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o M. PLANGHERFL

- taines recherches; ¢ ‘est le cas du. procede de sommatwn dit de
Poisson, ou I’'on cherche la limite pour r - 1—0 de la série

A P ) {
® ' T R ' )
) el on.
2 E a, cos nx <+ b, sin nx)r

1.

et de celui qm se presente dans la theorw de la propagatwn de
la chaleur :

Clim | % a cosno + b sinne)r™ |
M_lﬂ[ﬁ 4—_2( n €OS H- n ?) ]

Notons encore le procédé de Riemann:

lim [ +\1 (812:k> a,cosnx 4+ b, sin nx)] .

h=0

Ces divers procédés possédent d‘ans le cas des séries de Fourier
des proprletes analogues & celles que posséde le procede de M. de
la Vallee Poussm 1

§ 7. LA THEORIE DES CONSTANTES DE FOURIER.

1. L’idée d’édifier & coté de la théorie de la convergence des
séries de Fourier une théorie,des suites des constantes de Fourier .
semble avoir été formulée pour la premiére fois d’une  fagon
nette par Hurwitz? qui'a montré que ’on peut additionner et
multiplier entre elles les équivalences des fonctions intégrables
bornées et qu'une équivalence intégrée terme & terme donne
lieu & une égalité. Le probléme général de cette théorie des
constantes de Fourier est le suivant: De propriétés connues de
f(z), quelles conséquences conclure pour la suite de ses constantes .
. de Fourier et inversement. | .

'En réalité on sait trés peu de choses sur les caractérlsthues
- d’une suite de constantes de Fourier. On sait que a,-0 et

. que 2-— Gonverge 3, 11 n ex1ste pas de fonctlon Z( ) tell,eque - )

S T

.| * Vallee-Poussin 2, Hahn 1, — "Huirmtz‘sp-~e~,"s'héhesgue‘~"5;p-‘-.‘fgdz,,mz,./.a_.;;,;; e

Vo
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A(n) < Mn +1), lim A(r) = «© et pour laquelle him a,l)\(n) =

n=p & N =» ©

lim b, A (n)= 0 ait lieu pour toute suite de constantes de Fourier *.

¥ Mais ces propriétés sont loin d’étre suffisantes pour caractériser
‘8 une suite de constantes de Fourier.

On sait encore que si une fonction f est & variation bornée,
ses coefficients de Fourier satisfont & des inégalités du type

. M M
a0 < e dbi<—. e

n

ou M est une constante et que si elle est de plus continue et
périodique

pt

,..“

L )
na, — 0 , n/)n > 0 2,

R
..
3

On sait encore que si f est continue et périodique une relation
na, ~ a, nb, > b ne peut avoir lieur que st a =b=03.

48 ment a une condition de Lipschitz, ou posséde des dérivées
jusqu’a un certain ordre, ou lorsqu’elle est analytique, les iné-
@ galités (21) peuvent étre remplacées par de plus précises.

M Du fait qu’une suite donnée a,, b, est une suite de constantes
de Fourier on ne peut pas conclure que si ’on intervertit dans
cette suite 'ordre d’une infinité de termes, la suite obtenue
est encore une suite de constantes de Fourier. Par exemple, si
"3 Ton permute les a, et les b, de méme indice entre eux, la nou-
A velle suite n’est plus nécessairement une suite de constantes
A8 de Fourier. Le role disymétrique des a, et des b, est d’ailleurs

P ’ . . ' [) .
mis en évidence dans le fait que 3 ,—: converge toujours pour

’ . i . . - a
une série de Fourier, tandis que },% ne converge pas néces-
T

sairement. Sous certaines conditions, M. W. H. Younc a établi

2 que

B | 24

4‘ © a,l, 1 f/'( ]O 1 d
—_— = — x [ e
A 21 n 2T ) gZ{'l — cos x) o 5
¥ -7

1 Lebesgue 6. — 2 F. Ri

esz 5; Neder 3; Steinhaus 8, Czi . — 38 i —
FWH. Young 1o, _ _ .8, Czillag. — 38 Steinhaus 8, 9.

Lorsque la fonction f continue périodique satisfait uniformé--
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or, I'intégrale du second membre diverge pour certaines fonetions
intégrables. De méme, si dans la suite a,, b, des constantes de
Fourier d’une fonction on remplace une infinité de termes par -
zéro ou si 'on supprime certains termes en déplagant 1’indice
de ceux qui suivent, les suites obtenues par ces opérations ne
sont plus nécessairement des suites de constantes de Fourier.
M. W. H. Younc ! a étudié certains cas ot du fait que la suite
b

a n
2(n)’ ¢ (n)
est encore une suite de constantes de Fourier, ¢(n) étant une
fonction positive croissante tendant vers linfini. I1 a étudié
aussi le cas ot les ¢(n)! sont les constantes de Fourier d’une fone:
tion ou les coefficients de la série dérivée d’une série de Fourier. |

2. Les résultats les plus importants de la théorie des constantes
de Fourier sont contenus dans la formule de ParseEvaL, dans
‘le théoréme de Rresz-FiscHER et dans leurs généralisations. Ces
théorémes se rapportent auf fonctions f(xr) dont une puissance
p-iéme (p > 1) est intégrable. - : | A

La formule de Parseval 2 énonce que si f(x) est de carreé mte?

-y, by est une suite de constantes de. Fourier, la suite —

grable c’est-a-dire si f fz.dx est ﬁme la série 2<a“ + b’)

converge et que - L
1 o a—; ‘ Q'OW g -2‘ o ‘
offzdx = + ‘?-.-(an + bn) . »(22;

Une conséquence est que si g(z) est une seconde fonction de
carré intégrable ayant la suite «,, 8, comme sulte de constantes \
de Fourier, la série X(a,on + b, f3,) converge et

——ffgdx:a °‘0+2(an a 4+ b B). - (23

Le théoréme de Riesz-Fischer est relatlf aux séries de fonctions
orthogonales. Dans le cas particulier des séries trigonométriques -

- il énonce que: Etant donnee une sulte de constantes reelles

1 W. H. Young 7, 9, 10, 11, 183, 15, 16. —_— 2Lehezsgu& 5 p 100 voir aussi Valiée- B
Poussin 1; Hurwitz 3, 4; Fisther {, = 8 F, Riesz 1 HE Flscher 2. '_W. EEL Young,;.
-~ and G. C Young; Plancherel. ; :
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a,, b, assujeties & la seule condition: 3 (@, 4 b2) converge, il

existe une et, & une fonction d’intégrale nulle pres, une seule

fonction f(z) ayant la suite donnée @n, b, comme suite de cons-

tantes de Fourier. Cette fonction f(z) est de carré intégrable.
Ce théoréme montre en particulier que si |

flx) oo % - 2 (a, cos nx —§—'bn sin nx|
1

est de carré intégrable, la série conjuguée

o

S (b,cos nx — a, sin nx)

1

est encore la série de Fourier d’une fonction de carré intégrable.

3. La généralisation donnée par M. W. H. Youncg?! de ces
théorémes a été complétée sur un point par M. HAUSDORFF 2.
Sans avoir le caractére simple du théoréme de Riesz-Fischer
elle est aussi intéressante. Pour Iexprimer sous une forme
concise, notons

2
1 p —r
fk;:?—nff(x)e_'mxdx (i = V—1), k=0, +1, +2,.
0
Evidemment
' 1 : 1. :
f = §(ak —b,) [y = 5l + by) .

Notons encore
1

1
- y , T 7
5, = <E A |P> , I, = <ﬁf|n"dx>
o .

et gupposons

—= 1.

1
I =

1
p>1’ 1-1 -
q > 7T

Alors:
I. 8i p < g et si la suite arbitraire de constantes ay, b; est telle

1 W H. Young 9, 10; pour d’autres généralisations, en particulier pour I'étude du
Cas ol (23) subsiste en Sommant le second membre par -une moyenne de Cesaro,
voir W. H. Young 7, 8, 15. — 2 Hausdorft,
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que S, est fim les ax, by sont les constantes de Fourier d’une
fonetlon f(x) telle que |f(z)|? soit intégrable. De plus

IS8, .

I1. Si p<getsila fonctlon arbitraire f(x) est telle que | f(x) |?
est intégrable, la- série S, formée & I’aide des constantes de
" Fourier de f converge et

Pour p=¢=2, on retljouve'le théoréme de Riesz-Fischer ot
la’ formule de Parseval. .- - |
4. Si les fonctions f(z), g(x) sont telles que |[f|? et |g]?

(% +—;- =1,p>0 ¢ > O) sont intégrables, la formule de

Parseval (23) subsiste . |

5. La formule (23) subs1ste encore si f est intégrable et g &
variation bornée 2.

6. Il n’est pas possible de caractériser d’une maniére s1mple ,
la suite des constantes de Founer d’une fonction continue. On
peut se demander, par exemple, §’il existe un exposant a < 2 tel
~ que la série 3(]a.|* + | b.|%) converge pour toute fonction con-
tinue. Mais la réponse est négative 3. -

Il est intéressant de noter que si la suite des constantes (n, bn
est telle que 3(| a, |* + | b, |*) converge pour un exposant «>2 la
série ZA, peut ne pas étre une série de Fourier, ni méme une
série de Fourier généralisée, engendrée par une fonction inté-
grable au sens de Harnack Lebesgue C’est par exemple, le
cas des séries 4 :

- "
Yn%cos (n®x) ,, Xn %sin(n?x), = < 7 -
TircaMARsH ¢ et PERRON ® donnent d’autres exemples, &

certains égards plus S1mples

7. Des résultats trés curieux ont été obtenus par M CARA-
THEODORY7 sur les constantes de Fourier des fonctlons positives.

Pour que la série de puissances 1 + 2 (@n + 1by)2" converge.j

1 ‘M. Riesz 8 Young 8. — 2 Young 8. —3 Carleman ~—-4 Hardy and Littlewood i«
— B Titehmarsh 1, — 6 Perron — 1 Caratheodory 1,2, .
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pour |z| <1 et ait pour |z! < 1 sa partie réelle positive, il
faut et il suffit que le point (ay, @y, ..., @u; by, by, ..., b,) de I'espace &
9n dimensions appartienne au corps K, défini comme le plus
petit corps convexe contenant la courbe

x, — Z2coso Xy = 2cos 29, ..., x, = 2cos ny

y, = — 2sing , Yy = — 2sin 20, ..., ¥y, = — 2sinng

et cela quelque soit n.
M. TepLiTZ! a réussi & exprimer ce résultat sous forme algé-
brique. En posant

2 , a, + ib, e, 4 1b,
a, — b, 2 a, 4+ ib,_,
D =] a— thy a, — ih, a,_o + Ll;n_2
. . 9
a, ll)n ? a/z—’l ll)n-——l

et en désignant par H, la forme d’Hermite dont D, est le dis-
criminant, son résultat énonce qu’une fonction continue pério-
dique de période 2r est > 0 lorsque les coefficients a,, b, de sa
série de Fourier sont tels que les formes H,, H,,..., H,, ... ne
sont pas négatives.

Ces théorémes sont en relation étroite avec le théoréme de
Picard-Landau. Ils appartiennent plutét au domaine de la théorie
des fonctions d’une variable complexe; c’est pourquoi nous
n’insisterons pas ici sur les développements et les recherches
qu’ils ont provoqués. Notons simplement qu’ils permettent de
donner des conditions nécessaires et suffisantes pour qu’une
suite de constantes soit la suite des constantes de Fourier d’une
fonction mesurable bornée, d’une fonction bornée intégrable au
sens de Riemann ou d’une fonction monotone 2.

§ 8. SERIE TRIGONOMETRIQUE ET SERIE CONJUGUEE.

1. A toute série trigonométrique

D [ee]
a Q) .
A, + EA” — 72-0 + Z (a, cos nx 4 b, sin nx)
1 1

L Toeplitz 1; voir aussi Fischer 3. — 2 Caratheodory und Fejér; Caratheodory 3, 4.
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