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84 A. 10 MNICKI
la limite 1des accroissements de g(P) dans une suite d'intervalles

à ndimensions ayant pour limite l'intervalle donné (QiQa)
et contenant chacun des points intérieurs, mais non pas des

sommets, de celui-ci.
L'accroissement de g(P)en un point Q sera la limite de ses

accroissements dans une suite d'intervalles ayant pour limite
unique le point donné Q et contenant chacun ce point.

La fonction intégrande /(P), constante par intervalles dans

l'intervalle d'intégration (AB), y possède par définition un
nombre fini de valeurs distinctes, dont chacune correspond à un
nombre fini de points et d'intervalles ouverts.

Son intégrale par rapport à g(P) s'obtient alors en faisant Ja
somme des produits de la valeur de f(P) par Vaccroissement de

g(P) à V intérieur de chacun de ces intervalles et en chacun de ces

points.

SUR LES MÉTHODES QUI SERVENT A LIMITER
SUPÉRIEUREMENT LES MODULES

DES RACINES DES ÉQUATIONS ALGÉBRIQUES
i ' '

*

PAR

Antoine Lomnicki (Lwow, Pologne).

1. MM. Carmichel et Mason ont démontré que la valeur
absolue de chaque racine Xi( i— 1/2,..., n) de l'équation :

xn4* axxn~~x-f- a%xn'~~2-f-+ an—\x H"- ^ ® (*).

satisfait à la condition:
» • * - ' i ' I ' '

- » 1

\*t\ < V1 + I2 + IAs I2 ,+ ••• + I an-\ I2 + an I2 (i 1, 2, ...,n)
•

'

(2)

i Ce^te limite est en ehet unique; car chaque sommet d'un intervalle de la suite
tend vers un point déterminé en restant dans un même quadrant ayant son sommet
en ce point.
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M. J. L. Walsch1 a démontré récemment la formule:

l*<l ^ Kl + VW\ + VW\ + ••• + W*J
et M. K. P. Williams a publié 2 l'inégalité suivante:
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(20

K-1 < l/l + «1 - 112 + I H -a%I2 + • • • "H- I «„ - ««-1P + I «J*
(i 1, 2, n)(3)

On peut trouver — à l'aide de considérations tout-à-fait
élémentaires — des inégalités, qui sont plus précises que (2) et (3)

et de plus, on peut donner une méthode, qui est la
c'est-à-dire la plus précise parmi toutes les méthodes qui se

servent exclusivement des valeurs absolues des coefficients de

l'équation (1) et de même une méthode, qui est la meilleure

parmi toutes les méthodes qui se servent exclusivement des

valeurs absolues des différences des coefficients voisins. Un procédé

convergent nous permet toujours de calculer ce meilleur
limite.

2. Prenons comme point de départ l'inégalité:
I xiI ^ t -f- | «j I + I a21 -f- • •• + I anI sx (i ~ 1, 2, 77) (4)

laquelle est évidente, si les modules des racines ne surpassent
pas 1. Dans le cas contraire, c'est-à-dire pour > 1, nous
tirons de l'équation (1) après l'avoir divisée par la relation:

xi I ~ I + aJ -1-... +
an—1

+xi n—2
xs

< | «i | -f- | a2|-f- • • + I

alors à plus forte raison la relation (4).
Remarque. Les nombres limites sx sont en général plus grands

que les nombres fournis par (2) ou (3).
3. Nous pouvons maintenant former à l'aide de ce nombre %

un autre nombre limite s2, qui. sera meilleur, c'est-à-dire plus
petit que sx.Onmontre en effet, que:

•ri\< |/ 1 -f \a2\ s» 2 -f -f- | 16-j -f- | an | 52 <;.s-1 ;

1, 2, n) (5)

1 J. L. Walsch. Aninequality for the roots of an algebraic equation. Annals of
mathematics. Vol. 25, p. 285-6, 1924.

2 K. P. Williams. Note concerning the roots of an equation. Bulletin of the AmericanMathematical Society. Vol. 28, p. 394-396. 1922.
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Démonstration.,L'équation (1) donne:

Kl"^kilkif""1 + KlK-in'~2 + + K^IKI + laj (6)

Mais |Xi\ < s1? alors st étant positif:

I Xi I ^ I I Si+ I a2Isi2+ •. • 4- I I -}- | |

d'où la première inégalité (5).
Il reste à prouver, que st < En s'appuyant sur la définition

de sxpar (4), pn voit que | ar\nepeut pas surpasser ^ — 1; alors

Sl— 1 + -f -f Sl rj- 1) j/V* — 1 < Sj
*2

4. Le même procédé appliqué au nombre donne un nombre
limite encore meilleur s3< s2.En effet:

V «

\xi\ + Kl«,"-2 + + + I «„ I ssCs1

comme il est aisé de voir en remarquant que la fonction

f/| ax|X-f-I #2 I X'12 + • • • + I I + |

décroît d une manière monotone si décroit de à
5. L'itération successive nous donne la suite des nombres

limites:
4-

^1 f ^2 9 #^3 » • * * > ^ f • • • *

définis par la formule récursive:

Sk V^'\ai\8k-\ + I ^2 I ^2-1? + « • • +| I +• I I (7)

pour tous les entiers k 1 et par la formule (4) pour 1. Les
termes de cette suite vont en décroissant et restent toujours
plus grands qu'un nombre constant (égal au plus grand module
des racines de l'équation proposée). La suite converge donc
vers une limite s :

Tous les Skétant plus grands que les modulés de toutes les
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racines de l'équation (1), leur limite s ne peut pas s'abaisser au-
dessous de ces modules on a alors:

' \x.\£ s

Nous pouvons donc énoncer le théorème suivant :

La suite Kj définie par (4) et(7)donne pour les modules des

racines de Véquation(1)des nombres limitants toujours meilleurs

(décroissants) ; elle est convergente et sa limite s fournit un nombre

limitant plus petit que tous les termes de la suite.

Il faut remarquer que cette limite s n'est pas dans le cas

général le module de la plus grande racine de l'équation donnée

<!)•
6. Passons aux limites dans la formule (7), nous trouvons:

s ]/j ax| sn1 + I a2|sn2
-f- -f- I J.9 + \an\ ;

alors la limite s satisfait à l'équation

*n - Kl*"-1 - KK~2 - - K_.il* - Kl 0 (9)

Comme cette équation a une racine positive unique aM, notre
limite «s coincide avec celle-ci:

Cf.
M (90

Remarque. Pour tous les nombres positifs plus grands que aM
le polynôme (9) reste positif.

Nous retrouvons par cette voie le résultat suivant, dû à
Gauchy 1:

Chacune des racines de Véquation(1)offre un module inférieur
à la racine positive unique xM de auxiliaire :

zn— («J zn~l — | a2|zn~2 — — | an_x (10)

c'est-à-dire qu'on a:
(io')

7. Parmi toutes les méthodes,qui fournissent les nombres-limitant
supérieurement les modules des racines de (1) en se

1 Cauchy. Œuvres. I. sér. T. II., p. 289-299. C'est M. R. Hedrick qui m'a fait
remarquer que ce théorème est dû à Cauchy.
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servant exclusivement dèsmodules de ses coefficients, les meilleures
sont celles,qui déterminent la racine positive de auxiliaire
(ÎO), directement ou par les approximations successives
supérieures.

Autrement dit une méthode qui se sert ëxclusiyement des
modules des coefficients ne peut pas fournir des résultats
meilleurs, donc des nombres limitants plus petits que «M. Pour le voir
il suffit d'admettre, qu'une telle méthode donne pour (1) un
nombre limite (positif) t < aM. La même méthode appliquée à

l'équation auxiliaire fournirait le même nombre t limitant
supérieurement les modules de toutes ses racines, donc aussi aM? ce

qui est absurde, parce qu'on at<«M.
Ce résultat est presque évident. En effet, en se servant uniquement

des modules des coefficients on détermine les nombres
limites non seulement pour l'équation unique (1), mais pour
tout l'ensemble des équations, dont les coefficients possèdent les
mêmes modules. L'équation auxiliaire (10) ^appartient évidemment

aussi à cet ensemble et le module de sa racine positive aM

est plus grand que tous les modules des racines des équations
appartenant à cet ensemble. Car on conclut de la formule (6),
qu'on a pour toute racine Xia

M" — KIM'1""1 — KIM"-2 — ••• — K-ilM — K,I ^0

ce qui est impossible pour un nombre"positif la] plus grand que
aM(voir § 6. Remarque). /
En estimant la valeur de la formule (2) de ce point dé vue,

on voit qu'elle ne peut nullement fournir un nombre limite
meilleur que la limite idéale aM, accessible par notre méthode
et qu'elle fournira souvent certainement des plus grands nombres

limites, par exemple toujours si < L
La formule (2)donne pour l'équation

^+^ + ^+ + « + 1 0,. (11)

l'inégalité \xt\<[/i-fn,pendantque la meilleure méthodë dè

ce type conduit à la racine positive de l'équation auxiliaire

zn __ ji-l _ _ _ 0 (12L:
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qui reste pour tout n inférieure au nombre 2, comme il est aisé

de le prouver. Nous avons alors <1 aM < 2. Cette valeur est

meilleure pour n^>4et pour n — 1, 2,3 on trouve à l'aide des

équations auxiliaires:

^ — 1 — 0 z2 — z — 1 =z 0 z3 — z2 — z — 1 0

les valeurs limites :

aM

1 ±X± 1.8

qui sont plus petites que les valeurs correspondantes:

fourniespar (2).
8. La recherche des méthodes qui se servent exclusivement

des modules des différences des coefficients voisins, dont l'exemple
est donné par la formule (3), se fait d'une manière analogue.
Transformons l'équation (1) en introduisant une nouvelle racine
x —1, c'est-à-dire multiplions les deux côtés de l'équation (1)

par x — 1. Il vient:

x j — 1) oc —J—(#2 — (Xj) ocJ——}— {ßfi — |) &— 9

(13

En appliquant à cette équation transformée la méthode
précédemment formulée, nous pouvons énoncer le théorème suivant :

Le plus grand module des racines de Véquation (13) et par
conséquent de Véquation (1 nepeut pas surpasser la racine positive

unique de Véquationauxiliaire:

~."-H _ t js» _ ja2 _ ax\zn~x — — \an — an_x\s— \an\ 0

(14)

Parmi toutes les méthodes,qui fournissent les nombres limitant
supérieurement les modules des racines de Véquation (1) en se

servant exclusivement des modules des différences des coefficients
voisins de Véquation proposée,les meilleures sont qui
déterminent la racine positive de Véquation auxiliaire (14) directement
ou par les approximations successives supérieures.
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La méthodé exprimée par la formule (3) en particulier n'est
dans aucun cas meilleure et devient en général moins précise.
Par exemple notre méthode, appliquée à l'équation (11) donne
l'équation transformée xn+1— 1 0 et l'équation auxiliaire de
la même forme — 1 0, dont la racine positive unique
est /3m 1. Nous avons alors obtenu la limite précise, pendant que
la formule de M. Williams fournit seulement \xA < 2.

» I ^ t.-

Il ne faut cependant pas croire, qu'on obtient par la méthode
des modules des différences toujours des résultats meilleurs
que ceux obtenus par la méthode des modules des coefficients.
Cette dernière méthode se montre au contraire toujours moins
précise si l'équation auxiliaire (10) a une racine positive moindre
que 1, car nous avons introduit dans la seconde méthode la
racine x1 ; alors la plus grande racine /3M de l'équation auxiliaire

transformée resté toujours /3M ^ 1-

Considérons encore un exemple numérique

x*— \x-f-3 m Ö
- (15)

La formule (10) donne ici «M — 2 + \;alors 4 < aM < 5 et la
formule (14) donne une plus grande valeur 6 < /3M <C 7.

(La formule (2) donne 1/^26 et la formule (3) \/84, donc dans
les deux cas des résultats moins satisfaisants que les. résultats
obtenus par les « meilleures » méthodes.)

9. Nous avons de cette manière obtenus les limites extrêmes,
qu'on peut atteindre par ces deux types de méthodes. Il se pose
la question, si l'on ne pourrait pas trouver d'autres méthodes
assez simples et fournissant des limites plus prêches pour les
modules des racines. Les résultats que nous avons obtenus pour
l'équation (15), par exemple, ne sont pas satisfaisants.

Or on parvient quelquefois aux résultats plus précis en
formant la seconde, troisième,... différence des coefficients voisins
de l'équation. Mais on voit que la valeur des méthodes des

différences ne diffère principalement pas dé la valeur des méthodes

que nous avons examinées.

Cependant une autre idéë se montre féconde, à savoir
l'introduction des nouvelles racines xautres que 1.

On peut choisir les paramètres u, de telle manière, qu'on
obtienne un plus grand degré de précision.
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En introduisant par exemple dans l'équation (15) une racine
3

u — — ~4 nous trouvons pour aM la valeur 3 * 44 < aM < 3 • 45,

qui est plus petite que les valeurs obtenues par les méthodes

précédentes. En introduisant à la fois deux nouvelles racines

x u —-3 et x ç — 1, nous trouvons une valeur ocM

contenue dans Pintervalle 3*2 < aM < 3*3, donc plus précise

encore que dans le cas précédent. L'étude approfondie des

méthodes de cette espèce ne me semble pas privée d'intérêt.

UNE REPRÉSENTATION DE L'EXCÈS SPHÉRIQUE
D'UN TRIANGLE SPHÉRIQUE (HAMILTON)

PAR

B. Niewenglowski (Paris).

La présente note est rédigée d'après l'ouvrage de M. Tait sur
les quaternions. Je rappelle en premier lieu des définitions et des

propriétés des triangles sphériques qui en faciliteront la lecture.

Quotient de vecteurs — Verseurs — Arcs de grand cercle.

1. Soient a, ßdeuxvecteurs OA, OB. Appelons quotient
de ßpar a une quantité définie par l'égalité

ß a X q,Ce qui donne

a
1

ß — a~~La

Nous poserons donc

q est un quaternion. Quand les tenseurs de et de sont égaux,
q est un verseur.
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