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Le procédé de démonstration employé plus haut se préte
encore & d’autres généralisations. Par exemple, s1 I’on considere
une courbe algébrique (C), ot les termes de plus haut degré n ne
contiennent que les puissances de y de méme parité, on aura,
pour les 2n points d’intersection de (C) et de I’ellipse, la relation

2n : 2n
Eq;h — 2k= ou E, 0, = (2k 4+ )= .
1 1

pour les 2 n points d’intersection de (C) et de I’hyperbole, la
relation

2n 2n

o :

Z,ﬁ —_ 9 2 — (9] -]
o, = 2kmi ou o, = (24 + 1)=i

1 1

suivant que les exposants de y dans les termes de degré n sont
pairs ou impairs.
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1. On voit aisément que:
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. -Supposons maintenant que dans le déterminant A les termes.
ay, g sont eux-mémes des déterminants:
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Passons au cas général lorsque les déterminants qui sont les
éléments des déterminants-A, B, C, D ne se distinguent pas seule-
ment par une rangée. (llgne ou colonne), mais sont arbitraires.
Par exemple:
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Et en général:
a, byl e fil 'k 1 Yl agd, e by e b g f, kyon, ml
e dil g h; Hiy By aydy cgby e hy g fy kyny myl,
ay byl le, o] |y L] | _ | % dy 3 by ey g fy kymg myly
€y dy| |8y hy| | myny 0 0 0 0 1 1
ay by e, fol [k 1 0 0 1 1 0 0
¢, dy| | g5 hy| | myny ] 1 0 0 0 0
Si dans cette égalité nous posons:
a;:a2‘:al, /;::fzzfl,
by = by = b, , kg = ky =k
e, =e, =e , lL=1=1,
nous aurons
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~ ce qui est d’accord avec D.
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2. — Réduction du déterminant de Uordre 2q en un déterminant
de Uordre q. — Le résultat obtenu suggere 1’1dée de ’abaissement
de 'ordre du déterminant, par une simple soustraction de co-
lonnes; la seconde de la premiere; la quatrieme de la troisieme,
etc. Dans le cas ot nous avons un déterminant de la forme
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On voit donc qu’aprés avoir transformé un déterminant
arbitraire d’ordre 2¢ en un autre qui présente en des places
convenablement choisies des zéros et des unités, on peut, par
de simples soustractions, le ramener &4 un déterminant d’ordre q.
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