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LA THÉORIE DES GROUPES

ET LES RECHERCHES RÉCENTES DE GÉOMÉTRIE

DIFFÉRENTIELLE 1

PAR

E. Cartan (Paris).

I

On sait, depuis M. F. Klein (Programme d'Erlangen2) et
S. Lie, le rôle important joué par la théorie des groupes dans la

géométrie. H. Poincaré a popularisé dans le grand public
scientifique cette idée fondamentale que la notion de groupe
est à la base des premières spéculations géométriques. La
géométrie élémentaire est au fond la théorie des invariants d'un
certain groupe, le groupe des déplacements euclidiens; elle a en
effet pour but l'étude des propriétés des figures qui se conservent

par un déplacement arbitraire; dire que tous les déplacements
forment un groupe, c'est justement exprimer en langage précis
l'axiome d'après lequel deux figures égales à une troisième sont
égales entre elles.

La géométrie projective a de même pour objet l'étude des

propriétés des figures qui se conservent par le groupe des
transformations homographiques, et on peut également assigner à la
géométrie affine, à la géométrie conforme ou anallagmatique, etc.,
un groupe correspondant, [nversement tout groupe continu
donne naissance à une discipline géométrique autonome.

Dans chacune de ces géométries on attribue, pour la
commodité du langage, à 1 espace dans lequel les figures étudiées

1 Conférence faite le mercredi 13 août 1624, au Congrès international de
mathématiques, qui s'est tenu à Toronto du il au 16 août.

2 Le Programme d'Erlangen (1872) a été reproduit dans les Math. t. 43
(1893), p. 63-109, ainsi que dans le t. I des Gesammelte mathematische Abhandlungen

de F. Klein (1921).
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sont localisées les propriétés elles-mêmes du groupe correspondant,

ou groupe fondamental;c'est ainsi qu'on est arrivé à dire:
« l'espace euclidien », « l'espace affine », etc., au lieu de « l'espace
dans lequel on n'étudie que les propriétés des figures invariantes
par le groupe euclidien, le groupe affine, etc. » Chacun de ces

•

espacés est homogène,en ce sens que ses propriétés restent
inaltérées par une transformation du groupe fondamental
correspondant.

Plusieurs années avant le Programme d'Erlangen, B.
Riemann avait introduit, dans son mémoire célèbre: « Ueber die

Hypothesen welche der Geometrie zù Grunde 1
», des espaces

non homogènes au sens qui vient d'être donné à cette expression.
Dans ces espaces le carré de la distance de deux points infiniment

voisins était défini par une forme différentielle, jusqu'à un
certain point arbitraire, mais qu'en fait, on a toujours supposée
quadratique. Ces espaces ont fait l'objet de nombreux et importants

travaux, principalement en Allemagne et en Italie2.
Mais ils ont surtout pris une importance considérable depuis

que M. Einstein, par la théorie de la relativité généralisée, a

essayé, en identifiant notre Univers à un espace de Riemann,
de réunir en une seule et même théorie la gravitation, l'optique
et l'électromagnétisme. Le mouvement d'idées auquel cette
théorie a donné naissance a conduit, par des généralisations
importantes, à des espaces nouveaux; il suffira de citer les

espaces de M. H. Weyl et lés espaces de M. Eddington. Quel
rôle la notion de groupe joue-t-elle, ou plutôt doit-elle jouer,
dans ce champ nouveau de la Géométrie; est-il possible de

faire rentrer dans le cadre, suffisamment élargi, du programme
d'Erlangen toutes les géométries nouvelles et une infinité d'autres,

c'est ce que je me propose d'examiner.
* u % i

^ /

-
f. n

A .première vue, la notion de groupe semble étrangère à la

géométrie des espaces de Riemann, car ils ne possèdent l'homo-

1 B. RieMann, Qeëarnméïte math.Werke^Leipzig(1876), p. 254-269.
2 il nous suffira de citer les noms de E.-B. Christofpel, R. Lipsghitz, A. Voss*

O. Ricci, L. Bianchi et T. Levi-Givita. *
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généité d'aucun espace à groupe fondamental. Néanmoins, si un

espace de Riemann ne possède pas une homogénéité absolue, il
possède cependant une sorte d'homogénéité infinitésimale; au
voisinage immédiat d'un point donné il est assimilable à un
espace euclidien. Toutefois si deux petits morceaux voisins d'un
espace de Riemann peuvent être assimilés chacun à un petit
morceau d'espace euclidien, ces deux petits morceaux sont sans
lien entre eux, ils ne peuvent pas, sans convention être
regardés comme appartenant à un seul et même espace euclidien.
Autrement dit, un espace de Riemann admet, au voisinage d'un
point A, une rotation autour de ce point, mais une translation,
même considérée dans les effets qu'elle produit sur une région
très petite de l'espace, n'a pas de sens. Or, c'est le développement
même de la théorie de la relativité, liée par l'obligation
paradoxale d'interpréter dans et par un Univers non homogène les

résultats de nombreuses expériences faites par des observateurs
croyant à l'homogénéité de cet Univers, qui permit de combler

en partie le fossé qui séparait les espaces de Riemann de

l'espace euclidien. Le premier pas dans cette voie fut l'œuvre
de M. Levi-Civita, par l'introduction de sa notion de
parallélisme1.

Voici comment, grâce à cette notion, les choses peuvent être
présentées. On peut imaginer, en chaque point d'un espace de

Riemann, un espace euclidien (fictif) dont ce point et les

points infiniment voisins font partie; la définition du parallélisme
de M. Levi-Civita permet alors de raccorder en un seul les espaces
euclidiens tangents en deux points infiniment voisins
quelconques; autrement dit, elle confère à l'espace de Riemann une
connexion euclidienne. Si l'on considère dans l'espace de Riemann
une ligne continue AB, on peut raccorder de proche en proche
en un seul les espaces euclidiens tangents aux différents points
de AB; par suite aussi, aux infiniment petits près du second
ordre, tous les points de l'espace de Riemann voisins de la ligne
AB viendront, par cette espèce de se localiser
dans l'espace euclidien tangent en A. Le mot développement est
mis là à dessein. Si en effet on applique le procédé qui vient

1 Rend.Cire. mai.diPalermo,42 (1917), p. 173-205.
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d'être indiqué à une surface ordinaire, regardée comme un espace
de Riemann à deux dimensions défini par le 2 de la surface,
le raccord de proche en proche des plans (euclidiens) tangents-
à une ligne AB tracée sur la surface est identique au développement

classique sur un plan de la développable circonscrite à la
surface le long de AB.

Comme on le voit, la notion de parallélisme de M. Levi-Civita
permet d'assimiler à un vrai espace euclidien, ou du moins à

une portion de cet espace, toute la région d'un espace de

Riemann qui avoisine un arc de courbe quelconque AB tracé dans

l'espace donné. La différence essentielle qui subsiste encore
entre un espace de Riemann et l'espace euclidien est la suivante :

Si l'on joint un point A à un point B par deux chemins différents,
ACB, AC'B, et qu'on développe sur l'espace euclidien tangent
en A les deux régions qui entourent ces deux chemins, on
n'obtiendra dans les deux cas, pour le point B et le petit morceau
d'espace qui l'entoure, ni la même position ni la même orientation.

Autrement dit, le développement de l'espace euclidien
tangent, quand on se déplace dans l'espace de Riemann, n'est
pas holonome. Au lieu de dire que l'espace de Riemann est à

connexion euclidienne, on peut dire que c'est un espace euclidien
non holonome. Mais il est important de remarquer qu'il ne
l'était pas par lui-même, je veux dire par son seul il
devenu par la définition du parallélisme de

111

Cette manière d'envisager la notion de parallélisme est, je
crois, celle qui va le mieux au fond des choses. Ce serait restreindre

sa portée que de n'y voir, comme on l'a fait en général, qu'un
procédé de comparaison des vecteurs issus de deux points
infiniment voisins; il faut y voir au contraire un moyen d'introduire

dans un espace de Riemann toute la gamme des déplacements

de l'espace euclidien, du moins en ce qui concerne les

effets qu'ils produisent dans une région infiniment petite de

l'espace.
Le point de vue habituel permet la fondation de la géométrie

affine non holonome, parce que la notion de l'équipollence de
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deux vecteurs a un sens dans l'espace affine; le second point
de vue seul permet la fondation de la géométrie projective ou

de la géométrie conforme non holonomes, bien que la notion

de vecteurs équipollents n'ait aucun sens dans l'espace projectif
et que la notion elle-même de vecteur n'ait aucun sens dans

l'espace conforme.
Pour définir par exemple un espace projectif non holonome

(ou un espace à connexion projective), on imaginera, en chaque

point d'un espace supposé initialement dénué de toute propriété

géométrique, un espace projectif tangent, ainsi qu'une loi
permettant le raccord en un seul des espaces projectifs tangents

en deux points infiniment voisins. Cette loi permet alors le

développement, sur l'espace projectif tangent en un point A, d'une

ligne quelconque AB et de la région de l'espace donné avoisinant
immédiatement cette ligne. Cette loi ne sera soumise a priori
qu'aux restrictions habituelles en géométrie différentielle (linéa~

rité des composantes de la connexion projective par rapport
aux différentielles des coordonnées, existence de dérivées jusqu'à
un certain ordre, etc.).

D'une manière générale, à tout groupe continu G correspond,
dans la conception de M. Klein, une géométrie holonome; dans

la conception nouvelle, il lui correspond une infinité de géomé-
tries non holonomes. La géométrie des espaces de Riemann
correspond au groupe des déplacements euclidiens, et ce n'est
même pas la plus générale de cette car, un 2 étant donné,
on peut imaginer une infinité de lois de parallélisme autres que
celle de M. Levi-Civita; toutes sont également légitimes; nous
verrons dans un instant ce qui différencie celle de M. Levi-Civita
de toutes les autres. Les espaces de M. Weyl constituent de même
une catégorie particulière des espaces non holonomes admettant

pour groupe fondamental le groupe des déplacements et des

similitudes; les espaces d'Eddington correspondent au groupe
des transformations affines.

En résumé, dans les généralisations précédentes, l'idée directrice

est la suivante. Dans un espace holonome au sens de M.
F. Klein, tout est commandé par le groupe fondamental et ses
différentes opérations. Ce sont ces opérations qui font de l'espace
un tout organique. Dans les espaces non holonomes, ce sont



io E. CARTAN

encore les opérations du groupe qui sont un principe d'organisation,

mais uniquement de proche en proche. C'est précisément
en analysant ce que cette organisation a d'incomplet que nous
allons arriver au rôle tout à fait nouveau que va jouer encore
la notion de groupe dans les géométries nouvelles.

IV
^ *

Prenons par exemple un espace de Riemann et considérons
dans cet espace un contour fermé partant d'un point A.
Développons de proche en proche, sur l'espace euclidien tangent en
A, l'espace euclidien tangent aux différents points du contour.
Le petit morceau d'espace qui entoure Le point A prendra,
suivant qu'on considère ce point comme point de départ ou
point d'arrivée, deux positions différentes dans l'espace sur
lequel se fait le développement, et on passera de la position
finale à la position initiale par un certain déplacement euclidien,
que nous dirons associé au contour fermé; c'est un déplacement,
répétons-le, qui opère dans l'espace euclidien tangent en A; bien
qu'il ait été défini par ses effets sur le point A et son voisinage,
on peut évidemment l'appliquer à n'importe quelle figure (F)'
tracée dans l'espace euclidien tangent en A.

Considérons maintenant les différents contours fermés partant
d'un point donné A. Les différents déplacements euclidiens qui
leur sont associés forment un groupe.

Soient en effet deux contours fermés (Cx) et (C2) partant de A.
Soient Dx et D2 les déplacements qui leur sont associés; soit
enfin (C) le contour fermé obtenu en décrivant successivement

{Ci) et (C2), et D le déplacement associé à (C). Une figure (F)
tracée dans l'espace euclidien tangent en A prendra respectivement,

après développement du contour (Cx) ou du contour (C2),

la position (Fx) ou la position (F2); après développement du
contour total (C), elle prendra une position (F') placée par
rapport à (Fx) comme (F2) est placée par rapport à (F); autrement
dit le déplacement D qui amène (F') en (F) est la résultante
du déplacement D2 qui amène (F') en (Fx) et du déplacement
Dx qui amène (Fx) en (F). Là relation

> D DaDj
' \
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qui vient d'être obtenue montre bien que l'ensemble des

déplacements associés aux contours fermés issus de A forme un

groupe g.

Que se passerait-il si, au lieu du point A, on considérait un

autre point A' Imaginons qu'on relie ces deux points par un
chemin arbitraire, mais donné ABA' ; on peut raccorder de proche

en proche, par ce chemin, l'espace euclidien tangent en A' à

l'espace euclidien tangent à A. Dans cet espace euclidien unique
il est facile de voir que le groupe g' associé à A' est identique

au groupe g associé à A. Soit en effet (G) un contour fermé

partant de A, et (C') le contour fermé A'BA(C)ABA'; soient

respectivement D et D' les déplacements qui leur sont associés.

Soit (F) une figure quelconque de l'espace euclidien tangent
en A, (Fj) la position qu'elle prend après développement du
contour (C). Les figures (F) et (Fx) peuvent être respectivement
regardées comme résultant de deux figures (F') et (F^ de l'espace
euclidien tangent en A' par le raccord fait le long du chemin
A'BA. Par développement du contour fermé (G'), il est bien
évident que la figure (F') vient en (F±) ; les déplacements D
et D' sont donc identiques. A tout déplacement de g correspond
donc un déplacement identique de g et réciproquement.

En définitive, à l'espace de Riemann donné est associé un
sous-groupe g déterminé du groupe G des déplacements
euclidiens, sous-groupe qui peut se confondre avec le groupe G lui-
même, mais qui peut aussi se réduire à la transformation
identique; dans ce dernier cas il est bien évident que l'espace de
Riemann est complètement holonome et ne diffère qu'en apparence

de l'espace euclidien proprement dit. Il est naturel de
donner au groupe g le nom de « groupe d'holonomie » de l'espace
de Riemann.

Plus généralement, à tout espace non holonome de groupe
fondamental G est associé un sous-groupe g de G qui est son
groupe d'holonomie et qui ne se réduit à la transformation
identique que si l'espace est parfaitement holonome.

Le groupe d'holonomie d'un espace mesure en quelque sorte
le degré de non holonomie de cet espace, de même que le groupe
de Galois d'une équation algébrique mesure en quelque sorte le
degré d'irrationalité des racines de cette équation.
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>

Avant d'indiquer les problèmes les plus intéressants que pose
la notion du groupe d'holonomie,* il ne sera pas inutile de faire
une remarque relative aux transformations infinitésimales de ce

groupe. Il est évident que parmi ces dernières se trouvent
les transformations associées aux contours fermés infiniment
petits (dans tous les sens) tracés dans l'espace non holonome
donné. On peut démontrer rigoureusement que si toutes ces

transformations étaient nulles, le groupe d'holonomie se réduirait

à la transformation identique. Or les géométries non holo-
nomes les plus importantes dans les applications sont celles

pour lesquelles les transformations infinitésimales associées aux
contours fermés infiniment petits partant d'un point laissent ce

point invariant. Comme je l'ai proposé, on peut convenir de
dire que les espaces non holonomes correspondants sont sans
torsion. Il en est ainsi des espaces de M. Weyl et des espaces
d'Eddington. Il en est ainsi également des espaces de Riemann
à parallélisme de Levi-Civita: on peut même caractériser
complètement le parallélisme de M. Levi-Civita par la condition de

priver Vespacede toute torsion.
On conçoit que l'absence de torsion ait sa répercussion sur la

nature du groupe d'holonomie, ce groupe, dans le cas où il ne
se réduit pas à la transformation identique, devant admettre
une transformation infinitésimale non identique laissant invariant
un point arbitraire.

VI

Je ne citerai que pour mémoire le problème de la détermination
du groupe d'holonomie d'un espace non holonome donné à

groupe fondamental G. Il peut être résolu complètement dès

qu'on connaît tous les types de sous-groupes de G.

Dans la théorie des équations algébriques, on sait qu'il existe
toujours des équations algébriques admettant un groupe de
Galois donné à l'avance. Il existe toujours d'une manière
analogue des espaces non holonomes à groupe fondamental G ad-
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mettant pour groupe d'holonomie un sous-groupe arbitrairement

donné de G. Il existe par exemple des espaces à connexion

euclidienne dont le groupe d'holonomie est le groupe des

translations; mais ce ne sont pas des espaces de Riemann (à connexion
de Levi-Civita). L'absence de torsion d'un espace de Riemann
restreint en effet, comme nous l'avons dit plus haut, la nature
des groupes d'holonomie possibles, et c'est un problème intéressant

que de déterminer, pour chaque nombre de dimensions de

l'espace, tous ces groupes d'holonomie. Je me contente d'indiquer

la solution de ce problème pour 2et n 3. Les espaces
de Riemann à deux dimensions qui ne sont pas holonomes ne

peuvent admettre comme groupe d'holonomie que le groupe à

trois paramètres de tous les déplacements. Quant aux espaces de

Riemann à trois dimensions, le groupe d'holonomie peut être:

Soit le groupe à 6 paramètres de tous les déplacements (cas
général) ;

Soit le groupe à 5 paramètres qui laisse invariante une direction

isotrope fixe (ds2réductible à la forme + 2dxdy
4- H (x,y,z) dx2);

Soit le groupe à 3 paramètres qui laisse invariant un point
fixe (ds2 réductible à la forme dz2 + z2da2, où de2 ne dépend
que de deux variables x, y);

Soit le groupe à 3 paramètres qui laisse invariant un plan
fixe ainsi que tous les plans parallèles (ds2 réductible à la
forme dz2+ da2, ou, dans le cas où le plan est isotrope,
dz2 + 2 dxdy 4-H (x, z)dx2).

A côté des espaces de Riemann, deux autres catégories
d'espaces non holonomes sont particulièrement intéressantes. Si, au
lieu de considérer un ds2 donné, on considère une équation ds2 o,
il est possible d'une infinité de manières d'attribuer à l'espace
une connexion conforme de manière que les lignes de longueur
nulle de l'espace soient précisément les courbes définies par
l'équation donnée. Parmi cette infinité de connexions conformes,
il en est une privilégiée qui jouit de propriétés particulièrement
simples et que j'ai proposé d'appeler normale1; les espaces con-

1 E. Cartan. Lesespaces à connexion conforme (Ann. de la Soc. polon. de math
1923, p. 171-221).
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formes non holonomes normauxjouent par rapport à la géométrie
eonforme le rôle des espaces de Riemann avec parallélisme de

Levi-Civita par rapport à la géométrie euclidienne. En particulier

les espaces nön holonomes conformes normaux à trois
dimensions sont caractérisés par la condition que la transformation

conforme associée à un contour fermé infiniment petit
partant d'un point A laisse invariant ce point, ainsi que toutes
les directions qui en-sont issues* On déduit facilement de là que
les seuls groupes d'holonomie possibles des espaces conformes
normaux à trois dimensions sont :

1° Le groupe conforme général à 10 paramètres;
2° Le sous-groupe invariant à 6 paramètres du groupe qui

conserve une droite isotrope fixe; dans ce second cas l'équation
qui donne les lignes de longueur nulle est réductible à la forme
dz2 + 2 dxdy+ H (x,z)dx20, et l'on a par une quadrature un
invariant intégral linéaire absolu des équations différentielles
des lignes qui jouent le rôle des droites isotropes.

Une autre catégorie importante d'espaces non holonomes est
liée à la considération des géodésiques d'un espace à connexion
affine. Les équations différentielles de ces géodésiques sont d'une
forme particulière, à savoir, pour 2,

-A+ B£+c(S)+ D (£) •

Gela posé, si on se donne a priori un système d'équations
différentielles de cette forme, il existe une infinité de connexions
projectives telles que l'espace projectif non holonome qu'elles
définissent,admette les courbes données pour géodésiques ; mais,
parmi toutes ces connexions projectives, il en est une privilégiée,
dite normale1. Les çspaces non holonomes projectifs normaux
sont à un système différentiel donné de géodésiques ce que les

espaces de Riemann sont à un 2 donné. Pour ^2, ils sont
caractérisés par la propriété que la transformation projective
associée à un contour fermé infiniment petit partant d'un point A
laisse invariant le point A, ainsi que toutes les droites issues

1 E. Cartan. Sur les variétés à-connexion projective (Bull. Soc. math, de France,.
52, 1924, p. 205-241).
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de A. D'après cela, les seuls groupes d'holonomie possibles sont

pour il —2 :

1. Le groupe projectif général à 8 paramètres;
2. Le sous-groupe invariant à 6 paramètres du groupe qui

laisse invariant un point fixe; dans ce cas l'équation différentielle
des géodésiques, au lieu d'être de la forme générale indiquée
ci-dessus, est réductible à la forme

mais on peut, sans faire la réduction, obtenir par une quadrature
un multiplicateur de Jacobi de cette équation.

Je citerai enfin, comme dernier exemple, le cas des espaces
réels de Weyl à trois dimensions, en supposant le défini
positif. Si le groupe d'holonomie n'est pas un sous-groupe du

groupe des déplacements, il est, soit le groupe de toutes les

similitudes (cas général), soit le groupe des déplacements et des

similitudes qui laissent invariante une direction fixe ; dans ce cas
les deux formes, quadratique et linéaire, qui définissent l'espace,
sont :

rfs* + H (.r r, ;) (rfx* +
'

<0 _ loK H d,
ÖZ

VII

J'aborde une dernière question, extrêmement intéressante. On
sait le rôle que joue la théorie des groupes comme principe de
subordination dans les géométries (holonomes) à groupe
fondamental. La géométrie élémentaire, par exemple, se subordonne
à la géométrie projective en ce sens que les propriétés
euclidiennes d'une figure sont tout simplement les propriétés projec-
tives de la figure plus complète formée par la figure donnée et
le cercle imaginaire de l'infini; la géométrie élémentaire est au
fond un simple chapitre de la géométrie projective, et cela tient
à ce que le groupe fondamental de la première est un sous-groupe
du groupe fondamental de la seconde. Il convient d'insister sur
ce fait que l'espace projectif peut être, d'une infinité de manières
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différentes, regardé comme un espace métrique, car on peut y
distinguer n'importe quelle conique non dégénérée qui sera
susceptible d'y jouer le rôle du cercle imaginaire de l'infini, ou encore
n'importe quelle quadrique non dégénérée (et alors on aura un
espace non euclidien ou cayleyen).

D'une manière générale tout espace holonome à groupe
fondamental G peut être regardé comme un espace holonome à groupe
fondamental G' si G' est un sous-groupe de G.

Existe-t-il quelque chose d'analogue pour les espaces non
holonomes La réponse à cette question est facile et à peu près
évidente:

Pour qu'un espace non holonome à groupe, fondamental G puisse
être regardé comme un espace non holonome à groupe fondamental
G', il faut et il suffit que son groupg soit G' ou un
sous-groupe de G'.

En particulier un espace à connexion projective à trois dimensions

ne peut qu'exceptionnellement être regardé comme un
espace métrique; il faut et il suffit pour cela que son groupe
d'holonomie laisse invariante soit une conique, auquel cas il sera
en général un espace de H. Weyl, soit une quadrique.

Un espace de H. Weyl ne peut être regardé comme un espace
de Riemann que si son groupe d'holonomie est le groupe des

déplacements (sans homothétie) ou un de ses sous-groupes.
Sans vouloir multiplier les exemples, nous pouvons indiquer

une application intéressante à la théorie de la relativité. Dans
l'étude de l'Univers physique, on peut porter son attention sur
le côté projectif (défini par les trajectoires d'un point matériel
abandonné à lui-même), ou sur le côté conforme (défini par les
lois de la propagation de la lumière, lesquelles dépendent simple?
ment d'une équation différentielle quadratique 2 0). Plaçons-
nous d'abord au premier point de vue. Une première hypothèse
est que le système différentiel qui définit les trajectoires
mécaniques est de la forme particulière signalée plus haut, c'est-à-dire
qu'elles peuvent être regardées comme les géodésiques d'un
espace à 4 dimensions à connexion projective. La loi de la
gravitation dans le vide d'Einstein peut alors s'exprimer ainsi: le

groupe d'holonomie de l'Univers mécanique, considéré comme

espace non holonome projectif normal â 4 dimensions, laisse



G É O M É r H IE DI E E É H E N T I E f. L E 1 7

invariante une quadrique (lre forme de la loi d'Einstein), ou
une hyperquadrique (2me forme de la loi, avec constante
cosmologique). Cela revient à dire, dans l'un et l'autre cas, que
l'Univers est métrique, et sa métrique se déduit de la seule
connaissance des trajectoires.

Si l'on se place au second point de vue, la seule connaissance
des lois de propagation de la lumière, supposées définies par une
équation de Monge quadratique, permet d'attribuer à l'Univers
une connexion conforme normale bien déterminée; la loi de la
gravitation dans le vide d'Einstein peut alors s'exprimer ainsi:
le groupe d'holonomie de l'Univers optique, considéré comme

espace non holonome conforme normal à 4 dimensions, laisse

invariante une hypersphère de rayon nul (lre forme de la loi
d'Einstein), ou une hypersplière de rayon non nul (2me forme
de la loi avec constante cosmologique). Cela revient à dire, dans

l'un et l'autre cas, que l'Univers est métrique, et sa métrique
se déduit de la seule connaissance de la loi de propagation de la
lumière.

Ajoutons enfin que les deux métriques d'Univers déduites,
l'une des trajectoires mécaniques, l'autre des lois de propagation

de la lumière, coïncident.

VIÏI

Indiquons en terminant la relation qui existe entre la notion
de groupe d'holonomie et la notion de classe d'un espace de

Riemann. M. G. Ricci a désigné sous ce nom le plus petit entier
k tel que l'espace de Riemann supposé à n dimensions puisse
être réalisé par une variété convenablement choisie de l'espace
euclidien à n k dimensions. M. J. A. Schouten a démontré

que, dans certains cas très étendus, la classe était égale au nombre
de paramètres dont dépend la position finale du corps de

vecteurs issus d'un point A, transporté par parallélisme le long
d'un contour fermé partant de A. R est à peu près évident

que ce nombre n'est autre que l'ordre du groupe y qui indique
comment le groupe d'holonomie g de l'espace de Riemann
transforme entre elles les directions (ou les points à l'infini). Il y
aurait lieu de reprendre cette question et de voir si le théo-

I/K nseifinement mathém., 3V année ; 1921 et 1925.
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rème de M. J. A. Schouten est général, ou du moins dans quels
cas il est vrai.

Citons encore pour mémoire le problème général de l'isomor-
phisme, holoèdrique ou mériédrique, de deux espaces non holo-
nomes à groupe fondamental donné 1.

Signalons aussi des généralisations possibles obtenues en
considérant des espaces (non holonomes) non par exemple
engendrés par des éléments au sens de S. Lie. C'est ainsi qu'on
peut, étant donnée une équation différentielle arbitraire

d2yJ
d^ fXX'*'tc)'

attribuer au plan x,y), supposé initialement privé de toute
propriété géométrique, une connexion projective telle que les

géodésiques correspondantes soient les courbes intégrales de

l'équation donnée: seulement l'élément générateur du plan
ainsi doué d'une connexion projective est, non pas le point (#, y)}

mais l'élément (x} y,On indiquerait facilement nombre

d'autres problèmes d'analyse susceptibles d'être géométrisés^
d'une manière analogue et dans lesquels la théorie des groupes
interviendrait aussi légitimement que dans les problèmes dont
nous avons plus spécialement parlé.

Je ne puis enfin terminer sans signaler les remarquables
recherches dans lesquelles M. H. Weyl a repris l'ancien problème
philosophique de l'espace, traité autrefois par Helmholtz et Lie,
pour l'adapter aux points de vue nouveaux introduits par la
théorie de la relativité ; la notion de groupe est, là encore, à la
base même de l'énoncé du problème posé par M. H. Weyl. Mais

je ne puis songer à entrer dans l'exposition, même sommaire, de

cette importante question, qui exigerait à elle seule une conférence

spéciale.

* Voir en particulier mon mémoire: Les espaces à connèxion conforme (Ann. de la
Soc. polon. de math., 1923, p. 171-221).
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