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84 o | 4. LOMNICKI

la limite ! des aceroissements de g(P) dans une suite d’inter-

valles & » dimensions ayant pour limite 'intervalle donné (Q, Q) -

et contenant chacun des points intérieurs, mais non pas des

sommets, de celui-ci.

- L’accroissement de g(P) en un point Q sera la limite de ses
accroissements dans une suite d’intervalles ayant pour llmlte ‘

unique le point donné Q et contenant chacun ce point.

La fonction intégrande f(P), constante par intervalles dans
Pintervalle d’intégration (AB), y posséde par définition un
nombre fini de valeurs distinctes, dont chacune correspond & un
nombre fini de points et d’intervalles ouverts. |

Son intégrale par rapport a g(P) s’obtient alors en faisant la
somme des produits de la ¢aleur de f(P) par Paccroissemernt de
g(P) a Uintérieur de chacun de ces intervalles et en chacun de ces
points. '

SUR LES METHODES QUI SERVENT A LIMITER
SUPERIEUREMENT LES MODULES

'DES RACINES DES EQUATIONS ALGEBRIQUES
PAR - |

Antoine LoMNICKI (Lwow, quogne).

1. MM. .:CARMICHEL et MasoN ont démontré que la valeur
absolue de chaque racine z; (i = 1,2, ..., n) de I’équation.:

a2 G e, m e, =0 (1)

satisfait a la condition:

ol <VIF 6P T 1GFF - F o P la,F  (=1,2..0)
| ' L (2)

1 Cette llmlte est en effet unique; car chaque sommet a’ un intervalle de la suite
tend vers un point déterminé en restant dans un méme quadrant ayant son sommet
en-ce point PR , :
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M. J. L. Warscu! a démontré récemment la formule:
2| £ lay| + Vel + Vi) + o+ Ve, (2)

et M. K. P. WiLLiAms a publié 2 'inégalité suivante:

l‘ll! <\/1 + | ¢y ~1‘2 + |a2-all2 + o+ lan—- an——‘ll2+ 'anli,

(=12, ..,n) 3)

On peut trouver — & l'aide de considérations tout-a-fait
élémentaires — des inégalités, qui sont plus précises que (2) et (3)
et de plus, on peut donner une méthode, qui est la meilleure,
c’est-a-dire la plus précise parmi toutes les méthodes qui se
servent exclusivement des valeurs absolues des coefficients de
Péquation (1) et de méme une méthode, qui est la meilleure
parmi toutes les méthodes qui se servent exclusivement des
valeurs absolues des différences des coefficients voisins. Un procédé
convergent nous permet toujours de calculer ce meilleur nombre-
limute.

2. Prenons comme point de départ I'inégalité:

ol <4 jal+ e+ o Fle,l=s, (=12 .0 (4

laquelle est évidente, si les modules des racines ne surpassent
pas 1. Dans le cas contraire, c¢’est-a-dire pour |z;| > 1, nous
tirons de I’équation (1) aprés ’avoir divisée par z"—! la relation:

, |
an—l

te, | < la, | + 4 v—I—{ " <l|a |+ |ag| + ... + |a,]

n—:22
L

+

et 1
X .

n—1

Z i I

alors a plus forte raison la relation (4). -
Remarque. Les nombres limites s; sont en général plus grands
que les nombres fournis par (2) ou (3). ,
3. Nous pouvons maintenant former & 1’aide de ce nombre s,
un autre nombre limite s,, qui sera meilleur, ¢’est-a-dire plus
petit que s;. On montre en effet, que:

e <V 52 g 5072 o o [y |5 + [y ] = 5y <o, .
(t=1,2,..., n) (5)

1 J. L. WALscH. An inequalily jor the roots of on algebraic equation. Annals of ma-
thematics. Vol. 25, p. 285-6, 1924.

2 K. P. WiLrLiams. Note concerning the roots of an equation. Bulletin of the American
Mathematical Society. Vol. 28, p. 394-396. 1922.
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Démonstration., L’équation . (1) donne:
| |2;]" < laxllxi’lé;l + I“zlllaciln'-—2 + + e,y la;] + la,| - (6)
| Mais |z;| < sy, alors s étant positif:
|z, |" < |al|s;""l -4 la“,[.sf""‘z + ... + la,_,|s, + la,| .

| d’ou la premiére ihégalité (5). | L
~ Il reste a prouver, que s, < s1- En s’appuyant sur la définition
de s, par (4), on voit que |a,| ne peut pas surpasser s;—1; alors

sy < l/(s1 — 1) ('s;'_,'il-l— _s:l'—2 + o5 4 1) :l/s;z —1<s ‘.

4. Le méme procédé appliqué au nombre s, donne un nombre
limite encore meilleur s, < s,. En effet:

. n — - . ' R
2] <V a3 + [ay )72 4 . F [ap_y s + [a,] = 5, < 5,

comme il est aisé de voir en remarquant que la fonction

Via e + o o" 4 (a2 + |, |

décroit d’une maniére monotone si z décroit de $1 28y,
5. L’itération successive nous donne la suite des nombres
limites: ‘ | |

Sps Sgs Szuee, Spy o , .

définis par la formule récursive:

% =V la G2+ ol 5f2E+ o+ Ta oy + [a,] ()

pour tous les entiers > 1 et par la formule:(4) pour .k = 1. Les
termes de cette suite vont en décroissant et restent toujours
plus grands qu’un nombre constant (égal au plus grand module
des racines de I’6quation proposée). La - suite converge done
vers une limite s: o .

SR lims, =s . ®)

ke
N

T ou’s'l‘es‘s,;’étantlgpl'us grands que les qu'ul_és‘de't'ou’tes les
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racines de I’équation (1), leur limite s ne peut pas s’abaisser au-
dessous de ces modules on a alors:

|x‘{ s .

A

Nous pouvons donc énoncer le théoreme suivant:

La suite {s,} définie par (&) et (7) donne pour les modules des
racines de Uéquation (1) des nombres limitants toujours meilleurs
(décrotssants) ; elle est convergente et sa limite s fournit un nombre
limitant plus petit que tous les termes de la suite.

Il faut remarquer que cette limite s n’est pas dans le cas
général le module de la plus grande racine de I’équation donnée
(1).

6. Passons aux limites dans la formule (7), nous trouvons:

s =V a1 F 4] 5"+ o L] + e,
alors la limite s satisfait & ’équation

! —1 n—2

s —a,|s" — |ay|s —la, 41s —|a,|] =0 . (9

Comme cette équation a une racine positive unique ay, notre
limite s coincide avec celle-ci:

s — o . (9%)

M

Remarque. Pour tous les nombres positifs plus grands que oy
le polynome (9) reste positif.

Nous retrouvons par cette voie le résultat suivant, da a
CaucHyY 1:

Chacune des racines de Uéguation (1) offre un module inférieur
a la racine positive unique ay de Uéquation auxiliaire :

I zn——l —2

;n—'—lal _la2,:n H_"'_‘an—llz'_lan,l:o (10)

¢’est-a-dire qu’on a:
'xi‘ § Uy (10,)

7. Parmitoutes les méthodes, qut fournissent les nombres-limiiani
supérieurement les modules des racines de équation (1) en se

1 CaucHy. (Buvres. I. sér. T. II., p. 289-299. C’est M. R. Hedrick qui m’a fait re-
marquer que ce théoréme est dit & Cauchy.
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servant exclusivement des modules de ses coefficients, les meilleures
sont celles, qui déterminent la racine positive de I'équation auxiliaire
(10), directement ou par les apprommatlons successives. supe-
rieures.

Autrement dit une methode qui se sert exclusivement des
“modules des coefficients ne peut pas fournir des résultats meil-
leurs, donc des nombres limitants plus petits que ay. Pour le voir
1l sufﬁt d’admettre, qu’une telle methode donne pour (1) un
nombre limite (pOS1t1f) t < ay. La méme méthode appllquee a

’équation auxiliaire fournirait le méme nombre ¢ hmltant supé-
rieurement les modules de toutes ses raclnes donc aussi ay, ce
qui est absurde, parce qu'on a ¢ < ay.

Ce résultat est presque évident. En effet, en se servant unique-
ment des modules des coefficients on détermine les nombres
limites non seulement pour I’équation unique. (1), mais pour
tout I’ensemble des équations, dont les coefficients possédent les
mémes modules. L’équation auxiliaire (10) appartient évidem-
~ ment aussi & cet ensemble et le module de sa racine positive ay
“est plus grand que tous les modules des racines des équations

appartenant a cet ensemble. Car on conclut de la formule (6),
qu’on a pour toute racine z; = «

n—2

et ‘%”“'

la]® — Jay|]a]™ ’ ---,—l“n_-qll“lf—lanléo ,
ce qui est impossible pour un nombre posmf ]ozl plus grand que
ay (voir § 6. Remarque). :

En estimant la valeur de la formule (2) de ce point de vue,
on voit qu’elle ne peut nullement fournir un- nombre limite
meilleur que la limite idéale sy, accessible par notre méthode
et qu’elle fournira souvent certainement des plus grands nombres
. limites, par exemple toujours si ay < 1.

La formule (2) donne pour I’équation

, linégaiité %] < VT + n, pendant que la meilleure méthodé de
ce type conduit & la racine posmve de l’équatlon auxﬂlalre '

g — z'."_‘1 — gt g —1 =0 . | (12)
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qui reste pour tout n inférieure au nombre 2, comme il est aisé
de le prouver. Nous avons alors |z;] < ay < 2. Cette valeur est
meilleure pour n > 4 et pour n = 1,2,3 on trouve & l'aide des
équations auxiliaires:

s—1 =20 22 emz—1 =20, B—e22—2z—=1=0

les valeurs limites:

qui sont plus petites que les valeurs correspondantes:

t=v2, V3, V&,

fournies par (2). |

8. La recherche des méthodes qui se servent exclusivement
des modules des différences des coefficients voisins, dont I’exemple
est donné par la formule (3), se fait d’une maniére analogue.
Transformons I’équation (1) en introduisant une nouvelle racine
x =1, c¢’est-a-dire multiplions les deux co6tés de I’équation (1)
par x — 1. Il vient:

2" e, — )" 4 (@, — arl)xl_1 + ..+ (a,—a, Jxr —a, =0.
(13

En appliquant & cette équation transformée la méthode pré-
cédemment formulée, nous pouvons énoncer le théoréme suivant:

Le plus grand module des racines de Uéquation (13) et par
conséquent de Uéquation (1) ne peut pas surpasser la racine post-
tive unique de I’'équation auxiliaire:

—1
S — e, — 1 — ey — e [T — = e, —a, 4|z —a,| =0.
(14)

Parmi toutes les méthodes, qui fournissent les nombres limitant
supérieurement les modules des racines de Uégquation (1) en se
servant exclusivement des modules des différences des coefficients
voisins de U’équation proposee, les metlleures sont celles, qui déter-
minent la racine positive de I'équation auxiliaire (14) directement
ou par les approximations successives supérieures.
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La méthode exprimée par la formule (3) en particulier n’est
dans aucun cas meilleure et devient en général moins précise.
Par exemple notre méthode appliquée & 1’équation (11) donne
Péquation transformée z*+! — 1 = 0 et ’équation auxiliaire de
la méme forme z'+1 — 1 = 0, dont la racine positive unique
est By = 1. Nous avons alors obtenu la limite précise, pendant que
la formule de M. WiLLiams fournit seulement |z;] < 2.

Il ne faut cependant pas croire, qu’on obtient par la méthode
des modules des différences toujours des résultats meilleurs
que ceux obtenus par la méthode des modules des coefficients.
Cette derniére méthode se montre au contraire toujours moins
précise si ’équation auxiliaire (10) a une racine positive moindre
que 1, car nous avons introduit dans la seconde méthode la.
racine z = 1; alors la plus grande racine By de ’équation auxi-
liaire transformée reste toujours By > 1.

Considérons encore-un exemple numeérique

#—trt3=0. - (15)

La formule (10) donne 101l ay = 2 -+ \/5 alors h<ay<betla
formule (14) donne une plus grande ValeurA6 < Bu<T.

(La formule (2) donne V26 et la formule (3) V84, donc dans
les deux cas des résultats moins satisfaisants que les. résultats
obtenus par les « meilleures » méthodes.) |

9. Nous avons de cette maniére obtenus les limites extrémes,
qu’on peut atteindre par ces deux types de méthodes. Il se pose
la question, si ’on ne pourrait pas trouver d’autres méthodes
assez simples et fournissant des limites plus précises pour les
modules des racines. Les résultats que nous avons obtenus pour
I’équation (15), par exemple, ne sont pas satisfaisants.

Or on: parvient quelquefois aux résultats plus précis en for-
mant la seconde, troisiéme, ... différence des coefficients voisins
de ’équation. Mais on voit que la valeur des méthodes des diffé-
rences ne différe principalement pas de la valeur des methodes
queé nous avons examinées. |
" Cependant une autre idée se montre féconde, a savoir I'intro-
duction des nouvelles racines z ='u, ¢, ... autres que z = 1.
On peut choisir les paramétres , ¢, ... de telle maniére, qu’on
obtienne un plus grand degré de précision. |
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En introduisant par exemple dans I’équation (15) une racine

3 .
T = U = — 5 NOus trouvons pour ay la valeur 3 44 < ay < 345,

qui est plus petite que les valeurs obtenues par les méthodes
précédentes. En introduisant a la fois deux nouvelles racines
tT=u=—3 et 2 =¢=-—1, nous trouvons une valeur ay
contenue dans lintervalle 3:2 < ay < 33, donc plus précise
encore que dans le cas précédent. L’étude approfondie des
~méthodes de cette espéce ne me semble pas privée d’intérét.

UNE REPRESENTATION DE L’EXCES SPHERIQUE
D'UN TRIANGLE SPHERIQUE (HAMILTON)

PAR

B. NiewencrLowsk1 (Paris).

La présente note est rédigée d’apres ’ouvrage de M. Tait sur
les quaternions. Je rappelle en premier lieu des définitions et des
propriétés des triangles sphériques qui en faciliteront la lecture.

Quotient de vecteurs — Verseurs — Arcs de grand cercle.

1. Soient a, 8 deux vecteurs OA, OB. Appelons quotient ¢
de (3 par « une quantité définie par P’égalité

P=axgq,
Ce qui donne

ahl.ie::on La.q = q .

Nous poserons done

q est un quaternion. Quand les tenseurs de « et de 8 sont égaux,
q est un verseur. | | -
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