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134' ME'"LANGES ET CORRESPONDANCE
pour la borne 1nfer1eure

(n — 7)(n —- 14) (n -+ 7)(n———14)(n— 21)

me241+ = N
pour la borne supérieilre: | |

| n-—1 - (n.—1)(n — 2) (n—1)(n — 2)(n — 3). )
(n—2) 3 1+ - 2.3 T 334 T

~ Chacun de ces systémes de caracterlsthues dont nous connaissons
non seulement le nombre approché, mais que nous sommes 4 méme
de donner d’une facon presque immédiate, dés que nous avons une
n—1
. | . 3
différents de triples de Steiner, systémes qui possédent ou uniquement
“le groupe cyclique {|z, 1 4 z|} ou le sous-groupe métacyclique
{lz,1 + z|, |®, a2}, et que nous sommes & méme aussi, ayant le
systéme de caractéristiques, de donner d’une facon immeédiate.

racine primitive de N, détermine au moins [ ] systémes cycliques
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Un nouveau mode de déecomposition des nombres entiers.

‘Dans le tome XL des mémoires de '’Académie royale de Belgique,
CATALAN a fait paraitre un travail 1nt1tule « Recherches sur quelques
produits indéfinis ».

Considérons la formule (144) qui se trouve a la page 30 de ce me-
m01re

- ( + q + (ls + g8 A
= (1+f/ + ¢+ ¢+ - )(1+2q—l—-q"'+2fi + o)

Multiplions-en les deux membres par (I+qg+gpd+g8+.. ); nous
aurons: _
(1+q+f/3—|—q6+ - 1 (Fy
=A+g+L+a - S+ ¢ +t/ + g1+ ) (14 20 + 2¢* +2q"+ )

A la page XXXI de sa « Théorie des Nombres », Edouard LUCAS
nous apprend que tout entler est la somme de trms tr1angulalres
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Le premier membre de la formule (F) contient donc toutes les puis-
sances d’exposants entiers non négatifs de la variable ¢. Il en est alors
de méme du second membre. Nous en concluons le théoréme suivant:
N’importe quel entier peut s’obtenir par I'addition d’un carré, et de trois
iriangulaires dont deux sont égaux. Exemples:

6=164+0+04+0=9+1+3+3—=4+10414+1=%4-+6+3+43

P 0+64+6=1+154+04+0=1+8+6+6=0+4+104+3+3;
16404141 =9+3+3+3=1+4+15+14+1=04+6+4+6-4+6.

I
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Marcel WinanTts (Liége).

Sur le théoréme de Kariya.

A propos d’un article de M. H. LEBESGUE.

1. M. H. LeBEsGUE généralise, dans les numéros 5-6 de I’ Ensergne-
ment mathématique (tome xxiir, p. 292), le théoréme de KARIYA.
Il I'énonce: st S et s sont péle et polaire par rapport ¢ la conique % par
rapport & laquelle deuz triangles homologiques T et t sont polaires réci-
proques, le couple (S, s) définit des homologies qui transforment t
(ou T) en triangles homologiques avec T (ou t).

Sous cette forme le théoréme est rattaché a une grande théorie:
celle des poles et polaires dans les coniques. La démonstration qu’en
donne M. LEBESGUE (p. 296) peut étre présentée simplement sur
une conique générale. Celle que nous donnons ci-dessous nous a été
enseignée par notre éminent maitre, M. Cl. Servais, professeur &
I'Université de Gand; non pas pour justifier le théoréeme de Kariya
mais pour établir 'existence et les propriétés des coniques conjuguées.
Nous prouvons ainsi que le théoreme de M. Lebesgue est un corollaire
de la théorie des coniques conjuguées, étudiée par PoncELET dans
le cas de 'homologie harmonique.

2. Théoreme classique. — Deux triangles ABC, A;B;C; tels que
les sommets A, B, C de I'un sont les poles des cotes B C1> CiA,4,
A,B, de l’autre par rapport a une conique réelle ou idéale 2 sont
dits réciproques par rapport & X; ils sont homologiques. Les couples
B, C et By, C; peuvent étre imaginaires conjugués.

En effet, soient B’, ¢/, D, E les points d’intersection de BC avec
A,Gy, A By, AJA, BLCy et F le point (AA; — B,C,). Puisque un fais-
ceau de droites est projectif & la ponctuelle des poles de ces droites,
on a successivement

Donec
(BCDE; A (B,C, FE)

et les droites BB;, CC;, AA; sont concourantes.
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