**Zeitschrift:** L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

**Band:** 24 (1924-1925)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES DÉTERMINANTS DONT LES ÉLÉMENTS SONT DES

**DÉTERMINANTS** 

Autor: Byck, Marie

**DOI:** https://doi.org/10.5169/seals-515757

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Le procédé de démonstration employé plus haut se prête encore à d'autres généralisations. Par exemple, si l'on considère une courbe algébrique (C), où les termes de plus haut degré n ne contiennent que les puissances de y de même parité, on aura, pour les 2n points d'intersection de (C) et de l'ellipse, la relation

$$\sum_{1}^{2n} \varphi_h = 2k\pi$$
 ou  $\sum_{1}^{2n} \varphi_h = (2k+1)\pi$ ,

pour les 2 n points d'intersection de (C) et de l'hyperbole, la relation

$$\sum_{1}^{2n} \varphi_h = 2k\pi i \quad \text{ou} \quad \sum_{1}^{2n} \varphi_h = (2k+1)\pi i ,$$

suivant que les exposants de y dans les termes de degré n sont pairs ou impairs.

# SUR LES DÉTERMINANTS DONT LES ÉLÉMENTS SONT DES DÉTERMINANTS

PAR

Marie Вуск (Kieff).

## 1. On voit aisément que:

$$A = \begin{vmatrix} a_1 & m_1 & n_1 \\ p_1 & q_1 \\ a_2 & m_1 & n_1 \\ p_2 & q_2 \end{vmatrix} = - \begin{vmatrix} a_1 & p_1 & q_1 \\ a_2 & p_2 & q_2 \\ 0 & m_1 & n_1 \end{vmatrix};$$

de même,

$$\mathbf{B} = \begin{vmatrix} a_1 & b_1 & \frac{m_1}{p_1} & q_1 \\ a_2 & b_2 & \frac{m_1}{p_2} & q_2 \\ a_3 & b_3 & \frac{m_1}{p_3} & q_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & p_1 & q_1 \\ a_2 & b_2 & p_2 & q_2 \\ a_3 & b_3 & p_3 & q_3 \\ 0 & 0 & m_1 & n_1 \end{vmatrix}, \text{ etc.}$$

Supposons maintenant que dans le déterminant A les termes  $a_1$ ,  $a_2$  sont eux-mêmes des déterminants:

$$a_1 = \begin{vmatrix} r_1 s_1 \\ t_1 u_1 \end{vmatrix}$$
,  $a_2 = \begin{vmatrix} r_1 s_1 \\ t_2 u_2 \end{vmatrix}$ ,

on aura

$$C = \begin{vmatrix} \begin{vmatrix} r_1 s_1 \\ t_1 u_1 \end{vmatrix} \begin{vmatrix} m_1 n_1 \\ p_1 q_1 \end{vmatrix} = - \begin{vmatrix} \begin{vmatrix} r_1 s_1 \\ t_1 u_1 \end{vmatrix} p_1 q_1 \\ \begin{vmatrix} r_1 s_1 \\ t_2 u_2 \end{vmatrix} p_2 q_2 \end{vmatrix} = + \begin{vmatrix} t_1 u_1 p_1 q_1 \\ t_2 u_2 p_2 q_2 \\ 0 0 m_1 n_1 \\ r_1 s_1 0 0 \end{vmatrix};$$

de même:

$$\mathbf{D} = \begin{vmatrix} \begin{vmatrix} v_1 & w_1 \\ x_1 & y_1 \end{vmatrix} \begin{vmatrix} r_1 & s_1 \\ t_1 & u_1 \end{vmatrix} \begin{vmatrix} m_1 & n_1 \\ p_1 & q_1 \end{vmatrix} \\ \begin{vmatrix} v_1 & w_1 \\ x_2 & y_2 \end{vmatrix} \begin{vmatrix} r_1 & s_1 \\ t_2 & u_2 \end{vmatrix} \begin{vmatrix} m_1 & n_1 \\ p_2 & q_2 \end{vmatrix} \\ \begin{vmatrix} v_1 & w_1 \\ x_3 & y_3 \end{vmatrix} \begin{vmatrix} r_1 & s_1 \\ t_3 & u_3 \end{vmatrix} \begin{vmatrix} m_1 & n_1 \\ p_3 & q_3 \end{vmatrix} = - \begin{vmatrix} x_1 & y_1 & t_1 & u_1 & p_1 & q_1 \\ x_2 & y_2 & t_2 & u_2 & p_2 & q_2 \\ x_3 & y_3 & t_3 & u_3 & p_3 & q_3 \\ 0 & 0 & 0 & 0 & m_1 & n_1 \\ 0 & 0 & r_1 & s_1 & 0 & 0 \\ v_1 & w_1 & 0 & 0 & 0 & 0 \end{vmatrix}.$$

Passons au cas général lorsque les déterminants qui sont les éléments des déterminants A, B, C, D ne se distinguent pas seulement par une rangée (ligne ou colonne), mais sont arbitraires. Par exemple:

$$\mathbf{A}' = \begin{vmatrix} a_1 & m_1 & n_1 \\ p_1 & q_1 \\ a_2 & m_2 & n_2 \\ p_2 & q_2 \end{vmatrix}, \quad \mathbf{B}' = \begin{vmatrix} a_1 & b_1 & m_1 & n_1 \\ a_2 & b_2 & m_2 & n_2 \\ p_2 & q_2 \\ a_3 & b_3 & m_3 & n_3 \\ p_3 & q_3 \end{vmatrix},$$

Déterminons x et y de manière que dans le déterminant  $\mathbf{A}'$  on ait

$$\left| \frac{m_2 n_2}{p_2 q_2} \right| = \left| \frac{m_1 n_1}{x y} \right|,$$

c'est-à-dire

$$m_2 q_2 - p_2 n_2 = m_1 j - x n_1 .$$

Posons:

1) 
$$m_2 q_2 = m_1 y$$
, 2)  $p_2 n_2 = n_1 x$ ,

d'où:

$$v = \frac{m_2 \, q_2}{m_1} \,, \qquad x = \frac{p_2 \, n_2}{p_1} \,.$$

Nous aurons

$$A' = \begin{vmatrix} a_1 & m_1 & n_1 \\ p_1 & q_1 \end{vmatrix} = \begin{vmatrix} a_1 & m_1 & n_1 \\ p_1 & q_1 \\ m_1 & n_1 \\ a_2 & m_2 & n_2 \\ p_2 & q_2 \end{vmatrix} = \begin{vmatrix} a_1 & m_1 & n_1 \\ m_1 & n_1 \\ a_2 & m_2 & m_2 & q_2 \\ \hline n_1 & m_1 \end{vmatrix} =$$

$$= - \begin{vmatrix} a_1 & p_1 & q_1 \\ a_2 & \frac{n_2 p_2}{n_1} & \frac{m_2 q_2}{m_1} \\ 0 & m_1 & n_1 \end{vmatrix} = - \frac{1}{m_1 n_1} \begin{vmatrix} a_1 & n_1 p_1 & m_1 q_1 \\ a_2 & n_2 p_2 & m_2 q_2 \\ 0 & m_1 n_1 & m_1 n_1 \end{vmatrix} =$$

$$= - \begin{vmatrix} a_1 & n_1 p_1 & m_1 q_1 \\ a_2 & n_2 p_2 & m_2 q_2 \end{vmatrix} = \begin{vmatrix} a_1 & m_1 q_1 & n_1 p_1 \\ a_2 & m_2 q_2 & n_2 p_2 \\ 0 & 1 & 1 & 0 & 1 & 1 \end{vmatrix},$$

$$C' = \begin{vmatrix} \begin{vmatrix} r_1 s_1 \\ t_1 u_1 \end{vmatrix} \begin{vmatrix} m_1 n_1 \\ p_1 q_1 \end{vmatrix} = \begin{vmatrix} \begin{vmatrix} r_1 s_1 \\ t_1 u_1 \end{vmatrix} \begin{vmatrix} m_1 n_1 \\ p_1 q_1 \end{vmatrix} = \begin{vmatrix} r_1 s_1 \\ t_2 s_2 \end{vmatrix} \begin{vmatrix} m_2 n_2 \\ p_2 q_2 \end{vmatrix} = \begin{vmatrix} \frac{t_2 s_2}{s_1} \frac{u_2 r_2}{r_1} \end{vmatrix} \begin{vmatrix} \frac{p_2 n_2}{r_2} \frac{q_2 m_2}{r_1} \\ \frac{p_2 n_2}{r_1} \frac{q_2 m_2}{r_1} \end{vmatrix} =$$

$$= \begin{vmatrix} t_1 & u_1 & p_1 & q_1 \\ \frac{t_2 s_2}{s_1} & \frac{u_2 r_2}{r_1} & \frac{p_2 n_2}{n_1} & \frac{q_2 m_2}{m_1} \\ \frac{0}{r_1} & s_1 & 0 & 0 \end{vmatrix} = \frac{1}{r_1 s_1 m_1 n_1} \begin{vmatrix} t_1 s_1 & r_1 u_1 & p_1 n_1 & m_1 q_1 \\ t_2 s_2 & r_2 u_2 & p_2 n_2 & m_2 q_2 \\ \frac{1}{r_1 s_1 m_1 n_1} & 0 & 0 & m_1 n_1 & m_1 n_1 \end{vmatrix} =$$

$$= \begin{vmatrix} t_1 s_1 & r_1 u_1 & p_1 n_1 & m_1 q_1 \\ t_2 s_2 & r_2 u_2 & p_2 n_2 & m_2 q_2 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} r_1 u_1 & t_1 s_1 & m_1 q_1 & p_1 n_1 \\ r_2 u_2 & t_2 s_2 & m_2 q_2 & p_2 n_2 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix}.$$

Et en général:

$$\begin{vmatrix} \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} \begin{vmatrix} e_1 & f_1 \\ g_1 & h_1 \end{vmatrix} \begin{vmatrix} k_1 & l_1 \\ m_1 & n_1 \end{vmatrix} = \begin{vmatrix} a_1 & d_1 & c_1 & b_1 & e_1 & h_1 & g_1 & f_1 & k_1 & n_1 & m_1 & l_1 \\ a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} \begin{vmatrix} e_2 & f_2 \\ g_2 & h_2 \end{vmatrix} \begin{vmatrix} k_2 & l_2 \\ m_2 & n_2 \end{vmatrix} = \begin{vmatrix} a_1 & d_1 & c_1 & b_1 & e_1 & h_1 & g_1 & f_1 & k_1 & n_1 & m_1 & l_1 \\ a_2 & d_2 & c_2 & b_2 & e_2 & h_2 & g_2 & f_2 & k_2 & n_2 & m_2 & l_2 \\ a_3 & d_3 & c_3 & b_3 & e_3 & h_3 & g_3 & f_3 & k_3 & n_3 & m_3 & l_3 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{vmatrix}$$

Si dans cette égalité nous posons:

$$a_3 = a_2 = a_1$$
,  $f_3 = f_2 = f_1$ ,  
 $b_3 = b_2 = b_1$ ,  $k_3 = k_2 = k_1$ ,  
 $e_3 = e_2 = e_1$ ,  $l_3 = l_2 = l_1$ ,

nous aurons

$$\begin{vmatrix} a_1 & d_1 & c_1 & b_1 & e_1 & h_1 & g_1 & f_1 & k_1 & n_1 & m_1 & l_1 \\ a_1 & d_2 & c_2 & b_1 & e_1 & h_2 & g_2 & f_1 & k_1 & n_2 & m_2 & l_1 \\ a_1 & d_3 & c_3 & b_1 & e_1 & h_3 & g_3 & f_1 & k_1 & n_3 & m_3 & l_1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{vmatrix} =$$

$$= a_1 b_1 e_1 f_1 k_1 l_1 \begin{vmatrix} d_1 & c_1 & h_1 & g_1 & n_1 & m_1 \\ d_2 & c_2 & h_2 & g_2 & n_2 & m_2 \\ d_3 & c_3 & h_3 & g_3 & n_3 & m_3 \\ 0 & 0 & 0 & \frac{1}{k_1} & \frac{1}{l_1} \\ 0 & 0 & \frac{1}{e_1} & \frac{1}{f_1} & 0 & 0 \\ \frac{1}{a_1} & \frac{1}{b_1} & 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} d_1 & c_1 & h_1 & g_1 & n_1 & m_1 \\ d_2 & c_2 & h_2 & g_2 & n_2 & m_2 \\ d_3 & c_3 & h_3 & g_3 & n_3 & m_3 \\ 0 & 0 & 0 & 0 & l_1 & k_1 \\ 0 & 0 & f_1 & e_1 & 0 & 0 \\ b_1 & a_1 & 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} d_1 & c_1 & h_1 & g_1 & n_1 & m_1 \\ d_2 & c_2 & h_2 & g_2 & n_2 & m_2 \\ d_3 & c_3 & h_3 & g_3 & n_3 & m_3 \\ 0 & 0 & 0 & 0 & l_1 & k_1 \\ 0 & 0 & f_1 & e_1 & 0 & 0 \\ b_1 & a_1 & 0 & 0 & 0 & 0 \end{vmatrix}$$

ce qui est d'accord avec D.

2. — Réduction du déterminant de l'ordre 2q en un déterminant de l'ordre q. — Le résultat obtenu suggère l'idée de l'abaissement de l'ordre du déterminant, par une simple soustraction de colonnes; la seconde de la première; la quatrième de la troisième, etc. Dans le cas où nous avons un déterminant de la forme

les opérations indiquées conduisent au déterminant:

$$a_{1}^{1} - a_{1}^{2} \quad a_{1}^{3} - a_{1}^{4} \quad \dots \quad a_{1}^{2q-1} - a_{1}^{2q}$$

$$a_{2}^{1} - a_{2}^{2} \quad a_{2}^{3} - a_{2}^{4} \quad \dots \quad a_{2}^{2q-1} - a_{2}^{2q}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{q}^{1} - a_{q}^{2} \quad a_{q}^{3} - a_{q}^{4} \quad \dots \quad a_{q}^{2q-1} - a_{q}^{2q}$$

On voit donc qu'après avoir transformé un déterminant arbitraire d'ordre 2q en un autre qui présente en des places convenablement choisies des zéros et des unités, on peut, par de simples soustractions, le ramener à un déterminant d'ordre q.