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LA THEORIE DES GROUPES
ET LES RECHERCHES RECENTES DE GEOMETRIE
DIFFERENTIELLE 1 '

PAR

E. Carran (Paris).

On sait, depuis M. F. KLein (Programme d’Erlangen?) et
S. Lig, le role important joué par la théorie des groupes dans la
géométrie. H. Poincart a popularisé dans le grand public
scientifique cette idée fondamentale que la notion de groupe
est a la base des premieres spéculations géométriques. La géo-
métrie élémentaire est au fond la théorie des invariants d’un
certain groupe, le groupe des déplacements euclidiens; elle a en
effet pour but I’étude des propriétés des figures qui se conservent
par un déplacement arbitraire; dire que tous les déplacements
forment un groupe, c¢’est justement exprimer en langage précis
I’axiome d’apres lequel deux figures égales a une troisiéme sont
égales entre elles.

La géométrie projective a de méme pour objet I’étude des
propriétés des figures qui se conservent par le groupe des trans-
formations homographiques, et on peut également assigner a la
géomeétrie affine, &la géométrie conforme ou anallagmatique, ete.,
un groupe correspondant. Inversement tout groupe continu
donne naissance a une discipline géométrique autonome.

Dans chacune de ces géométries on attribue, pour la com-
modité du langage, & ’espace dans lequel les figures étudiées

1 Conférence faite le mercredi 13 aotut 1924, au Congreés international de mathé-
'nmtiqucs qui s’est tenu a Toronto du 11 au 16 aout.
2 Le Programme d’Xrlangen (1872) a été reproduit dans les Math. Annalen, t. 43

(1893), p. 63-109, ainsi que dans le t. I des Gesammelte mathemalische Abhand-
lungen de F. Klein (1921).
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sont locahsees les propnetes elles-mémes du groupe correspon-
dant, ou groupe fondamental; ¢’est ainsi qu’on est arrivé & dire:

" «P’espace euclidien », «1’espace affine », etc., au lieu de « I’espace

dans lequel on n’étudie que les propriétés des figures invariantes.

par le groupe euclidien, le groupe affine, etc. » Chacun de ces
- espaces est homogéne, en ce sens que ses propriétés restent inal-

térées par une transformation du groupe fondamental corres-

~ pondant.

Plusieurs années avant le Programme d’Erlangen, B. RiE-
MANN avait introduit, dans son mémoire célébre: « Ueber die

- Hypothesen welche der Geometrie zu Grunde liegen® », des espaces

non homogénes au sens qui vient d’étre donné a cette expression.
Dans ces espaces le carré de la distance de deux points infini-
ment voisins était défini par une forme différentielle, jusqu’a un
certain point arbitraire, mais qu’en fait, on a toujours supposée

- quadratique. Ces espaces ont fait I’objet de nombreux et impor-

tants travaux, principalement en Allemagne et en Italie?2
Mais ils ont surtout pris une importance considérable depuis
que M. EinstEIN, par la théorie de la relativité généralisée, a -
essayé, en identifiant notre Univers & un espace de Riemann,
de réunir en une seule et méme théorie la gravitation, 'optique
et l'électromagnétisme. Le mouvement d’idées auquel cette
théorie a donné naissance a conduit, par des généralisations
importantes, & des espaces nouveaux; il suffira de citer les
espaces de M. H. WevL et les espaces de M. EppiNacroN. Quel
role la notion de groupe joue-t-elle, ou plutét doit-elle jouer,
dans ce champ nouveau de la Géométrie; est-il possible de
faire rentrer dans le cadre, suffisamment élargi, du programme-
d’Erlangen toutes les géométries nouvelles et .une infinité d’au-

tres, c’est ce que je me propose d’examiner.

11

A .premiére vue, la notion de groupe semble ‘étrangére & la

| gédmétrie des espaces de R‘ie‘mann, car ils n_e poSSédent‘ I’homo-

1 B. RIEMANN, Gesaminélle math Werke, Le1pz1g (1876),.p 254——269
2 11 nous suffira de citer les noms de E.-B. GHRIS’I‘OFFEL R LIPSGHITZ A Vo<zs,‘

Gr Rmcx, L. BIANGHI et T. LEVI-CIVITA
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généité d’aucun espace & groupe fondamental. Néanmoins, si un
espace de Riemann ne posséde pas une homogénéité absolue, il
posséde cependant une sorte d’homogénéité infinitésimale; au
voisinage immédiat d'un point donné il est assimilable a un
espace euclidien. Toutefois si deux petits morceaux voisins d’un
espace de Riemann peuvent étre assimilés chacun a un petit
morceau d’espace euclidien, ces deux petits morceaux sont sans
lien entre eux, ils ne peuvent pas, sans convention nouvelle, étre
regardés comme appartenant a un seul et méme espace euclidien.
Autrement dit, un espace de Riemann admet, au voisinage d’un
point A, une rotation autour de ce point, mais une translation,
méme considérée dans les effets qu’elle produit sur une région
tres petite de ’espace, n’a pas de sens. Or, ¢’est le développement
meéme de la théorie de la relativité, liée par l'obligation para-
doxale d’interpréter dans et par un Univers non homogéne les
résultats de nombreuses expériences faites par des observateurs
croyant a I’homogénéité de cet Univers, qui permit de com-
bler en partie le fossé qui séparait les espaces de Riemann de
Pespace euclidien. Le premier pas dans cette voie fut I'ccuvre
de M. Levi-Civita, par l'intreduction de sa notion de paral-
lélisme.

Voici comment, griace a cette notion, les choses peuvent étre
présentées. On peut imaginer, en chaque point d’un espace de
Riemann, un espace euclidien (fictif) tangent, dont ce point et les
points infiniment voisins font partie; la définition du parallélisme
de M. Levi-Civita permet alors de raccorder en un seul les espaces
euclidiens tangents en deux points infiniment voisins quel-
conques; autrement dit, elle confére a I’espace de Riemann une
connexton euclidienne. Sil’on considere dans I'espace de Riemann
une ligne continue AB, on peut raccorder de proche en proche
en un seul les espaces euclidiens tangents aux différents points
de AB; par suite aussi, aux infiniment petits prés du second
ordre, tous les points de I'espace de Riemann voisins de la ligne
AB viendront, par cette espece de développement, se localiser
dans I'espace euclidien tangent en A. Le mot développement est
mis 14 & dessein. Si en effet on applique le procédé qui vient

1 Rend. Circ. mat. di Palermo, t. 42 (1917), p. 173-205.
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d’étre indiqué & une surface ordinaire, regardée comme un espace
de Riemann & deux dimensions-défini par le ds? de la surface,
le raccord de proche en proche des plans (euclidiens) tangents
4 une ligne AB tracée sur la surface est identique au développe-
ment classique sur un plan de la développable circonscrite a la
surface le long de AB. ‘ |

Comme on le voit, la notion de parallélisme de M. Levi-Civita
permet d’assimiler & un vrai espace euclidien, ou du moins &
une portion de cet espace, toute la région d’un espace de Rie-
mann qui avoisine un arc de courbe quelconque AB tracé dans

Pespace donné. La différence essentielle qui subsiste encore

entre un espace de Riemann et ’espace euclidien est la suivante:
Sil’on joint un point A & un point B par deux chemins différents,
ACB, ACB, et qu'on développe sur I’espace euclidien tangent
en A les deux régions qui entourent ces deux chemins, on n’ob-
tiendra dans les deux cas, pour le point B et le petit morceau
d’espace qui I’entoure, ni la méme position ni la méme orienta-
tion. Autrement dit, le développement de l’espace euclidien
tangent, quand on se déplace dans I’espace de Riemann, n’est

pas holonome. Au lieu de dire que I’espace de Riemann est &

connexion euclidienne, on peut dire que c¢’est un espace euclidien
non holonome. Mais il est important de remarquer qu’il ne
Pétait pas par lui-méme, je veux dire par son seul ds?%; il U'est
devenu par la définition du parallélisme de M. Levi-Civita.

I11
Cette maniére d’envisager la notion de parallélisme est, je
crois, celle qui va le mieux au fond des choses. Ce serait restrein-
dre sa portée que de n’y voir, comme on I’a fait.en général, qu’un
procédé de comparaison des vecteurs issus de deux points
infiniment voisins; il faut y voir au contraire un moyen d’intro-

duire dans un espace de Riemann toute la gamme des déplace-
ments de I’espace euclidien, du moins en ce qui concerne les

effets qu’ils produisent dans une reglon infiniment petite de

Iespace. :
Le point de vue habituel permet la fondation de la géométrie

affine non holonome parce que la notlon de l’equ1pollence de.

S D——
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deux vecteurs a un sens dans Iespace affine; le second point
de vue seul permet la fondation de la géométrie projective ou
de la géométrie conforme non holonomes, bien que la notion
de vecteurs équipollents n’ait aucun sens dans I’espace projectif
et que la notion elle-méme de vecteur n’ait aucun sens dans
I’espace conforme.

Pour définir par exemple un espace pro]ectlf non holonome
(ou un espace a connexion projective), on imaginera, en chaque
point d’un espace supposé initialement dénué de toute propriété
géométrique, un espace projectif tangent, ainsi qu'une loi per-
mettant le raccord en un seul des espaces projectifs tangents
en deux points infiniment voisins. Cette loi permet alors le déve-
loppement, sur P’espace projectif tangent en un point A, d’une
ligne quelconque AB et de la région de 'espace donné avoisinant
immeédiatement cette ligne. Cette loi ne sera soumise a priort
qu’aux restrictions habituelles en géométrie différentielle (linéa-
rité des composantes de la connexion projective par rapport
aux différentielles des coordonnées, existence de dérivées jusqu’a
un certain ordre, etc.).

D’une maniére générale, & tout groupe continu G correspond,
dans la conception de M. Klein, une géométrie holonome; dans
la conception nouvelle, il lui correspond une infinité de géomeé-
tries non holonomes. La géométrie des espaces de Riemann
correspond au groupe des déplacements euclidiens, et ce n’es?
méme pas la plus générale de cette espéce, car, un ds? étant donne,
on peut imaginer une infinité de lois de parallélisme autres que
celle de M. Levi-Civita; toutes sont également légitimes; nous
verrons dans un instant ce qui différencie celle de M. Levi-Civita
de toutes les autres. Les espaces de M. Weyl constituent de méme
une catégorie particuliére des espaces non holonomes admet-
tant pour groupe fondamental le groupe des déplacements et des
similitudes; les espaces d’Eddington correspondent au groupe
des transformations affines.

En résumeé, dans les généralisations précédentes, 'idée direc-
trice est la suivante. Dans un espace holonome au sens de M,
F. Klein, tout est commandé par le groupe fondamental et ses
différentes opérations. Ce sont ces opérations qui font de I’espace
un tout organique. Dans les espaces non holonomes, ce sont
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encore les opérations du groupe qui sont un principe d’organisa-
tion, mais uniquement de proche en proche. C’est précisément,
en analysant ce que cette organisation a d’incomplet que nous
allons arriver au rdle tout & fait nouveau que va jouer encore
la notion de groupe dans les géométries nouvelles.

IV

Prenons par exemple un espace de Riemann et considérons
~dans cet espace un contour fermé partant d’un point A. Déve-
loppons de proche en proche, sur l’espace euclidien tangent en
A, l'espace euclidien tangent aux différents points du contour.
~Le petit morceau d’espace qui entoure le point A prendra,
suivant qu’on considére ce point comme point de départ ou
point d’arrivée, deux positions différentes dans l’espace sur
lequel se fait le développement, et on passera de la position
finale & la position initiale par un certain déplacement euclidien,
que nous dirons associé au contour fermé; c¢’est un déplacement,
répétons-le, qui opére dans I'espace euclidien tangent en A; bien
qu’ll ait été défini par ses effets sur le point A et son voisinage,
on peut évidemment 'appliquer & n’importe quelle figure (F)
tracée dans l’espace euclidien tangent en A. |
Considérons maintenant les différents contours fermés partant
d’un point donné A. Les différents déplacements euclidiens qui
leur sont associés forment un groupe.
- Soient en effet deux contours fermés (C;) et (C,) partant de A.
Soient D; et D, les déplacements qui leur sont associés; soit
enfin (C) le contour fermé obtenu en décrivant successivement
(Cy) et (Gy), et D le déplacement associé & (C). Une figure (F)
tracée dans P’espace euclidien tangent en A prendra respective-
ment, aprés développement du contour (C;) ou du contour (Gy,),
la position (F;) ou la position (F,); aprés développement du
- contour total (C), elle prendra une position (F’) placée par rap-
port & (F;) comme (F,) est placée par rapport & (F); autrement
dit le déplacement D qui ameéne (F') en (F) est la résultante
du déplacement D, qui améne (F') en (F;) et du déplacement
D, qui améne (F;) en (F). La relation - | o

D = Db,
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qui vient d’étre obtenue montre bien que Pensemble des dépla-
cements associés aux contours fermés issus de A forme un
groupe g.

Que se passerait-il si, au lien du point A, on considéraifc un
autre point A’ ? Imaginons qu’on relie ces deux points par un
chemin arbitraire, mais donné ABA’; on peut raccorder de proche
en proche, par ce chemin, l'espace euclidien tangent en A" a
’espace euclidien tangent & A. Dans cet espace euclidien unique
il est facile de voir que le groupe g’ associé & A’ est idenfique
au groupe g associé a4 A. Soit en effet (C) un contour fermé
partant de A, et (C') le contour fermé A'BA(C)ABA’; soient
respectivement D et D' les déplacements qui leur sont associés.
Soit (F) une figure quelconque de ’espace euclidien tangent
en A, (F,) la position qu’elle prend aprés développement du
contour (C). Les figures (F) et (F;) peuvent étre respectivement
regardées comme résultant de deux figures (F') et (F.) de lespace
euclidien tangent en A’ par le raccord fait le long du chemin
A’BA. Par développement du contour fermé (C'), il est bien
évident que la figure (F') vient en (F,); les déplacements D
et D’ sont donc identiques. A tout déplacement de g correspond
donc un déplacement identique de g’ et réciproquement.

En définitive, & I'espace de Riemann donné est associé un
sous-groupe g déterminé du groupe G des déplacements eucli-
diens, sous-groupe qui peut se confondre avec le groupe G lui-
méme, mais qui peut aussi se réduire a la transformation iden-
tique; dans ce dernier cas il est bien évident que l'espace de
Riemann est complétement holonome et ne differe qu’en appa-
rence de l’espace euclidien proprement dit. Il est naturel de
donner au groupe g le nom de « groupe d’holonomie » de I’espace
de Riemann.

Plus généralement, & tout espace non holonome de groupe
fondamental G est associé un sous-groupe g de G qui est son
groupe d’holonomie et qui ne se réduit & la transformation
identique que si ’espace est parfaitement holonome.

Le groupe d’holonomie d’un espace mesure en quelque sorte
le degré de non holonomie de cet espace, de méme que le groupe
de Galois d’une équation algébrique mesure en quelque sorte le
degré d’irrationalité des racines de cette équation.
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v

Avant d’indiquer les problémes les plus ihtéressants que pose
la notion du groupe d’holonomie,"il ne sera pas inutile de faire
une remarque relative aux transformatlons infinitésimales de ce
groupe. Il est évident que parmi ces derniéres se trouvent

les transformations associées aux contours fermés infiniment

petits (dans tous les sens) tracés dans I’espace non holonome
donné. On peut démontrer rigoureusement que si toutes ces
transformations étaient nulles, le groupe 'd’holo_nomie se rédui-
rait a la transformation identique. Or les géométries non holo-
nomes les plus importantes dans les applications sont celles
pour lesquelles les transformations infinitésimales associées aux
contours fermés infiniment petits partant d’un point laissent ce
point invariant. Comme je l'ai proposé, on peut convenir de
dire que les espaces non holonomes correspondants sont sans
torsion. 11 en est ainsi des espaces de M. Weyl et des espaces
d’Eddington. Il en est ainsi également des espaces de Riemann
a parallélisme de Levi-Civita: on peut méme caractériser com-
plétement le parallélisme de M. Levi-Civita par la condition de
priver Uespace de toute torsion.

~ On congoit que ’absence de torsion ait sa répercussion sur la
nature du groupe d’holonomie, ce groupe, dans le cas ou il ne
se réduit pas a la transformation identique, devant admettre
une transformation 1nﬁn1te31male non identique laissant invariant
un point arbitraire. '

VI

Je ne citerai que pour mémoire le probléme de la détermination

du groupe d’holonomie d’un espace non. holonome donné &

groupe fondamental G. Il peut étre résolu complétement’ des
qu on connait tous les types de sous-groupes de G. |
Dans la théorie des équations algébriques, on sait qu 11 ex1ste

toujours des équations algébriques admettant un groupe de-,

Galois donné A avance. Il existe. tou;ours d’une ‘maniére ana-

logue des espaces non holonomes 4 groupe fondament_a} G ad- -
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mettant pour groupe d’holonomie un sous-groupe arbitraire-
ment donné de G. Il existe par exemple des espaces & connexion
euclidienne dont le groupe d’holonomie est le groupe des trans-
lations; mais ce ne sont pas des espaces de Riemann (& connexion
de Levi-Civita). L’absence de torsion d’un espace de Riemann
restreint en effet, comme nous I’avons dit plus haut, la nature
des groupes d’holonomie possibles, et ¢’est un probléme intéres-
sant que de déterminer, pour chague nombre de dimensions de
Pespace, tous ces groupes d’holonomie. Je me contente d’indi-
quer la solution de ce probléme pour n = 2 et n = 3. Les espaces
de Riemann a deux dimensions qui ne sont pas holonomes ne
peuvent admettre comme groupe d’holonomie que le groupe a
trois parametres de tous les déplacements. Quant aux espaces de
Riemann & trois dimensions, le groupe d’holonomie peut étre:

Soit le groupe a 6 paramétres de tous les déplacements (cas
général);

Soit le groupe a 5 parametres qui laisse invariante une direc-
tion isotrope fixe (ds? réductible & la forme dz* -+ 2dx dy
+ H(z,y,2) dz?);

Soit le groupe a 3 parametres qui laisse invariant un point
fixe (ds? réductible a la forme dz* + z2de?, out do® ne dépend
que de deux variables z, y); .

Soit le groupe & 3 parametres qui laisse invariant un plan
fixe ainsi que tous les plans paralléles (ds? réductible a la

forme dz? - do?, ou, dans le cas ou le plan est isotrope,
dz% -+ 2dx dy -+ H (z,z) dz?).

A coté des espaces de Riemann, deux autres catégories d’es-
paces non holonomes sont particuliérement intéressantes. Si, au
lieu de considérer un ds? donné, on considére une équation ds? = o,
il est possible d’une infinité de maniéres d’attribuer & I’espace
une connexion conforme de maniére que les lignes de longueur
nulle de Pespace soient précisément les courbes définies par
Péquation donnée. Parmi cette infinité de connexions conformes,
il en est une privilégiée qui jouit de propriétés particuliérement
simples et que j’ai proposé d’appeler normale?; les espaces con-

L E. CARrTAN. Les espaces @ connaxion conforme (Ann. de la Soc. polon. de math.,
1923, p. 171-221).
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formes non holonomes normauz jouent par rapport a la géométrie.
conforme le role des espaces de Riemann avec parallélisme de
Levi-Civita par rapport a la géométrie euclidienne.- En parti-
culier les espaces non-holonomes conformes normaux & trois
dimensions sont caractérisés par la condition que la transforma-
tion conforme’ associée & un contour fermé infiniment petit
partant d'un point A laisse invariant ce point, ainsi- que toutes
les directions qui en-sont issues. On déduit facilement de la que
les seuls groupes d’holonomie possibles des espaces. cconformes
normaux  a trois dimensions sont:.
1o Le groupe conforme général a 10 parametres
20 Le sous-groupe invariant & 6 parameétres du groupe qui
conserve une droite isotrope fixe; dans ce second cas ’équation
qui donne les lignes de longueur nulle est réductible a la forme
dz? + 2dxdy + H (x,2) dx® = 0, et I’on a par une quadrature un
invariant intégral linéaire absolu des équations différentielles
des lignes qui jouent le rdle des droites isotropes.

Une autre catégorie importante d’espaces non holonomes est
liée & la considération des géodésiques d’un espace & connexion
affine. Les équations dlf‘ferentlelles de ces geodemques sont d’une
forme particuliére, & savoir, pour n = 2,

d2y dy L/drY dy\®
=g o) +D<?Fx)

Cela posé, sion se donne a priort un systéme d’équations diffeé-
rentielles de cette forme, il existe une infinité de connexions
projectives telles que ’espace projectif non holonome qu’elles
définissent.admette les courbes données pour géodésiques; mais,
parmi toutes ces connexions projectives, il en est une privilégiée,
dite normale’. Les espaces non holonomes projectifs normaux
sont & un systéme différentiel donné de géodésiques ce que les
espaces de Riemann sont & un ds? donné. Pour n =2, ils sont
caractérisés par la propriété que la transformation projective
associée & un contour fermé infiniment petit partant d’un point A .
laisse invariant le point A, ainsi que toutes les droites issues

- '1 B,  CARTAN. Sur les varidiés q- connean projective (Bull. . So¢c. math., de France,
52 1924, p. 205- 241) o ,
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de A. D’apreés cela, les seuls groupes d’holonomie possibles sont
pour n = 2:

1. Le groupe projectif général & 8 parametres;

2. Le sous-groupe invariant 4 6 paramétres du groupe qui
laisse invariant un point fixe; dans ce cas I’équation différentielle
des géodésiques, au lieu d’étre de la forme générale indiquée
ci-dessus, est réductible & la forme

9

~

‘7,,- = Alx, ¥ ;

X

.

mais on peut, sans faire la réduction, obtenir par une quadrature
un multiplicateur de Jacobi de cette équation.

Je citerail enfin, comme dernier exemple, le cas des espaces
réels de Weyl a trois dimensions, en supposant le ds? défini
positif. Si le groupe d’holonomie n’est pas un sous-groupe du
groupe des déplacements, il est, soit le groupe de toutes les
similitudes (cas général), soit le groupe des déplacements et des
similitudes qui laissent invariante une direction fixe; dans ce cas
les deux formes, quadratique et linéaire, qui définissent ’espace,
sont:

olog H

ds? = d=2 4+ Hie, v, 3){da? + db¥ , o = 5=

dz .

VIl

J’aborde une derniére question, extrémement intéressante. On
sait le role que joue la théorie des groupes comme principe de
subordination dans les géométries (holonomes) & groupe fonda-
mental. La géométrie élémentaire, par exemple, se subordonne
a la géométrie projective en ce sens que les propriétés eucli-
diennes d’une figure sont tout simplement les propriétés projec-
tives de la figure plus compléte formée par la figure donnée et
le cercle imaginaire de I'infini; la géométrie élémentaire est au
fond un simple chapitre de la géométrie projective, et cela tient
a ce que le groupe fondamental de la premiére est un sous-groupe
du groupe fondamental de la seconde. Il convient d’insister sur
ce fait que I’espace projectif peut étre, d’une infinité de maniéres
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- différentes, regardé comme un espace métrique, car on peut y
distinguer n’importe quelle conique non dégénérée qui sera sus-
ceptible d’y jouer le réle du cercle imaginaire de I’infini, ou encore
n’importe quelle quadrique non dégénérée (et alors on aura un
espace non-euclidien ou cayleyen). e

D’une maniére générale tout espace holonome & groupe fonda-
mental G peut étre regardé comme un espace holonome a groupe
fondamental G’ si G’ est un sous-groupe de G.

Existe-t-il quelque chose d’analogue pour les espaces non
holonomes ? La réponse & . cette question est facile et & peu pres
évidente:. S - :

Pour qu’un espace non holonome: d groupe ]‘ondamental G pmsse
étre regardé comme un espace non holonome a groupe fondamental
G', il faut-et il suffit que son groupe d’holonomie g soit G ou un
sous-groupe de G'. | o

En particulier un espace & connexion projective a trois dimen-
sions ne peut qu’exceptionnellement étre regardé comme un
espace métrique; il faut et il suffit pour cela que son groupe
d’holonomie laisse invariante soit une conique, auquel cas il sera
en général un espace de H. Weyl, soit une quadrique.

Un espace de H. Weyl ne peut étre regardé comme un espace
de Riemann que si son groupe d’holonomie est le groupe des
déplacements (sans homothétie) ou un de ses sous-groupes.

Sans vouloir multiplier les exemples, nous pouvons indiquer
une application intéressante a la théorie de la relativité. Dans
I’étude de I’Univers physique, on peut porter son attention sur
le coté projectif (défini par les trajectoires d’un point matériel
abandohrié a lui-méme), ou sur le c6té conforme. (défini par les
lois de la propagation de la lumiére, lesquelles dépendent simple-
ment d’une équation différentielle quadratique ds? = 0). Plagons-
nous d’abord au premier point de vue. Une premiere hypotheése
est que le systéme différentiel qui définit les trajectoires méca-
niques est de la forme particuliére signalée plus haut, c’est-a-dire
qu’elles peuvent étre: regardées comme les géodésiques d’un
espace & 4 dimensions.4 connexion pI‘O]thlve La loi de la gra-
vitation dans le v1de d’Einstein peut alors s’exprimer ainsi: le
groupe d’holonomie de 1'Univers mécanique, considéré comme
espace non holonome projectif normal & 4 dimensions, laisse
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invariante une quadrique (1r® forme de la loi d’Einstein), ou
une hyperquadrique (2m¢ forme de la loi, avec constante cos-
mologique). Cela revient a dire, dans 'un et 'autre cas, que
PUnivers est métrique, et sa métrique se déduit de la seule
connaissance des trajectoires.

St l'on se place au second point de vue, la seule connaissance
des lois de propagation de la lumiere, supposées définies par une
équation de Monge quadratique, permet d’attribuer & I’Univers
une connexion conforme normale bien déterminée; la loi de la
gravitation dans le vide d’Einstein peut alors s’exprimer ainsi:
le groupe d’holonomie de I’Univers optique, considéré comme
espace non holonome conforme normal a 4 dimensions, laisse
mvariante une hypersphere de rayon nul (1r¢ forme de la loj
d’Einstein), ou une hypersphere de rayon non nul (2m¢ forme
de la loi avec constante cosmologique). Cela revient a dire, dans
Pun et 'autre cas, que I"Univers est métrique, et sa métrique
se déduit de la seule connaissance de la lo1 de propagation de la
lumiere.

Ajoutons enfin que les deux métriques d’Univers déduites,
I'une des trajectoires mécaniques, 'autre des lois de propaga-
tion de la lumiére, coincident.

VIII

Indiquons en terminant la relation qui existe entre la notion
de groupe d’holonomie et la notion de classe d’un espace de
Riemann. M. G. Ricear a désigné sous ce nom le plus petit entier
k tel que 'espace de Riemann supposé & n dimensions puisse
gtre réalisé par une variété convenablement choisie de espace
euclidien & n + k& dimensions. M. J. A. Schouten a démontré
que, dans certains cas tres étendus, la classe était égale au nombre
de parametres dont dépend la position finale du corps de vec-
teurs issus d’un point A, transporté par parallélisme le long
d’un contour fermé partant de A. 1l est & peu pres évident
que ce nombre n’est autre que 'ordre du groupe » qui indique
comment le groupe d’holonomie g de l’espace de Riemann
transforme entre elles les directions (ou les points a I'infini). Il v
aurait lieu de reprendre cette question et de voir si le théo-

L'Euscignement mathém., 24¢ anndée; 1924 et 1925. 2
o . b
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réme de M. J. A. Schouten est général, ou du moins dans quels
cas il est vrai. o

Citons encore pour mémoire le probléme général de I'isomor-
phisme, holoédrique ou mériédrique, de deux espaces non holo-
- nomes a groupe fondamental donné *. |

Signalons aussi des généralisations possibles obtenues en con-
sidérant des espaces (non holonomes) non ponctuels, par exemple
engendrés par des éléments au sens de S. Lie. C’est ainsi qu’on
peut, étant donnée une équation différentielle arbitraire

dzt = \@ 7 g )
attribuer au plan (x, ), supposé initialement privé de toute
propriété géométrique, une connexion projective telle que les
géodésiques correspondantes soient les courbes intégrales de

‘I’équation donnée: seulement I’élément générateur du plan
ainsi doué d’une connexion projective est, non pas le point (z, y),

mais 1’élément (x Y, d) On indiquerait facilement nombre

d’autres problémes d’analyse susceptibles d’étre géométrisés
d’une maniére analogue et dans lesquels la théorie des groupes
interviendrait aussi légitimement que dans les problémes dont
nous avons plus spécialement parlé. |

Je ne puis enfin terminer sans signaler les remarquables re-
cherches dans lesquelles M. H. Weyl a repris I’ancien probléme
philosophique de 1’espace, traité autrefois par Helmholtz et Lie,
pour 'adapter aux points de vue nouveaux introduits par la
théorie de la relativité; la notion de groupe est, la encore, a la
base méme de I’énoncé du probléme posé par M. H. Weyl. Mais
je ne puis songer a entrer dans I’exposition, méme sommaire, de
cette importante questlon qui exigerait & elle seule une confé-

rence spéciale.

1 Voir en particulier mon mémoire: Les espaces a conndxion conforme (Ann. de la
Soc. polon, de math 4923, p. 171- 221)
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