I'avance aussi petite que l'on voudra: par hypothése, on

aura, a partir d’une valeur de 'entier z suffisamment grande, quel que

soit I'entier positif p, et pour toute valeur de & appartenant a l'inter-

valle (a, b):
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donc, en vertu de (4), pour toute valeur de z appartenant a l'inter-
valle (a, b)
nj—p l
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La convergence uniforme de la série 3¢ .(x) dans I'intervalle (a, b)
est ainsi établie. Cette série représente donc dans cet intervalle une
fonction continue de x, et I'on pourra en particulier écrire

lim Eqak(x) :Z?k(xo) ,

X=Xy

¢’est-a-dire, en vertu de (2), (1) et (3)

lim f(x) — f(l‘o) = 211//5 (CCO) .

xXx=x, S xo

C. Q. F. D.

Ce théoréme ! se trouve démontré d’une maniére un peu différente
dans les deux derniéres éditions du Cours d’ Analyse de M. GOURSAT.

15 novembre 1926. W. Rivier (Lausanne).

1 On trouvera une forme plus générale de ce théoréme dans le traité de H. Kwropp, .
Theorie u. Anwendung der unendlichen Reihen, p. 343, Satz 4, 2¢ édition. — WNote
de la Rédaction. ‘
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