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LA THÉORIE DES GROUPES

ET LES RECHERCHES RÉCENTES DE GÉOMÉTRIE

DIFFÉRENTIELLE 1

PAR

E. Cartan (Paris).

I

On sait, depuis M. F. Klein (Programme d'Erlangen2) et
S. Lie, le rôle important joué par la théorie des groupes dans la

géométrie. H. Poincaré a popularisé dans le grand public
scientifique cette idée fondamentale que la notion de groupe
est à la base des premières spéculations géométriques. La
géométrie élémentaire est au fond la théorie des invariants d'un
certain groupe, le groupe des déplacements euclidiens; elle a en
effet pour but l'étude des propriétés des figures qui se conservent

par un déplacement arbitraire; dire que tous les déplacements
forment un groupe, c'est justement exprimer en langage précis
l'axiome d'après lequel deux figures égales à une troisième sont
égales entre elles.

La géométrie projective a de même pour objet l'étude des

propriétés des figures qui se conservent par le groupe des
transformations homographiques, et on peut également assigner à la
géométrie affine, à la géométrie conforme ou anallagmatique, etc.,
un groupe correspondant, [nversement tout groupe continu
donne naissance à une discipline géométrique autonome.

Dans chacune de ces géométries on attribue, pour la
commodité du langage, à 1 espace dans lequel les figures étudiées

1 Conférence faite le mercredi 13 août 1624, au Congrès international de
mathématiques, qui s'est tenu à Toronto du il au 16 août.

2 Le Programme d'Erlangen (1872) a été reproduit dans les Math. t. 43
(1893), p. 63-109, ainsi que dans le t. I des Gesammelte mathematische Abhandlungen

de F. Klein (1921).
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sont localisées les propriétés elles-mêmes du groupe correspondant,

ou groupe fondamental;c'est ainsi qu'on est arrivé à dire:
« l'espace euclidien », « l'espace affine », etc., au lieu de « l'espace
dans lequel on n'étudie que les propriétés des figures invariantes
par le groupe euclidien, le groupe affine, etc. » Chacun de ces

•

espacés est homogène,en ce sens que ses propriétés restent
inaltérées par une transformation du groupe fondamental
correspondant.

Plusieurs années avant le Programme d'Erlangen, B.
Riemann avait introduit, dans son mémoire célèbre: « Ueber die

Hypothesen welche der Geometrie zù Grunde 1
», des espaces

non homogènes au sens qui vient d'être donné à cette expression.
Dans ces espaces le carré de la distance de deux points infiniment

voisins était défini par une forme différentielle, jusqu'à un
certain point arbitraire, mais qu'en fait, on a toujours supposée
quadratique. Ces espaces ont fait l'objet de nombreux et importants

travaux, principalement en Allemagne et en Italie2.
Mais ils ont surtout pris une importance considérable depuis

que M. Einstein, par la théorie de la relativité généralisée, a

essayé, en identifiant notre Univers à un espace de Riemann,
de réunir en une seule et même théorie la gravitation, l'optique
et l'électromagnétisme. Le mouvement d'idées auquel cette
théorie a donné naissance a conduit, par des généralisations
importantes, à des espaces nouveaux; il suffira de citer les

espaces de M. H. Weyl et lés espaces de M. Eddington. Quel
rôle la notion de groupe joue-t-elle, ou plutôt doit-elle jouer,
dans ce champ nouveau de la Géométrie; est-il possible de

faire rentrer dans le cadre, suffisamment élargi, du programme
d'Erlangen toutes les géométries nouvelles et une infinité d'autres,

c'est ce que je me propose d'examiner.
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A .première vue, la notion de groupe semble étrangère à la

géométrie des espaces de Riemann, car ils ne possèdent l'homo-

1 B. RieMann, Qeëarnméïte math.Werke^Leipzig(1876), p. 254-269.
2 il nous suffira de citer les noms de E.-B. Christofpel, R. Lipsghitz, A. Voss*

O. Ricci, L. Bianchi et T. Levi-Givita. *
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